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Abstract

Real-time multitasking, by opposition to shared-time multitasking, is required for applications where
the response-time to events are important, even more critical like in control and automation or drivers
programming. Find a low-cost model to learn real-time systems, that is accessible to a high number of
people is an issue. The paper deals with this issue by presenting a temperature control system that consists
of salvage components, and open-source hardware and software. It fits the circular and star-up industries
philosophy: it is cheap and can be manufacture on demand.
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1 Introduction

Educational systems are known to be very expensive
because of their requirement of robustness during labs,
but more particularly because of the small number of
products to manufacture. Indeed, the higher the num-
ber to produce, the lower the production cost and then
the price. In turn, high price makes the acquisition of
systems very hard, particularly for African universities.

Let us focus on a system allowing to learn real-time
application design and development through tempera-
ture control and monitoring. A quick search on Inter-
net gives few conclusive results: "real-time” leads to
global information about real-time, ”temperature con-
trol model” gives only general results on temperature
control, ”temperature control lab” gives a system based
on Arduino with Python or Matlab codings (Oliveira
and Hedengren (2019)), the educational system ven-
dors Didalab proposes a vehicle to control and monitor
with an adhoc real-time kernel (Didalab (2022)).

Finally, there is a requirement of a low-cost sys-
tem, for learning real-time systems and applications,
that is accessible to many people, more particularly
African universities and students. Since the number of
systems to manufacture will be very few, the only so-
lution remains, a start-up industry solution: a solution
based on the use of open-source hardware and soft-
ware, and can be manufactured on the demand. The
paper presents this kind of solution. It extends the
system described in (Grolleau et al. (2018)): a temper-
ature control and monitoring system that uses Rasp-
berry Pi running Linux-RT (i.e. Linux with the patch
PREEMPT _RT), Arduino, camera for image acquisi-
tion with OpenCV and C/C++, low-cost temperature

sensor, fan taken from a old computer.

2 Real-time basics

A real-time application (RTA) is a time-critical appli-
cation. Its implementation requires a real-time system,
i.e. a computer system where the response-time to an
event (timer, interrupt, value of an input, etc.) or la-
tency is predictable. Typically, latency is in the order
of milliseconds or nanoseconds. When it is strictly de-
fined (i.e. constant) whatever computational load, the
system is said hard real-time, otherwise it is said soft
real-time.

RTAs are found in control and automation (of air-
plane flight, car drive, etc.), video and audio plays,
electronics and embedded electronics (programming of
drivers), supervisory control and data acquisition
(SCADA), computer vision, or robotics, where sam-
pling time and response-time accuracy are fundamen-
tal. The other important feature of RTAs is the co-
existence of multiple tasks with different dynamics:
from low frequency tasks (hundreds milliseconds peri-
ods) like displaying data, to high frequency tasks (few
milliseconds periods) like signal acquisition, as a con-
sequence the best solution for RTAs is multitasking.

RTAs are implemented in computer systems, that
are of two types depending on whether they run or not
an OS (Operating System):

e symmetrical multiprocessor (SMP) systems that
may be single or multiple board computers (mul-
tiprocessor computers, multicore computers, hy-
perthreading computers), boot into a firmware
that loads a multiple purpose application, the



0s,

bare-metal systems, that include PLCs (program-
mable logic computers), MCU (MicroController
Unit)-based boards and DSP (Digital Signal Pro-
cessor)-based boards, boot into a firmware that
initializes hardware and loads nothing or a mono-
lithic and single purpose application, user appli-
cation.

Firmware can contain a boot loader or a code that
loads the boot loader.

OS performs two a priori unrelated tasks. It pro-
vides programmers and application software with a clear
set of usable resources, e.g. processors, memories, timers,
disks, mouse, screens, network interfaces, etc. It man-
ages theses resources by allocating them to the vari-
ous competing programs that request them. The cor-
responding application that is the core of OS is the
scheduler. When the latter is capable of high perfor-
mance latency management, it is said real-time sched-
uler and the corresponding OS, a RTOS (Real-time
OS). Only RTAs require high-performance scheduling.

