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Battery State-of-Health Prediction based Clustering
for Lifetime Optimization in IoT Networks
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Abstract—The Internet of Things (IoT) represents a pervasive
system that continuously demonstrates an expanded application
in various domains. The energy efficiency problem has always
been a crucial issue linked to this type of network where the
system lifetime strongly depends on devices’ batteries. Numerous
energy efficient networking protocols have been proposed in the
literature to increase the system lifetime. However, most of the
proposed approaches deal with the short-term vision of energy
consumption and omit to consider the rechargeable battery
degradation when evaluating the network lifetime. Indeed, the
major parts of the network devices use rechargeable batteries
that age and degrade over time due to several factors (temper-
ature, voltage, charging/discharging cycle, etc.). Therefore, it is
essential to promptly detect these internal and environmental
degradation factors to avoid network failures. Clustering repre-
sents one of the main wireless network protocols and plays an
essential role in network self organizing. In this work, we propose
a novel Long-term Energy optimization Clustering Approach
based on battery State Of Health (SOH) prediction, called
LECA SOH . The objective is to predict the impact of Cluster
Heads election on the rechargeable batteries SoH before applying
the clustering. LECA SOH fosters the selection of the nodes,
which will less suffer from battery degradation during the future
rounds, leading to extend the system lifetime. The obtained results
demonstrate that the proposed clustering approach improves the
network lifetime in the long term and extends the number of
recharging cycles compared to the conventional energy efficient
approaches.

Index Terms—IoT, WSN, Rechargeable battery lifespan, State
of Health prediction, Energy-aware protocols, Distributed Clus-
tering.

I. INTRODUCTION

AN expanding number of modern electronic devices are
being connected to the Internet at an exponential scale,

realizing the idea of the Internet of Things (IoT). This
paradigm is a hot research area that is rapidly growing and
covers a broad range of research. The basic concept of the IoT
is to enable everyday devices (smartphones, sensors, laptops,
RFID tags, vehicles, etc.) to communicate and share infor-
mation and, therefore, transforms these conventional devices
into smart systems by exploiting their underlying technologies
(pervasive computing, embedded systems, wireless communi-
cation, Internet protocols, sensing, etc.). Nowadays, IoT has
substantial home and business applications and a huge impact
on the world’s economy. Indeed, there are various domains
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where the IoT plays an outstanding role and improves the
quality of our daily lives. These domains cover intelligent
transportation, smart healthcare, industrial automation, smart
city, smart home and more [1].

Wireless Sensor Networks (WSNs) constitute an essential
part of the IoT field that offers the required technological
foundations used within IoT systems [2]. Indeed, WSNs in-
tegration in IoT networks provides efficient and cost-effective
networking solutions to manage the Internet access issue in
massive IoT systems [3]. WSNs are composed of a substantial
number of small electronic devices fitted with limited sensing,
computing, communication ability and a constrained power
supply. The aim of these devices is to cover a certain region of
interest by collecting data from their surrounding environment
and transmitting it to a Base Station (BS) for further treatment.
The BS may be connected, via a private or public network (e.g.
Internet), to a particular remote service as shown in Figure 1.
Since each device has a limited power supply, prolonging the
network lifetime constitutes a critical challenge that requires
the implementation of energy efficient protocols.

Fig. 1. IoT network architecture

Commonly, devices’ batteries represent the unique source of
energy and therefore are central for the nodes’ operation. The
energy source problem undermines the integration of the tradi-
tional wireless network protocols into the IoT [4]. Therefore,
the self rechargeable battery concept has draw much attention
[4], [5]. This kind of batteries benefit from prolonging the
lifetime of devices by fitting them with recharging systems [6]
(e.g. piezoelectric generators, RF harvesters, solar panels and
wind turbines), which transform environment sources, such as
body heat, foot hit, wind and sunbeams into electric energy
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[4]. However, the durability of rechargeable batteries is not
unlimited and omitting the degradation aspect may lead to
a high substitution and maintenance costs. Hence, preserving
battery state of health (SoH) is crucial even with rechargeable
batteries. The State of Health of a rechargeable battery refers
mainly to the ability of the battery to be fully recharged again
in the future.

To ensure a proper connectivity to the Internet network,
the IoT nodes are often organized into clusters. Clustering
protocols represent an essential function in reducing the energy
consumption and extending the network durability [7]. During
a period or round, each cluster comprises one Cluster Head
(CH) device and several cluster members (CMs). The clusters’
composition changes from period-to-period. The CH node is
responsible for collecting and processing the data acquired by
the CMs and relying it to the remote BS (Figure 1). The CHs
election is a crucial component to ensure the efficiency of
the wireless network operation [8]. That is why, CHs election
has received much attention from the research community [3].
However, the energy-aware clustering protocols assume that
the battery is non-rechargeable. Whereas, rechargeable batter-
ies are nowadays widely used and the contact less harvesting
solutions have evolve into a reality [9]. Furthermore, works
dealing with rechargeable batteries all neglect the batteries
aging over time.

