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Abstract—In this paper, we propose to address the multi-
objective task scheduling issue in cloud computing system
in order to find the best assignment of the user-submitted
tasks to the cloud resources provided by the cloud service
providers. To achieve a high overall performance for
computational cloud resources, a good scheduler algorithm
is required to meet customer requirements and ensure
efficient QoS. To this end, the Flower Pollination Algorithm
metaheuristic has been used to orchestrate the trade-offs
relationship between three end-user QoS-based criteria,
namely reliability, time makespan and execution cost.
The results obtained from the experiment conducted with
the CloudSim simulator clearly show the interest of our
approach based on FPA.

Index Terms—Cloud computing, Multi-objective opti-
mization , QoS, FPA, CloudSim.

I. INTRODUCTION

Cloud computing (CC) is a large-scale distributed
computing system that offers the distribution of different
types of services and resources to customers. In other
words, cloud service provides flexible, dynamic, scal-
able and on-demand computing services to cloud users
according to the flexible pay-as-you-go payment plan.
These network services have enabled many companies
to benefit from global connectivity, as it allows their
employees and customers to access the nearest endpoint.

Although the concept of CC is widely used today, due
to the various services offered to users according to their
specific requirements, there are still many problems that
should be investigated in order to tackle new constraints
and limitations. In recent years, an efficient scheduling
strategies widely regarded as as one of these significant
challenges that has attracted the interest of researchers.
This problem is among the multi-objective optimization
issues [1], as it has several complex and often conflicting

targets. Thus, it is regarded as NP-hard problem in its
general form. Deterministic algorithms are ineffective in
solving such optimization problems they may get stuck
in local minima and are unable to reach the global
optimum. However, a major challenge is to find a good
trade-off that satisfy all the objectives through the use
of advanced optimization methods such as heuristics and
meta-heuristics [2].

The purpose of task scheduling in this context, aims to
orchestrate the optimal assignment of submitted tasks to
the computational resources made available by the Cloud
Service Providers (CSPs) on the basis of the varied
end-users functional requirements. Despite the fact that
several studies have been proposed in the literature,
the majority of them have mainly concentrated on the
optimization of a single Quality of Service (QoS), which
is the makespan time believed to be the only primary
concern [3].

To overcome these limitations, the multi-objective task
scheduling in CC systems has been tackled in this study.
To accomplish this, the Flower Pollination Algorithm
(FPA) metaheuristic has been chosen and adaptes in a
multi-objective setting to acheive an efficient assignment
of submitted tasks to the set of VMs within a reasonable
time, based on three conflicting QoS criteria namely
execution cost, time makespan, and reliability.

In this work, the effectiveness of the FPA’s solu-
tions is evaluated using two variants of the compromise
function: the Pareto optimality concept [4] based on
the TOPSIS algorithm [5], and on the other hand, the
weighted sum method, the most popular and well-known
in optimization processes due to its simplicity. It merges
the different quality of service parameters into a single-
objective.



The rest of this paper is organized as follows. Section
2 offers a review of the relevant approaches in the liter-
ature. Section 3 describes our approach which is made
upon the pollination behavior of the flowers. We report
in Section 4, series of experimental results to assess the
performances of the proposed algorithm according to
criteria that we have defined for this purpose. Finally,
some concluding remarks are made in Section 5.

II. RELATED WORKS

Chakravarthi and Shyamala [6] have proposed a new
approach to schedule dynamic concurrent workflows in
cloud computing environments. The proposed technique
which is called TOPSIS inspired Budget and Deadline
Aware Multi-Workflow Scheduling (T-BDMWS) seeks
to minimize execution cost, time makespan and improves
VM'’s resource utilization while guaranteeing the dead-
line and the budget constraints specified by the user.
A weighted sum of cost, makespan and data transfer
time is used to determine the best resource among the
available resources based on the task requirements. The
effectiveness of the T-BDMWS was compared with four
well-known existing algorithms such as Cloud-based
Workflow Scheduling Algorithm (CWSA), Budget and
Deadline Constraint Heterogeneous Earliest Finish Time
(BDHEFT) and Budget-Heterogeneous Earliest Finish
Time (BHEFT). The simulation results performed with
CloudSim toolkit reveal that the author’s proposal pro-
vides better results in terms of makespan and cost-
effective schedules.