FPGA, DSP, SMP running Xenomai, RTAI, Vx-
Works, NI Linux Real-time or TwinCAT in associa-
tion with Windows are hard real-time systems whereas
SMP running Linux with a real-time scheduler, Linux-
RT, i.e. Linux with the patch PREEMPT_RT are a
soft real-time systems. However, bare-metal systems
are not flexible enough for applications development
and do not fit high level communications (USB, TCP,
etc.), whereas RTOS running systems do. This limita-
tion is such that it may be useful to install lightweight
RTOS on bare-metal, i.e. freeRTOS on Arduino.

3 Real-time with Linux

The paper focuses on the development of RTAs us-
ing Linux and C programming (Blaess (2019), Blaess
(2005)).

Because of multiple processor, SMP computers are
capable of running genuinely multiple task in parallel.
A task may be implemented as a process or a thread.

A process is a stand-alone program: it has every-
thing private, particularly physical memory, to run au-
tonomously. In a multiple process application, pro-
cesses run independently by, eventually, exchanging
messages through high level communication protocols,
e.g. inter-process communication (IPC), channels (sig-
nals, sockets, files, etc.). That communication is slow
and requires a large amount of internal resources.

A thread is a piece of code, i.e. typically it is a
function. A process may consist of a single thread or
a multiple thread. In the latter case each thread runs
independently of the others, but all threads share the

same address space and most of the same data. These
sharing and lack of data protection make it easier to
implement threads than processes.

Regarding C language, every program has at least
one thread, which is started by the C runtime: the
thread running main() function or main thread. This
thread can then launch additional threads.

Linux deals with threads through the POSIX (Portable

Operating System Interface in uniX) standard: it is
said Posix threads or simply Pthreads. It has func-
tions for creating and managing threads:
pthread_create(), pthread_exit (),
pthread_join(),

pthread_mutex_lock(), etc.

All Linux applications, except scheduler, run in user
mode/space (or restricted mode/space), i.e. they can
run only a part of computer instructions set, can achieve
only some input/output operations towards external
peripherals and can access only to some range of vir-
tual memory. Corresponding processors are said to be
in user/restricted mode/space. By contrast, the sched-
uler application can do everything: it is said to be in
kernel mode/space (or privileged mode/space). Corre-
sponding processors are said to be in kernel/privileged
mode/space.

Usually, there is more tasks (processes and threads)
than available resources (processors, console, memory,
etc.). Then the scheduler, with it kernel mode, has to
manage the affectation of tasks to resources: a task
maybe running on a processor, runnable by waiting for
a processor to be free, sleeping because of a system
call or waiting an event, etc. Because of the ability to
remove a processor from a task (running state) that
switches into runnable state, and to elect another task,
the scheduler is said pre-emptive. Transitions between
the states of a task are due to the arrival of three types
of event: hardware interrupt, system calls or exception
(figure 1).
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Figure 1: Main states, including Runnable state, and
transitions between states, of a task, assuming Sleep-
ing, Down and Idle are the same.

System call

Waiting an event

SIGSTOP

A hardware interrupt corresponds to a set of elec-
trical signals from a peripheral to the scheduler to in-
form the latter of the occurring of an external event.



An initial signal is sent to system’s interrupt controller
that analyzes the change and in turn sends an electrical
pulse to an IRQ (Interrupt ReQuest) pin on the proces-
sor. The latter interrupts the work in progress, stores
in the stack the state of the registers and the address of
the instruction being executed, consults the interrupt
vector table which contains the address of the routine
to be executed according to the IRQ number, then ex-
ecutes the code located at the address corresponding
to that TRQ number. Once the interrupt processing
is complete, the processor resumes the processing it
was doing before. Interrupt-based apps are much bet-
ter than interrupt-free (or polling) apps where a set of
tasks is ran sequentially: response-time is predictable
and energy consumption is reduced. Hardware inter-
rupt is a key concept of real-time.