Conventional works either focus on static battery-powered
networks (with one discharging cycle) or merely consider the
current state of charge (SoC) of the batteries in order to
improve, in the short time, the network lifetime. Therefore,
we propose a novel Long-term Energy optimization Clustering
Approach based on battery SoH prediction (LECA SOH).
Since battery aging is one of the prevalent failures that
cause material replacement [10], considering the long-term
exploitation of devices batteries in networking design can con-
siderably decrease the carbon footprint and extend the network
durability. The modeling of rechargeable battery degradation is
an outcome of the electronics specialists but it is not exploited
enough by the networking community.

A. Contributions

The proposed clustering approach uses an original SoH
prediction model to guide decisions about the next selected
cluster head nodes. To the best of our knowledge, there is
no prior work on clustering protocols studying the problem of
maximizing the network lifetime based on a prevision model of
the rechargeable battery degradation. In summary, as CH nodes
have more functionalities, their batteries deteriorate faster. The
proposed approach uses the current nodes’ SoH and the bat-
tery degradation prediction for the selection of the next round’s
CHs. The devices with less expected battery degradation level
are then elected, which leads to prevent the fast battery aging,
and in turn improves the network long-term durability. The
proposed degradation model is inspired from many works [11]
[12] [13], and combines a computation simplicity and a good
accuracy due to the consideration of different degradation fac-
tors such as cycle aging, depth of charge or discharge, internal
temperature, charging and discharging voltage. Furthermore,

conventional clustering approach aim to delay the recharging
procedures. However, recharging procedure leads to short-time
interruption, while hardware or battery replacement provokes
a long-term unavailability.

The rest of this paper is organized as follow. Section
II describes the batteries features and discusses the litera-
ture on system lifetime optimization in wireless networks.
In section III, we describe the proposed clustering protocol
LECA SOH and how the predicted State of Health degrada-
tion is used to guide the cluster heads selection. Then Section
IV depicts how the degradation of the rechargeable battery is
predicted on the basis of internal temperature estimation, the
prediction of energy consumption devoted to the communica-
tion activities and the prediction of battery heating according
to the device activities. Section V is devoted to the discussion
of experimental settings and simulation results. We conclude
our work in section VI.

II. RELATED WORKS

In this section, we discuss the major differences between
rechargeable and non rechargeable batteries from an energy
optimization point of view. Then we discuss the works on the
wireless network lifespan optimization from the literature.

The measurement of battery lifespan differs according to the
nature of the battery: rechargeable or not. In non-rechargeable
batteries, also called primary batteries [14], [15], the remaining
battery life is measured using the SoC. The Zinc–carbon
battery is an example of a non-rechargeable battery [16]. In
contrast, rechargeable batteries [15], [17], [18] (also called
secondary batteries) can undergo multiple charge/recharge
cycles. Combined with energy harvesting methods such as
solar cells or thermal energy, the operational duration of the
rechargeable batteries may be extended without interruption.
The battery State of Health SoH is used to estimate the battery
operational quality. This parameter provides important infor-
mation to prevent battery malfunctioning and the consequent
network failures [6]. The first commercial lithium-ion batteries
(LIB, developed by Sony Corp. in 1991 [19]) triggered a
revolution of the rechargeable battery market. Subsequently,
the development of secondary batteries has increased quickly,
LIB exhibits the highest energy density and maintains an
exceptional working performance; they are currently leading
the rechargeable battery market and are widely used in several
areas [15]. Rechargeable batteries have a limited lifetime and
need replacement due to aging. Indeed, SoH optimization
in networking protocols helps to extend the devices’ global
lifetime and offers a better impact on the carbon footprint.

A considerable amount of literature addresses the lifetime
improvement of wireless networks [8], [20]–[25]. However,
researchers in this area commonly consider non-rechargeable
batteries with restricted energy supply and focus on slowing
the batteries discharging [22]. Commonly, these approaches
neglect the batteries behavior by using a linear energy de-
pletion model. Low-Energy Adaptive Clustering Hierarchy
(LEACH) [26] is among the earliest classical clustering tech-
niques. CHs are selected by a probabilistic rotation pattern
where each node gets an equivalent chance to be a CH.
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LEACH uses the probability formula defined in equation 1,
each node randomly chooses a number n ∈ [0, 1]. If this
number is lower than the threshold value f(i), the current
node is selected as a CH for the next round. The other nodes
select their CH according to their proximity from the CHs.

f(i) =

{ n
1−n×(r×mod(1/n)) i ∈ G

0 otherwise
(1)

r is the current round, p is the probability of being a CH,
G represents the group of nodes that have never been CH
during the previous 1/p rounds. LEACH provides significant
energy saving and prolongs the network lifetime compared
to the flat topology approaches. However, it still possible to
select a CH with critical energy, which may lead to a quick
death and degrade the network performance. Therefore, many
clustering protocols have been inspired by LEACH to provide
higher network durability [27], [28], including MH-LEACH
[29], O-LEACH [30], S-LEACH [31] and others [32].

A Multi-Hop version of LEACH protocol (MH-LEACH)
was introduced in [29]. MH-LEACH proposes a multi-hop ar-
chitecture within each cluster to promote energy preservation.
Some specific CM nodes are considered as intermediate nodes
to relay the collected data toward the CH. In [30], the au-
thors combine LEACH algorithm and Genetic (GA). LEACH
algorithm determines the clusters, while the GA is used to
locate the optimal routing paths using a fitness function. This
latter uses the residual energy of the nodes for the selection
of the CHs. O-LEACH outperforms the classic LEACH by
improving the packet delivery rate, throughput, and energy
saving. Residual energy-based LEACH (R-LEACH) protocol
[33] selects the CH by combining multiple parameters, such
as the remaining energy and the optimum number of network
CHs. The approach applies the same mechanism for the CH
election as LEACH. However, the new CH is selected at the
end of the round based on nodes energy.