In the work of Medara and Singh [7], an energy-
efficient and reliability aware workflow scheduling in a
cloud environment (EERS) algorithm is presented, which
optimize the reliability of task workflows while saving
energy consumption. The performance of the proposed
technique was evaluated using two real-world scientific
workloads Montage and CyberShake, and the numerical
results show that this approach surpasses the related
existing approaches, namely HEFT [8], EES [9], and
REEWS [10].

By modeling the IaaS cloud and task workflows,
Han et al. [11] have developed an efficient heuristic
named CMSWC (Cost and Makespan Scheduling of
Workflows in the Cloud) that aims to minimize execution
cost and makespan of the workflows simultaneously.
The CMSCW algorithm follows a two-phase scheduling:
ranking and mapping. The latter is designed to avoid
exploring unnecessary resources for tasks, which signif-
icantly reduces the search space. An effective resource

selection policy and optimized solution selection strategy
are designed by combining two approaches: the quick
non-dominated sorting approach and the Shift-Based
Density Estimation (SDE) based crowding distance in or-
der to make the solutions close to Pareto front. Extensive
experiments on real-life workflows demonstrate that this
strategy has better performances in terms of makespan-
cost tradeoff compared to the concurrent approaches:
FDHEFT [12] , NSGA-II [13] and MODE [14] for all
the tested scenarios.

The authors in [15] have designed a new framework
as whale optimizer algorithm (WOA) which mimics
the social behaviour of humpback whales. The main
idea of the presented work is to improve the workflow
scheduling constraints and balance the load among the
used resources. The performances of proposed WOA
was evaluated as a multi-objective optimization problem,
measured in terms of makespan, deadline hit and re-
source utilization. The authors’ proposal performed well
compared to other existing techniques such as Gray Wolf
Optimizer (GWO), PSO, ACO, GA.

A novel optimization techniques which is an im-
provement of the basic SFLA algorithm is introduced
by Kaur et al. [16]. The proposed approach which
is called Augmented Shuffled Frog Leaping Algorithm
(ASFLA) determines a resource provisioning and work-
flow scheduling strategy in laaS cloud environment.
The objective is to optimize the running cost of the
application while meeting the deadline constraint. It
was showen that this technique is able to reduce the
overall execution cost compared to those of Shuffled
Frog Leaping Algorithm (SFLA) and PSO algorithm.
However, this reduction leads to an increase in execution
time. As a result, it can be conjectured that ASFLA is
more appropriate when minimizing the execution cost is
the main concern.

Mansouri et al. [17] have made a proposal of a new
independent task scheduling technique named FMPSO.
It is based on a fuzzy theory and a modified particle
swarm optimization to improve both load balancing
and throughput in cloud environments. The experiment
results proved that the proposed technique has the ability
to reduce the total execution time, makespan and increase
the resource utilization efficiently. It is noteworthy that
the FPA algorithm was previously applied for this prob-
lem [18]-[20]. However, they differ from our study in
the way they adapt and evaluate the generated solutions,
as well as data set and different parameters were used.



III. ADAPTATION OF THE FPA METAHEURISTIC

To achieve an efficient multi-objective optimization
for the task scheduling problem in a CC environment,
we consider three conflicting QoS criteria listed below.

e Makespan time: it reflects the interval between
the last task’s completion time and the first task’s
submission time.

e Cost: is the sum of the resource running costs
for all submitted users’ tasks. The unit cost of the
resource that was chosen in accordance with the
scheduling algorithm and the task’s execution time
on that resource are both factors that affect the task
execution cost.

e Reliability: it reflects the likelihood that a given
task will be accomplished successfully. Our relia-
bility measurement model is based on a failure rate
according to the following formula [21].