Usually, software interrupts are used to deal with
system calls that are implemented not in the OS but in
the C library (G1ibC or uClibC). A software interrupt
is an assembler instruction that the program normally
executes from the user space. However, when the in-
struction is decoded by the processor, everything hap-
pens as if a hardware interrupt had occurred: saving
the registers, switching to kernel mode, and branching
to the address given the interrupt vector table. Excep-
tions are similar to hardware interrupts. Sometimes
called as asynchronous interrupts, they arise when cer-
tain error conditions are encountered in the running
code: they are handled by the processor without any
external intervention.

Most systems under severe time constraints rely
on periodic tasks, which must be performed with the
best possible granularity and variability. To perform
this type of task, POSIX timers have been developed
as well as time measurement capabilities. A timer is
programmed with a given initial delay and repeat pe-
riod, when it is triggered, the kernel delivers a sig-
nal to the task and reset the timer. The expression
timer interrupt is sometimes used because timer acts
like hardware interrupt. Functions are available in the
time.h header to deal with time: timer_create(),
imer_settime(), timer_delete(), clock_gettime(),
clock_settime (), etc. (Blaess (2019) Blaess (2005)).

Without any special extension Linux offers real-
time processing possibilities with a real-time scheduler:
real-time tasks (i.e. with real-time scheduling) have a
specific priority scale, completely independent of stan-
dard tasks (i.e. with shared-time scheduling):

e the value 0 is for shared-time tasks (it is given by
default, then shared-time scheduling is used),

e the values 1 to 99 are for real-time tasks (the
higher the level the higher the priority of the
task).

The scheduling and priority level are chosen task by
task: either at the process or thread level. The general

principle is that a task of a given priority can never be
preempted or left in agreement (Runnable) while a task
of lower priority has the processor. When several tasks
have the same priority level, there are two solutions of
real-time scheduling in the POSIX norm: FIFO (First
In, First Out) in which the first waiting task is served,
and RR (Round Robin) in which every task is served
a quantum of time.

As a general rule, when designing a real-time sys-
tem, one tries to assign only one task per priority level:
the most urgent tasks and those tolerating the least
time fluctuations are assigned high priority levels, while
the others are assigned lower priority levels. If tasks
have equivalent levels of criticality or urgency, they are
given close priorities. And then FIFO is used in order
to be sure that a high level task will be proceeded first.

Functions to deal with scheduling configuration for
processes and threads are available in the sched . h header:
sched_setscheduler(), pthread_setschedparam(),
etc.

Linux with real-time scheduling works well for peri-
odic tasks as well switching between tasks. But there is
an issue with long interrupt processing at the expense
of real-time. In that case, it is preferable to patch
Linux with PREEMP_RT. Then, when a driver wants
to manage an interrupt, it provides two functions. The
first function, called directly when the TRQ arrives,
must check if the IRQ concerns its driver and return
TIRQ_-WAKE_THREAD if it’s the case and IRQ_NONE
if not. The second function is executed in a threaded
kernel with a default FIFO 50 scheduling. PREEMPT_RT

also improves kernel preemptibility (Blaess (2019), Reghen-

zani et al. (2019)).

4 Design and development of sys-
tem

The need is for a low-cost educational temperature
control system allowing to illustrate RT'OS-based com-
puter system programming, RT-bar-metal-based com-
puter system programming, data transmissions. The
environment temperature will be measured and when
it exceeds a set point, a fan is controlled by a controller
to regulate the difference between set and current tem-
peratures towards zero. A camera is used to monitor
the rotation of the fan. The set temperature, the image
of the fan as well as the various measurements taken,
such as temperature, fan speed and the value of the
command sent to the fan, are displayed on a console.