In [34], Hamzah et al. proposed a new clustering method
called FL-EECD based on the minimum separation distance
between CHs. The CHs are selected based on the residual
energy, location suitability, density, and distance from the BS.
The approach sets a minimum separating distance between
CHs and uses a Gini index [34] to measure the energy
efficiency of the clustering approach to ensure an even dis-
tribution of energy through nodes. Authors in [35] presented
an energy harvesting scheme for CH rotation (EH-CHRS) in
green wireless networks based on the double chain Markov
model. The main motive of the approach is to perform a CH
rotation and minimize the energy overflow during high data
traffic by assigning the CH role to nodes that consume less
energy during the data aggregation phase.

In [36], the authors proposed to combine a gravitational
search algorithm (GSA) with a Power Distance Sums Scal-
ing (PDSS) mechanism to determine the optimal number of
clusters in each round. This method uses the location and the
remaining energy of nodes to reduce the number of active CHs
and decrease the energy consumption. It uses a fuzzy logic
controller which considers the residual energy and the trans-
mission link quality to improve the performance of the method.

Improved Energy-Efficient Clustering Protocol (IEECP) [3]
determines the optimal number of balanced clusters, which are
formed based on a modified fuzzy C-means algorithm, which
balances the energy consumption of nodes. The approach uses
a CH rotation mechanism combined with a CH back-off timer
mechanism to select CHs at optimum locations.

WPO-EECRP protocol [37] considers diverse clustering
factors for CHs election, namely, the residual energy, the
average distance toward the BS, and the number of nodes
in the neighborhood. It aims to ensure the scalability of
the protocol and to provide a proper clustering control by
altering the clustering parameters. The approach is completely
distributed and requires the exchange of control packets to
estimate the distance separating the nodes and their CH.

The proposed clustering protocols, up to this point, have
been mostly based on devices’ residual energy optimization for
non-rechargeable batteries. These solutions focus on slowing
the batteries discharging process (short-term vision) and ignore
the impact of operational activities of the devices on the SoH
of the batteries. Therefore, such approaches does not optimize
rechargeable batteries lifespan (in long-term). In this work, we
introduce a distributed clustering scheme based on the battery
SoH prediction. In the subsequent sections, we are going to
present the different models used for the implementation of our
solution. Table I outlines a brief comparison of the clustering
approaches presented in this section.

TABLE I
CLUSTERING ALGORITHMS PROPERTIES COMPARISON

Algorithm Distr. Multi-hop Lifetime Clustering parameter
vision

LEACH [26] ✓ X Short load balance
MH-LEACH [29] ✓ ✓ Short SoC, reliability
O-LEACH [30] ✓ ✓ Short SoC, latency
R-LEACH [33] ✓ X Short SoC, density
EH-CHRS [35] X X Short SoC, load balance
PDSS-GSA [36] X X Short SoC, position, reliability
DWCA [38] X X Short SoC, Distance to BS
IEECP [3] ✓ ✓ Short SoC, position
WPO-EECRP [37] ✓ ✓ Short SoC, distance to BS
GCA [39] X ✓ Short SoC, cluster size
FL-EECD [34] X X Short SoC, position, density
LECA-SOH ✓ ✓ Long SOH Prediction, density

III. THE PROPOSED APPROACH: LECA SOH

In this section, we present a new distributed clustering
technique based on the state of health prediction of recharge-
able batteries called LECA SOH . CHs nodes perform more
functionalities than CMs and accordingly deteriorate more
quickly. The novelty of the proposed solution consists of
predicting the degradation effect of a potential selection of
the node as a CH. LECA SOH selects as CHs the nodes
that undergo less estimated battery deterioration during the
forthcoming round, which in turn extends the network long-
term lifetime.

Let G = (V,E) the graph representation of the wireless
network, where V is the set of nodes and E ⊆ V 2 is the set
of short-range communication links. The edges correspond to
the couples of nodes i and j where the distance between i
and j, Dist(i, j), is lower than the transmission range Tr.
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We note N(i) the set of node i direct neighbors, Nk(i) the
set of nodes reachable in k hops from the node i ∈ V , and
N<k(i) the set nodes that can be reached in less than k hops
from i.
LECA SOH computes a weight for each node, and the

node holding the highest weight among its surrounding area
is selected as a CH. The weight of a node i is computed
using two metrics. First, the ratio of neighborhood cardinality
θi ∈ [0, 1] (equation 2) that depicts the connectivity ratio
of a node relative to its neighborhood. Indeed, a high node
degree strengthens the cluster connectivity and reduces the
intra-cluster communication.