— S TE(T))*A
Reliability = exp =t ’ 1)
Where, TE(T;) is the task’s execution time 7; and
A; is the failure rate of the selected virtual machine
which performs the task.

The aforementioned Qos criteria are divided into two
groups; the former aims to maximizes the benefit criteria
(reliability), whereas the later seek to minimize the cost
and makespan time criteria. In this context, a comparison
was made with the weighted sum method that combines
these three objectives considered into a single objective
for the minimization problem, as shown in equation

(eq.2).

F = wixMakespan+wg *Cost+wz s | —————— | (2)
Reliability

where w = {w1, wy, w3} is the weight vector that depicts

the user’s importance or requirement for each criterion.

In this work and in the field of metaheuristics, we
takes a new look on the flower pollination algorithm. It
was proposed in 2012 by Xin-She Yang [22], taking
its metaphor with the characteristics of flowering plants
pollination.

The pollination process is necessary to reproduce
flower plants. Therefore, FPA algorithm has two
main key processes namely, cross-pollination and self-
pollination. For further details, cross-pollination or
global pollination accomplished when pollen is trans-
ferred to a flower from another plant by intervention of
pollinators according to Levy’s flight behavior [23]. In

contrast, the self-pollination also called local pollination,
takes place when pollen from one flower is used to
pollinate another flowers or the same flower within the
same plant with the aid of environmental factors [22].

Now we can idealize the characteristics of the polli-
nation process, flower constancy and pollinator behavior
based on four main rules listed as follows:

e Rule 1: Biotic, cross-pollination acting as a global

pollination process via the Levy flight.

e Rule 2: Abiotic and self-pollination are considered
local pollination.

e Rule 3: Consistency of flowers may be involved
due to the similarity of two flowers involved.

e Rule 4: Global as well as the process of local
pollination are controlled by a switching probability
p € [0,1].

Based on the above four rules, the basic steps of the
adapted FPA based approach for task scheduling in cloud

Algorithm 1 Adapted FPA
1: Set the switch probability.
2: for each task 7T; in the cloudlets list do
3:  Generate the initial population with random VMs

4:  Determine the best Machine Vi, for the task T;

5:  while stop criterion do

6: for each machine V; in the population do

7: if rand() < p then

8: Perform Levy flight and draw L (step
vector)

9: Perform global pollination via
‘/i, == V; + L(V; - %est)

10 else

11: Draw e from a uniform distribution in the
range [0, 1]

12: Choose randomly two machines V; and V},
within all solutions.

13: Perform local pollination as

14: end if

15: Calculate the fitness of the new virtual ma-

chine Vi/

16: if new generated machine is better then

17: replace V; with Vi’

18: end if

19: end for

20: Update Vjs (the best solution found so far)

21:  end while

22: end for




computing environments are outlined in Algorithm 1.
The notations used are shown in TABLE I with their
description.

TABLE I
NOTATION USED

Notations Descriptions
P Switching probability of FPA
T The ‘" task
Vi The *" virtual machine
VJ The " new generated virtual machine
Viest Best virtual machine in the population
L Step size based on Levy flight law

IV. SIMULATION RESULTS AND ANALYSIS

The CloudSim simulator was chosen for its modeling
qualities to simulate our work [24]. The latter is a
generalized toolkit. It is made up of a set of Java class
libraries to provide reliable, secure, fault-tolerant and
scalable computing services. Moreover, it also covers
the behavior of CC components such as data centers,
computing resources, virtual machines, tasks (cloudlets)
and brokers in order to assess the effectiveness of new
algorithms and applications.

For the proposed FPA algorithm, two specific param-
eter settings must be defined: the population size and
the switching probability p which control respectively
the proportions of exploitation and exploration during
the search process. In simulations performed. we took
a switching probability equal to p = 0.8 as given in
[22]. we used 20% of created virtual machines as the
population size since this percentage provided us better
performances.

The simulations were conducted in heterogeneous
cloud computing environment. All parameters of the
simulations are shown in TABLE II.