4.1 Technical requirements

The operating temperature range of the system is be-
tween 3°C and 100°C. The temperature sensor must
be low cost, with a conversion coefficient of the order
of 10 mV/°C to achieve a measurement accuracy of
+2°C. A fan of the type used on computers fits. It is



built around a brushless motor and incorporates a con-
trol card so that it has 4 signals sufficient for its use:
power supply, ground, control and speed measurement.
A Raspberry camera module (PiCam) capable of pro-
ducing VGA format images (640x480 pixels) will be
used for the fan rotation monitoring.
The solution will involve a distributed computer sys-
tem: an Arduino for the control and automation part,
a first Raspberry Pi (RPi) for controlling the camera,
and a second RPi for managing the both former sys-
tems and displays signals and images on its console.
Both RPis will run Linux-RT.
The communication between RPi A and Arduino will
be achieved with a serial link (in fact, RS-232 protocol
emulated in USB protocol) with RPi acting as client
and Arduino as server. The communication between
RPi A and RPi B will be achieved in TCP protocol
with the former acting as client of images and the lat-
ter as server of images (figure 2).
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Figure 2: Specifications of the system.

4.2 Organic design

For the temperature measurement, an analog probe of
the type TMP36 from Analog Devices, can be used.
It is supplied with low voltage (2.7 V to 5.5 V) and
consumes little current (about 50 pA), and provides
a linear output voltage proportional to the measured
temperature. At a temperature of -50 °C, it provides
an 0V voltage at the output, then the voltage increases
by 10 mV per °C, i.e. a resolution of + 1 to 2 °C. It
is therefore necessary to read an input voltage varying
between 0 V and 1.75 V, corresponding linearly to a
temperature read from -50°C to 125°C: the slope is 10
mV per °C with an offset of 0.5 mV (Devices (2022)).

tures include: 1.2 GHZ quad-core ARM Cortex A53
(ARMvS Instruction Set) CPU, Broadcom VideoCore
IV @ 400 MHz GPU,1 GB LPDDR2-900 SDRAM,
10/100 MBPS Ethernet, etc. (Pi (2022a)).

The camera module (v1) is associated with RPi
3B. Its specifications include: 1/4 ” sensor format,
3.76x2.74 mm sensor size, 640x480p 60/90 (i.e. up
to 60/90 frame per second), etc. (Pi (2022b)).

The communication between RPiA and RPiB on
one hand and RPiA and Arduino on the other hand is
achieved through Ethernet link with TCP/IP protocol
and Serial link with RS-232 protocol, respectively.

Arduino will act as a controller of temperature and
a server of signals. RPiB will act as a server of images
obtained from the RPi camera module. Every second,
the RPi client (RPiA) will ask for a VGA size image
the server will send back, and every 100 ms it will get
signals from Arduino.

Electronic connections of the control part includes:

e pin A0 of Arduino receives the analog ouput of
the TMP36 temperature sensor;

e pin 3 of Arduino connected to Timer 2 delivers
fan PWM control signal;

e pin 2 of Arduino receives tachometer output and
generates interrupts for speed measurement.

Figure 3 displays a view of the system.

Figure 3: A view of the system.

For the fan, a processor fan of the model AUB0912VH-

CX09 can satisfy the specifications. It has two wires
for the power supply (12 V and earth), a wire for the
speed control, accepting a PWM signal at 25 kHz, and
an open collector wire sending a PWM pulse by half-
turn of the fan for fan speed measurement (tachome-
ter/speed sensor) (Electronics (2022)).

For the Arduino, the board Uno satisfies problem
requirements: MCU ATmega328, 14 Digital I/O (of
which 6 provide PWM output, 6 Analog I, etc. (Ar-
duino (2022)). For RPis, the model 3B achieves a good
balance between computation power and price. It fea-

5 Development of application

5.1 Functional design
The system will achieve the following functions:

e Regulate_temperature: Regulate environment
temperature;

e Inform_user: Inform the user with fan image,
set temperature, current temperature, current fan
speed, control of fan (i.e. monitoring).



Regulate_temperature can be decomposed into two
more functions: Read_temperature that reads the tem-
perature from the sensor, and Control_fan that con-
trols fan speed.

Read_temperature can be decomposed into
Acquire_temperature that acquires the voltage of the
sensor and Convert_degrees that converts the obtain-
ing voltage into degrees.