θi =
|N1(i)|

Max(|N1(j)| | j ∈ N1(i) ∪ i)
(2)

Secondly, a predicted battery state of health degradation
(∆SOH ∈ [0, 1]) metric that estimates the potential degra-
dation of the node battery if it is selected as CH during
the subsequent round. Although, nodes cardinality and the
battery degradation represent two different physical units,
the combination of the ratio of these two units (θ,∆SOH )
allows the election of CHs possessing the highest connectivity
proportion and holding the minimal battery degradation among
each cluster. Indeed, the ratio of the connectivity θ ∈ [0, 1]
varies from 0 (referring to an isolated node) to 1 (depicting a
fully connected node). On the other part, with ∆SOH ∈ [0, 1],
On the other hand, with SOH [0, 1], the closer the value is to
0 the lower the degradation, while the higher the degradation,
the more the battery undergoes further degradation.

The computation of ∆SOH is detailed in section IV-D. The
future SoH is then expressed by Equation 3, where p refers
to the current round.

SOHp+1(i) = SOHp(i)−∆SOHp(i) (3)

The weight Wi of a node i is computed based on the two
previous metrics as follow:

Wi = α× θi + β × (1−∆SOH(i)) (4)

Where α and β depict the decision maker defined coeffi-
cients of the two criteria: the battery state of health (SOH)
and node degree respectively. α and β are chosen regarding
the target application and the surrounding context. These
weight factors are altered comparatively to the others to
acquire the best performance result for a specific network
configuration. For instance, within a reduced density network,
the device’s residual energy should be privileged. Whereas,
with an elevated density network, the nodes connectivity needs
to be explored. The proposed scheme is designed to work
under a typical network with various configurations to cover
different use-case scenarios. Hence, in this experiment, the
weight coefficients are considered equal.

A. Weights computation

To compute the weights Wi at the beginning of a new
round p, LECA SOH assumes that each node i broadcasts a
Neighbor Discovery(IDi) packet to all surrounding nodes.

A Neighbor j receiving this packet, updates its local state by
inserting node i information into NeighborsListj . Next, node
j replies by sending its local state Local Statej(IDj ,Wj) to
i. Progressively, node i knows the local state of its surrounding
neighbors using the state list (NeighborsListi). Every time,
the node i updates its weight due to a received Local State
packet from a neighbor, i broadcasts its new computed weight.
Figure 2 outlines the weight computation phase.

Fig. 2. Sequence diagram of the weight computation procedure

B. CHs election phase

CHs election algorithm is inspired from the self-stabilization
works [40], which allows LECA SOH to adapt to transient
events and network dynamic topology. We note CHi the
cluster head of the node i. LECA SOH organizes each
cluster into k-hop routing tree where the root is the cluster
head node. The rooting tree defines how the data sensed by
the devices are aggregated and forwarded to the CH. The CHs
rely then the data to the BS using long range communication
mode.

The clustering process of LECA SOH is illustrated in
Figure 3. Whence the weights of the nodes are computed, each
node checks if it meet the conditions to be the cluster head
during the next round. CHi is the cluster head of i (CHi = i
means that i is a CH), CHi is within a range of k hops from
i and its weight is the highest among all the weights of nodes
that dominate the neighborhood of i (N≤k(i)). More formally:

CHi ⇔


CHi ∈ N≤k(i) ∪ i
WCHi ≥ Wi

WCHi
= Max(Wj)

j∈(N≤k(i)
⋃
{i}) ∧ j=CH

(5)

If two or more nodes in N<k possess the same highest
weight, the distance is used as a tie-breaker (by choosing
the nearest CH). Furthermore, if node i is isolated or no CH
satisfies the multi-hop constraint, then node i elects itself as
CH. After CHs election, each node exploits its direct neighbors
knowledge to shape the multi-hop cluster topology. The nodes
update their distance toward the CH and select their parents,
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Pi, in the routing tree by following the shortest path to the
selected CH as expressed in following equation.

Pi = m ⇔ ∀j ∈ N(i), Chi = CHj :
HopsToCHj ≥ HopsToCHm

(6)

HopsToCHi refers to the minimum number of hops to
reach the CHi from i and it is measured using the recursive
formula:

HopsToCHi =

 min
j ∈ N(i)
CHi = CHj

HopsToCHj

+ 1 (7)

 

yes

Use eq. 6 to compute Chi 

start 

Chi == i ? 

HopsToCHi=0 

Chi is changed ? 

Broadcast CHi and 
HopsToCHi 

Use eq. 7 and eq. 8 to compute 
HopsToCHi and parent of i 

Broadcast CHi and HopsToCHi 

Receive CHj and HopsToCHj 

yes no 

yes noCH data to 
neighbors 

CH data to 
neighbors 

Fig. 3. Flowchart of LECA SOH leader election phase

To illustrate the intended idea of LECA SOH , let’s con-
sider the routing example illustrated in Fig 4. In this routing
scheme, four potential CH’s can relay the data of node S to
the BS. With conventional energy efficient approaches, either
the node 1 is selected as CH because it residual energy is the
highest (SOC = 80%) or the node 2 because it consumes
the lowest amount of energy (∆SOC = 15%). However, for
a long-term energy efficient perspective, the optimization of
batteries health leads to select node 3 or 4. Indeed, these nodes
present a better SOH (node 3 with SOC = 53% and node
4 with SOC = 51%). In this scenario, LECA SOH grants
node 4 as CH because this latter will endures less battery
health degradation after the data aggregation (∆SOH = 0.4%)
compared to the other nodes. Therefore, the predicted state
of health of node 4 after routing is the best, which is more
convenient for a long-term durability.