Since metaheuristic algorithms are characterized by
randomization, the designed algorithm is not determinis-
tic, i.e. a single run is not sufficient to draw conclusions.
Therefore, we propose to compute an average of 10
simulations for each type of scheduling in order to make
the results more representative.

To determine the best compromise solutions, a com-
parison was made using two versions for the evaluation
of the FPA algorithm solutions, namely the weighted sum
method by aggregating the three considered objectives in
accordance with the previously stated objective function

TABLE I

AN EXPERIMENTAL SETTINGS

Data-center No. of Data-centers 4
No. of Hosts 8
PES 4
Host MIPS 6000
RAM 20 GB
Bandwidth 10 GB
Storage 1 TB
No. of VMs 30 - 50
MIPS 1000 to 5000
Cost 1.0 to 30.0
Virtual Machine Failure rate 107° to 1077
RAM 1to5GB
Storage 10 GB
Bandwidth 100 to 500 MB
No. of cloudlets 500 - 1000 - 1500
Cloudlets Length 3000 to 10000
Type Heterogeneous
Submission time Poisson distribution
of parameter A

(eq.2) and the Pareto principle based on the TOPSIS
multi-criteria technique.

In order to better serve users’ demands and provide a
better QoS according to their needs, we have selected
two vectors for each version, with different weights
{0.5,0.2,0.3} and {0.2,0.5,0.3}, corresponding respec-
tively to the targeted objectives {Makespan, Cost, Relia-
bility}. The first vector favors the makespan time while
the second vector favors the execution cost objective.
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Fig. 1. Comparison of makespan with 30 VMs.

First, we investigate the makespan values obtained
by the compared approaches. We can observe from
Figs. 1 and 2 that, the makespan aim increases as
the tasks number increases. Given that the resources’
ability to execute the tasks gradually declines as the
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Fig. 2. Comparison of makespan with 50 VMs.

load grows. In fact, the Pareto-TOPSIS based technique
performs best in terms of makespan with a weight vector
{0.5, 0.2, 0.3} which favors the makespan objective.
However, the aggregation minimizes well with weight
vector {0.2, 0.5, 0.3} which favors the cost objective.
This result shows that Pareto-TOPSIS based technique
and Pareto dominance concept alleviates this problem by
finding better trade-off solutions between all considered
objectives.
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Fig. 3. Comparison of the execution cost with 30 VMs.
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Fig. 4. Comparison of the execution cost with 50 VMs.

Comparing the results in terms of execution cost, it can
be seen in Figs. 3 and 4 that the Pareto-TOPSIS approach
has higher performances with a weighting vector that
favors execution cost. This is due to the fact that, in

contrast to the aggregation method, the latter seeks to
ensure the three objectives considered in light of their
importance. However, in terms of reliability optimization,
Figs. 5 and 6 show that regardless of the number of
tasks and the number of VMs, there is a relatively small
difference in the performance obtained of the compared
approaches.
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Fig. 5. Comparison of reliability with 30 VMs.
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Fig. 6. Comparison of reliability with 50 VMs.

Taken as a whole, it can be concluded that the findings
of our research highlight that a purely multi-objective ap-
proach such as Pareto-TOPSIS with the adapted weight
vector is more recommended. Indeed, the weighted sum
method is a simple projection from the multi-objective
to the mono-objective. Concerning reliability, this is a
rather special target since existing CSPs offer services
with too low failure rates that can go down to 10~". For
this reason, the used method does not have a great effect
on this objective.

V. CONCLUSION

In this paper, we proposed a multi-objective optimiza-
tion approach for task scheduling in cloud computing.
We have implemented the FPA metaheuristic with the
Pareto principle based on TOPSIS to select the most
compromising solution from the Pareto front. Comparing
the results with the weighted sum method, particularly



for the privileged criterion, the results obtained are more
intriguing for the Pareto-TOPSIS-based strategy, which
aims to give users a better QoS in accordance with their
needs defined in the SLA contract.
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