Control_fan can be decomposed into
Calculate_control that calculates the value of the
control, and Apply_control that applies the control
onto the fan.

Inform_user can be decomposed into:
Inform_user_signals
that displays the signals involved in the temperature
regulation, and Inform_user_image that displays im-
ages of fan.
Inform_user_signals can be decomposed into above
Read_temperature, Read_speed that reads fan speed,
Collect_signals that gathers the signals (current tem-
perature, set temperature, speed) to be send to user,
Send_RPi_signals that sends to RPiA the signals,
Receive_signals that receives signals from Arduino
and Send_console_signals that sends the signals to
console.

By considering input-output peripherals, temper-
ature sensor, fan (speed sensor, motor), camera and
console, one obtains the functional architecture of the
system (figure 4).

With the knowledge of the physical system, it is
now possible to assign functions to the different organs
and to define the types of data described in functional
analysis.

The application can be broken down into two parts:

1. aclient-server application between the both RPis,
RPiA will be the client and implements
Request_image,

Receive_image

and Send_console_image

whereas RPi B will be the server that will imple-
ment Receive_request,

Acquire_image and Send_RPi_image;

2. a client-server application between RPiA and Ar-
duino, RPi will implement Receive_signals
and Send_console_signals,
whereas Arduino will implement resting functions
(figure 4).

5.2 Client-server application between
RPiA and RPiB using TCP

RPiA runs client application. It is a periodic task: ev-
ery seconde Request_image, Receive_image
and Send_console_image are called.
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Figure 4: Assignment of functions to organs.

RPiB runs server application: it implements the
functions Receive_request,
Acquire_image and Send_RPi_image.

As stated in the specifications, TCP/IP protocol is
used for the communication.

Application is a matter of two processes that com-
municates using sockets, the fundamentals network in-
terfaces (Abbott (2011), Roux (2009)).

5.3 Client-server application between
RPiA and Arduino using RS-232

RPiA runs client application that implements
Receive_signals and
Send_console_signals.

Arduino runs server application that comprises:

e implementation of Acquire_temperature,
Convert_degrees, Calculate_control
and Apply_Control;

e an interruption to deal with Read_speed;

e implementation of Collect_signals
and Send_RPi_Signals.

The choice of interrupt is relative to the feature
of the fan regarding frequency generator for rotation
speed measurement (Electronics (2022)). The output
circuit is an open collector that generates a 50% duty
cycle (100 that multiplies high value duration over pe-
riod). Assuming 4 poles fan, the output signal contains
2 periods per tour, then the speed can be computed
knowing the period. The interrupt is used to measure
the laps of time between the rising edge and the falling
edge.

The fan control signal is of the type PWM at 25
KHz. As a consequence a timer is required to deal
with it.

For serial communication the data structure termios
available in the header termios.h allows the port con-
figuration with respect to the communication protocol



(stop bit, parity bit, etc.), along with functions to set
port output and input speeds, etc. (Hunter (2022)).

6 Discussion

The developed system consists of a fan, a temperature
sensor, a camera, a Linux-based computer (Raspberry)
and a bare-metal computer (Arduino), and a power
supply. It enables to control environment temperature
and to monitor all signals involved and environment
image (figure 5). Associated application allows to illus-
trate key real-time concepts: multiple task (processes
as well as threads) with different priorities, hardware
interrupt with a bare-metal, timer.

After validation, the system was duplicated and has
been used by the students of University of Franche-
Comté for the class of real-time.

The system is cheap. Using a fan taken from an old
PC, very cheap temperature sensor, open-source hard-
ware (Raspberry and Arduino) and software (Linux,
C), its final cost is less than 100 Euros.

Current version of system may be improved by as-
sembling all components on a rigid support, that can
be a simple wooden board, using 3D printed fasten-
ers. It is also possible to replace the serial link by an
Ethercat or CAN link, and the RPi server of images by
a powerful board allowing to really monitor fan rota-
tion.

Figure 5: A screenshot showing fan speed, signals and
image displays.
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