The proposed approach is distributed and the re-clustering
procedure is locally operated and does not strike the whole
network when interruption events occur due to devices dis-
placement, battery discharge or a coverage failure, etc. Indeed,
the re-clustering process is triggered by the CH and the local
state information are exchanged only when the current cluster
undergone a considerable topology changes. This approach
reduces the messages overhead and preserve the node’s energy.

Fig. 4. Short-term vs long-term energy efficient routing scheme

C. Clusters complexity

Lemma 1: The maximum number of clusters that can be
generated with LECA SOH when considering a related
graph is 1+n/(k+1), where n = |V | and k is the maximum
number of hops within each cluster.

Proof:
LECA SOH partitions the related graph G into several

clusters where each cluster has the node with the highest
weight as its root (the cluster head) and it’s surrounding
neighbors at k hops form the rest of the cluster (cluster
members). Therefore, within a related graph, the minimum
number of nodes that can be in a cluster is k+1 (the maximum
degree of each node i ∈ G in this case is: 0 < |N(i)| ≤ 2) and
the graph can contain n/(k + 1) clusters. As each cluster is
represented by only one CH, the maximum number of clusters
formed by LECA SOH within a related graph is n

k+1 , where
n = |V | and k is the maximum number of hops within each
cluster.

In the subsequent section IV, we are going to present the
different models used for the implementation of our solution.

IV. BATTERY MODELING

LECA SOH functioning is mainly depending on the abil-
ity to estimate the battery degradation if a node is CH. In
this sections, we present the different models used for the
implementation of our solution.

A. Battery Internal Temperature Evaluation

Increasing the battery operating temperature above the rec-
ommended scope intensifies the aging process and leads to a
fast battery degradation. Typically, the acceptable temperature
scope of a LIB battery is between [-20- 60]◦C [15]. When
the temperature is out of these interval, the battery degrades
faster with a high risk of causing a safety issues including fire
and explosion [15]. The acceptable temperature range should
lie within [20-40]◦C to ensure a proper balance between
performance, battery life and safety [41]. Low temperature



JOURNAL OF LATEX THE HEADE. RELAT. INFO. 6

affects the properties of electrolyte in LIB’s. Indeed, with
the diminution of temperature, the viscosity of the electrolyte
increases, which reduces the ionic conductivity [15].

High battery’s internal temperature is due to a high electric
current including operations with quick charging and the dis-
charging speed. Therefore, the appropriate management of the
battery temperature is crucial to ensure efficient performance
and safe functioning. In our approach, temperature monitoring
is one of the fundamental management processes. However,
monitoring the temperature distribution within the batteries is
not straightforward. We adopted the thermal model proposed
in [13] for monitoring the internal battery temperature. The
internal battery temperature (Tp) at a period p is estimated
according to the observed temperature at the surface of the
battery Tsurf and the ambient temperature Tamb as follow:

Tp = Tsurf ×
(
1 +

Rin

Rout

)
− Tamb ×

Rin

Rout
(8)

Rin and Rout represent the thermal resistance inside and
outside the battery.

B. Energy consumption prediction

Wireless communications represent a large portion of the
consumed sensors energy [8]. For instance, transmitting one
bit over 100 meters requires an equivalent energy as executing
3000 machine instructions [37]. To predict the battery charge
diminution if a node is selected as a CH, we used the energy
consumption model proposed in [3], [30], [36]. In this model,
dissipated energy due to the data processing is ignored. Data
transmission energy is spent on radio equipment’s and the
power amplifier activation. In contrast, the receiving node
spent energy to detect and decode the radio signal as shown
in Figure 5.

Fig. 5. Radio energy dissipation model

The energy consumed by a node for transmitting a packet
of l bits over a distance d is measured as follows:

ETran(l, d) = Eelec × l + Eamp(d)× l (9)

Eelec corresponds to the consumed energy per transmitted
bit. The quantity of energy consumption relies on different
elements, including the digital coding, modulation, signal
filtering and spreading. Eamp(d) is the power amplification
coefficient, it relies upon the distance to the receiver d and
the tolerable bit-error rate. Eamp is formulated as in eq. 11.

d0 =
√
εFS/εMFS (10)

Eamp =

{
εFS × d2 : d < d0
εMFS × d4 : d ≥ d0

(11)

On the other side, the energy required for the reception of
a message of size l bits is given by equation 12.

ER(l) = Eelec × l (12)

In this model, the energy consumption by a transmitter is
proportional to the threshold transmission distance d0. Accord-
ing to the distance value d0 (Eq. 10), the propagation loss can
be modeled as a free-space model or a multi-path attenuation
model. εFS and εMFS are used for the free space and multi-
path model respectively, they represent the characteristics of
the transmitter amplifier which depend on the required receiver
sensitivity and receiver noise pattern [42].

C. Heating prediction model

The operating temperature of the battery is a determinant
factor of its deterioration. To predict the impact of the node
selection as a CH on its state of health, it is crucial to
predict the effects of CH’s activities on the battery temperature
rise. In [43], Taheri and Bahrami studied the Lithium-Ion
batteries temperature rise according to the activity degree. The
results of this work show that, under a constant discharging
intensity, LIB’s temperature curves follow the same global
scheme corresponding to three stages. When the battery is
full charged (75%-100%) the temperature rises moderately.
When the battery is averagely charged (10%-75%) the battery
temperature rises slowly. Finally, when the battery is almost
discharged, the temperature rises quickly. However the global
rapidity of the temperature rise depends on the convective
transfer coefficients of the battery surface h (the ability of
the device to evacuate the heat) and the discharging intensity.

Based on the provided results in [43], we modeled the
temperature rise when a node is a CH as follow :

Tp+1 = Tp +∆T × |p| (13)

The values of ∆T are given in Kelvin per hour (K/h)
and depends on the electrical intensity and the discharging
stage as shown in Table II. The presented values are those
related to a Lithium Ion battery of 18mm× 16mm× 0.2mm
size, a capacity of 0.27Wh (1000 joules) and a voltage of
3.7V , and convective transfer coefficient h of 5w/(m2K).
The temperature Tp+1 corresponds to the next period predicted
temperature based of the measured temperature Tp probably
computed using equation 8. |p| corresponds to the time during
which the node is CH.

TABLE II
TEMPERATURE RISING RATE ACCORDING TO THE DISCHARGING

INTENSITY AND THE CHARGE LEVEL OF THE BATTERY

Intensity SoC ∈ [75, 100] SoC ∈ [10, 75] SoC ∈ [0, 10]
1.5A 2.6 1.07 8
3A 6.4 8.30 43
6A 40 36.9 140
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D. Battery State of Health prediction model

The SoH refers to the operational status of the battery and
declines over time from 1 representing a healthy battery to 0
where the battery is completely inoperative due to degradation.
Rechargeable batteries are impacted by diverse aging factors
that lead to a considerable effect on their performance. These
factors not only impact the performance of the battery, they
also reduce their lifetime [18]. Several aspects that influence
the battery life and provide the appearance of aging effects,
such as the calendar aging and cycle aging [17], [44].

The calendar aging stands for the battery inherent degra-
dation over time (in the long-term). It reflects the battery
depletion caused by keeping the battery under given operating
conditions, including the temperature and the charge degree
[18]. These factors determine the aging speed over time.
Meanwhile, the cycle aging is due to the charging/discharging
cycles. It affects the degradation of the battery due to the
complex composition and working process of the battery.

The selection of a proper model to estimate the current SoH
is of primary importance. Indeed, there are many methods
proposed in the literature to determine the battery SoH [17],
[44]–[46]. However, most of the proposed methods are too
complex to run on low-cost micro-controllers. Therefore, in
this work, we adopted the simplified battery degradation model
used in [44].

In the adopted degradation model, the previous factors are
used to estimate the battery additional degradation level during
a laps of time p. In this model, Tp defines the internal battery
temperature during p, SoCp represents the portion of available
battery capacity, and DoDp describes the portion of charge
consumed during p. Hence, the State of Health loss during p,
∆SOHp is formulated by:

∆SOHp = (SDoD
p + St

p)× ST
p × Sσ

p (14)

Where SDoD
p , St

p, S
T
p , S

σ
p represent respectively, the battery

degradation contributions of DoD, calendar aging, battery
internal temperature and the average SoC during the period
p. These terms are computed using the following equations,
where |p| is the duration of the round.

SDoD = αDoD ×DoDp × e(βDoD×DoDp) (15)

St
p = αt × p (16)

ST
p = e

(
αT×(Tp−Tref )×

Tref
Tp

)
(17)

Sσ
p = ασ × eSOCp−σref (18)

In our simulations, we considered the following values of
the model: αDoD = 0.05, βDoD = 0.03, ασ = 1.04,σref =
0.50, αT = 6.93E−2, Tref = 25◦C and αt = 4.14E−10/s.

V. SIMULATION

A. Experimental parameters

The performances of the proposed algorithm are evaluated
using JUNG (Java Universal Network/Graph) [47], a Java
based library that enables the analysis and the modeling of
wireless networks as graphs. Simulation parameters used in
this experiment are mentioned in Table III. The network topol-
ogy corresponds to a variable number of nodes δ ∈ [200, 1000]
dispersed over a square area of size 1000 × 1000 m2 where
the BS is located in the top left side of the network. Sensor
networks typically use wireless communication standards with
low power consumption, such as IEEE 802.15.4 Zigbee (with
a maximum transmitting range of 100 m) or the 802.11n [48]
(with a transmitting range of 90 m). Accordingly, based on
the wireless communication standards used by conventional
wireless networks, in this experiment, we assume that network
nodes have a transmission range of Tr = 90m and are ran-
domly distributed to generate a random network topology. We
adopt the classic Unit Disk Graph (UDG) connectivity model
[49] with symmetric communications. It’s worth mentioning
that the proposed method works when considering uneven
transmission ranges. However, in this case, communications
among adjacent nodes become asymmetric and, in turn, iso-
lated devices may emerge and connectivity will be difficult to
ensure. Nodes have an initial energy of 1 KJoule and the size
of a data packet is l = 100 bytes.

The battery degradation model used and the pattern adopted
in the prediction of the battery temperature are presented in
section IV-D and section IV-C respectively. The thermal model
used to estimate the internal battery temperature is inspired
from [13] and is illustrated in section IV-A. We assume that
when a node is no longer a CH, its temperature gradually cools
until reaching the ambient temperature. The performance of
our clustering approach is evaluated by considering the single-
hop and multi-hop (with K=2 hops) intra-clustering scenarios.
The proposed scheme is tested with different network density
to analyze the performance under different scenarios.
LECA SOH is, to the best of our knowledge, the first

clustering approach that considers the prediction of the battery
SoH in the clustering process. To show the relevance of
this new paradigm, the performances of the proposed scheme
are compared with IEECP [3] and O-LEACH [30]. These
protocols belong to the same clustering class and their primary
goal is the energy efficiency and extending the network
lifetime. Five parameters are considered for the analysis of
the protocols performance, namely, the CHs cardinality, the
energy consumption, the network lifetime (in short and long-
term), the number of recharging cycles and the average number
of dead nodes.

B. Experimental Results

1) CH’s cardinality:
Typically, a reduced CH’s cardinality reveals efficient clus-

tering performance as it depicts the number of wireless com-
munication channels formed with the BS and the number of
clusters generated. Figure 6 illustrates the average number of
CHs of the proposed approach versus O-LEACH and IEECP
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TABLE III
EXPERIMENT SETTING PARAMETERS

Parameter Value
Network size 1000× 1000 m2

Node density (δ) δ ∈ [200, 1000]
Transmitting range (Tr) 90 m

α, β 0.5, 0.5
Eelec 50mJ/bit
εFS 10 nJ/bit/M2

εMfs 0.0013 nJ/bit/M4

Rin,Rout 3.2KW−1,8.44KW−1

Data packet size 100 bytes
Battery’s full charge 1 KJ

protocols under different density values δ ∈ [200, 1000]. For
the case of a single hop transmission (Figure 6), the number
of clusters generated by the proposed scheme is stabilized
between 70 and 95 clusters. Whereas, this value increases
up to 105 and 115 with IEECP and O-LEACH respectively.
Figure 6 also illustrates the case when the multi-hop scheme is
considered. In general, the clusters cardinality decreases. The
average CHs generated is reduced by an average of 31.4%
as compared to the single-hop scheme, the CHs cardinality
in this case varies between [40-55]. This can be explained
by the fact that clusters coverage area increases, in multi-
hop scheme, which allows the clusters to manage more nodes.
LECA SOH maintains the lowest CH cardinality, it shows
an enhancement of 10.3% and 6.1% compared to O-LEACH
and IEECP respectively. This improvement is due to the
consideration of the nodes connectivity metric in the clustering
process of LECA SOH , which leads to the election of CHs
with high connectivity. Therefore, more nodes are covered by
a single cluster.
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Fig. 6. Average Cluster Heads cardinality considering the single-hop cluster-
ing and the multi-hop clustering.

2) Average energy consumed:
Figure 7 exhibits the average energy consumed by network

nodes by considering a variable network density δ ∈ [200 −
1000] and by assuming the single-hop and multi-hop scenario.
From these figures, we observe that the energy required for the
clustering is affected by the network density and the clustering
scheme used. When the number of nodes increases, the energy
required to build the cluster structure increases as well. This

value is bounded by 0.95× 10−3 KJoule when the single hop
scenario is considered, while it reaches up to 1.4×10−3 KJoule
when the multi-hop clustering is employed. This is due to
the amount of messages exchanged to construct the structure.
According to Figure 7, IEECP consumes the highest amount
of energy compared to the other approaches owing to the
modified fuzzy C-means algorithm used during the clustering
which requires the exchange of additional setup packets to
form the clusters. Accordingly, O-LEACH consumes 39% less
energy compared to IEECP.
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Fig. 7. Average energy consumed with the single-hop and the multi-hop
clustering.

LECA SOH shows an average improvement of 27.3%
compared to IEECP. O-LEACH consumes the lowest energy.
It consumes slightly less energy than LECA SOH (11%
less) because this later requires more messages to compute
the weight metric (computed using Equation 4), which con-
sumes an extra more energy. However, the result is acceptable
because the topology generated by the proposed approach
carries less clusters (as illustrated in previous section V-B1)
and exhibits a better lifetime performance in the long-term
(which is discussed in section V-B4 and V-B5).

3) Network lifetime (in the short-term):
This measure stands for the average number of rounds

elapsed before the first network device spend all of it energy
and its battery needs recharging. This measure is typically used
in the literature to evaluate the energy consumption of devices.
It also depicts the lifespan of one battery cycle by considering
only the residual energy (short-term vision).

Figure 8 illustrates the average battery cycle lifetime of the
studied approaches by considering the single hop and multi
hop clustering modes. From this figure, we observe that the
network lifetime increases when the multi-hop is considered,
as compared to the single-hop clustering. The battery cycle
lifetime varies between [900 − 2600] rounds in the single-
hop scenario and it increases to [1200 − 2800] rounds in the
multi-hop scenario. Indeed, as the network scales, ensuring
the connectivity tends to be more difficult. Therefore, multi-
hop communications are advantageous to reduce the energy
cost devoted to wireless transmission. Moreover, we observe
that the network lifespan, for the three schemes, increases
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because the network starts to be more connected. Indeed, when
the density scales, the clusters connectivity increases and the
CHs are able to cover more nodes (Figure 6), which in turn
reduces the long range transmission and boosts the energy
preservation.

Based on the shape of Figure 8, we observe that IEECP
maintains the highest durability, it shows an average improve-
ment of 9% compared to O-LEACH. This improvement is due
to the consideration of communication reliability in IEECP in
addition to the residual energy of nodes. Both O-LEACH and
IEECP show an average improvement of 19.7% compared to
our approach. This is because O-LEACH and IEECP consider
the residual energy of devices, which result in a longer lifetime
in the short-term (over one battery cycle only). In the next
paragraph we study the performances of the three approaches
according to the long-term durability (the batteries life over
several recharging cycles).

4) Network lifetime (in the long-term):
This metric depicts the average number of rounds elapsed

before the appearance of the first completely dead node in
the network (i.e. the SoH of its rechargeable battery is
totally exhausted and needs to be altered). This metric enables
the evaluation of the network durability and estimates the
devices battery degradation aspect in the long-term. Usually,
the network lifetime is described in different manners e.g. the
interval from network initialization to the last node death round
(LND) [29] or the interval from the initial deployment until a
predefined percentage of nodes death. In this experiment, we
consider the lifetime as the period until the first node death
(FND).

Figure 9 shows the average network lifetime in long-term
of our approach versus IEECP and O-LEACH. Initially, nodes
tend to be isolated due to the low connectivity, they are self
elected as CH to send their data toward the BS. Hence, at this
point, the lifetime of the three protocols is relatively short.
When the density increases, nodes connectivity increases,
which in turn lower the CHs cardinality and balances the
consumption of energy within CMs. From Figure 9, we
observe that nodes using O-LEACH tend to die earlier and the
FND only reached 28400 rounds (with δ = 1000) compared
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Fig. 9. Average network lifetime (long-term) in single-hop and multi-hop
clustering.

to IEECP where the nodes survive up to 29800 rounds.
This figure shows that our proposed approach exhibits better
performances, the FND node in LECA SOH reached 32500
rounds. This improvement is due to the use of the prediction
metric ∆SOH . Indeed, instead of performing the clustering
based on the actual state of charge, LECA SOH predicts the
amount of battery degradation for the following round before
the election of the potential CH’s. Accordingly, inadequate
nodes are avoided and the battery aging process is delayed,
which strengthens the network durability. Moreover, we ob-
serve that considering the SoH prediction in the clustering
process balances the temperature fairly among devices, which
further reduces the battery degradation. Figure 9 illustrates a
comparison of the three approaches by considering the multi-
hop clustering. LECA SOH shows better lifetime perfor-
mances compared to the classic approaches in both single-hop
and multi-hop scenarios (improved by 23% and up to 44%
respectively).

5) Average number of recharging cycles and dead nodes
(long-term):
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Fig. 10. Average number of dead nodes (δ = 500 nodes)

The average number of recharging cycles and the average
number of completely dead nodes (i.e. nodes with a completely
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Fig. 11. Average number of battery recharging cycles

damaged battery, SOH = 0) represent two significant param-
eters to demonstrate the lifetime efficiency of the proposed
approach. These parameters depict the elapsed period before a
rechargeable battery is entirely dead and needs to be changed,
i.e. it depicts a vision of the material substitution frequency.

Figures 10 and 11 illustrate the average number of com-
pletely dead nodes and the number of battery recharging
cycles (measured in rounds) of LECA SOH vs O-LEACH
and IEECP with δ = 500 nodes. It can be observed from
the shape of Figure 11 that O-LEACH and IEECP withstand
approximately the same number of cycle (up to 16 cycles).
Whereas, in LECA SOH the average number of recharging
cycle reached 25 cycles. This lifespan improvement is mainly
due to the use of the SoH prediction metric in the clustering
process. This reduces the battery degradation and allows
batteries to last extra number of recharging cycles. Therefore,
the number of completely dead nodes is considerably reduced
as shown in Figure 10. The proposed approach improves the
number of recharging cycles by an average of 31% and reduces
the average number of nodes death by 34.6% when compared
to the conventional energy efficient approaches [3], [30].

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed an energy efficient prediction
based clustering approach called LECA SOH . The approach
is distributed and aims to optimize the network lifespan in
long-term by considering the battery degradation aspect in the
decision making process of the wireless networking protocols.
More precisely, LECA SOH uses an SoH prediction based
mechanism during the CHs election in order to elect nodes that
will endure less potential degradation during the forthcoming
rounds, which in turn extends the system lifetime. To the best
of our knowledge, this work is a first step in the integration
of the battery degradation prediction in the clustering process
to extend the network lifespan in the long-term. Moreover,
the approach contemplates the behavior of the rechargeable
batteries and considers the thermal effect on the battery
degradation.

The obtained results are encouraging as the lifespan of the
network is extended with the use of the prediction criterion.

The aging based approach outperforms conventional methods
in terms of clusters cardinality and network lifetime in the
long-term (exhibits an average improvement of 44%). As a
future work, we aim to incorporate a deep learning mechanism
in the clustering process and consider both thermal and electric
aspects of the rechargeable battery [12] to further improve the
network durability.
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