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Abstract: Advanced Therapy Medicinal Products are promising drugs for patients in therapeutic 14 

impasses. Their complex fabrication process implies regular quality controls to monitor cell concen- 15 

tration. Among the different methods available, optical techniques offer several advantages. Our 16 

study aims to measure cell concentration in real time in a potential closed-loop environment using 17 

white light spectroscopy and to test the possibility of simultaneously measuring concentrations of 18 

several species. By analyzing the shapes of the absorption spectra, this system allowed the quanti- 19 

fication of T-cells with an accuracy of about 3% during 30 hours cultivation monitoring and 26 hours 20 

doubling time, coherent with what is expected for normal cell culture. Moreover, our system per- 21 

mitted concentration measurements for two species in reconstructed co-cultures of T-cells and Can- 22 

dida albicans yeasts. This method can now be applied to any single or co-culture, it allows real-time 23 

monitoring, and can be easily integrated into a closed system. 24 
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1. Introduction 47 

Context. 48 

Advanced Therapy Medicinal Products (ATMPs) are drugs based on genes, tissues, 49 

or cells for human use for the treatment of chronic, degenerative, or life-threatening dis- 50 

eases [1]. Genetic modification or tissue engineering give them new physiological, biolog- 51 

ical characteristics or reconstruction properties. However, complex and expensive tech- 52 

nologies of cell sorting, amplification, genetic transduction, and activation are required to 53 

produce these drugs. The whole process takes place in a controlled environment and nu- 54 

merous quality controls are performed throughout the production for up to 10 days. Con- 55 

sequently, the price of these promising therapeutic products restricts the possibility to 56 

democratize their use for the greatest number of people. Devices developed during the 57 

last years are not optimal because they do not include/allow online tracking technologies. 58 

Only few parameters such as temperature, pH, or dissolved O2 are monitored using sterile 59 

probes placed inside the bioreactor. The PAT project (Process Analytical Technology) was 60 

born from this observation by the FDA in 2004. This project encourages research and de- 61 

velopment of new analysis technologies allowing real-time monitoring of all production 62 

stages of biopharmaceutical drugs. Concerning ATMPs, the whole production process is 63 

quite complex [2] and the above-mentioned quality controls are frequently performed, 64 

especially during the expansion phase [3, 4]. Multiplying these controls, and therefore 65 

samplings, increases the risk of new contaminations. 66 

Therefore, there are two needs: i) to develop monitoring solutions easily transferable 67 

in a closed-loop system for real-time cell concentration measurements without sampling 68 

bioreactor content, and ii) to monitor simultaneously concentrations of several species 69 

during their growth and to follow the development of possible contaminations and more 70 

generally to monitor co-cultures. 71 

Commercial availabilities for cell counting. 72 

Cell concentration has been historically determined by direct measurement of cell 73 

number under microscopes through Malassez cells. This most well-known technique is 74 

still used with drawbacks of difficulties for visual and manual counting and poor repro- 75 



 

 

ducibility due to the relatively small cell volumes sampled and therefore less representa- 76 

tive of the culture flask. Alternative and commercial automated methods are now availa- 77 

ble to facilitate cell counting. Automatic cell counters are commercially available. The LU- 78 

NATM system (LOGOS BIOSYSTEMS; [5-7]) requires 10 µL of cell suspension and is based 79 

on conventional imaging and processing. Other systems developed by IPRASENSE are 80 

based on lensless imaging [8] in which cell diffraction figures on a large area are recorded 81 

and analyzed to assess cell concentration at a higher accuracy; among them, NORMA uses 82 

10 µL whereas CYTONOTE is preferred for measurement of adherent cells on larger vol- 83 

umes. In addition, INCUCYTE® (SARTORIUS) used for both adherent and non-adherent 84 

cells [9, 10] and HoloMonitor® system (PHI [11]) are in situ microscopy systems based on 85 

holographic imaging placed within an incubator. It allows cell counting directly within 86 

different volumes including 96 well plates for high throughputs and/or multiple simulta- 87 

neous experiments. 88 

Despite their easy use, these commercial systems seem difficult to be integrated into 89 

a closed-loop and real-time environment. 90 

Other biological and physical techniques for cell qualifications. 91 

Other methods can also be used for both cell and subcellular entity qualifications. 92 

Some are based on the capture of the biological entity on the biosensor surface by a ligand- 93 

analyte reaction such as enzyme-linked immunosorbent assay (ELISA) [12, 13], Surface 94 

Plasmon Resonance [14, 15] and Quartz Crystal Microbalances [16, 17]. However, these 95 

methods require a biological interface and a regular regeneration of the surface, which 96 

makes transposition to a real-time measurement system difficult. Other methods can be 97 

used without a bio-chemical interface. Among them, impedance spectroscopy (or dielec- 98 

tric spectroscopy) has been widely used to study cell culture processes, particularly in the 99 

monitoring of mammalian cells [18]. This technique allows cell quantification thanks to 100 

their polarization after the application of an alternating electric field and presents several 101 

advantages such as in situ analysis of cell culture and rapid measurements. However, this 102 

method requires calibration, and the accuracy decreases during the stationary phase of 103 

growth [19]. Different spectroscopic methods have been applied for the characterization 104 

of mammalian cell culture [20]. Among them, Raman spectroscopy performed either in 105 

situ [21] and/or through surface-enhanced Raman scattering [22, 23] has already been used 106 

for biological purposes [24], during quality controls carried out on cell culture [23] and for 107 

pathogen detection [25]. However, the fine and precise data obtained by these techniques 108 

may not be required for cell monitoring. Flow cytometry can also be employed for cell 109 

counting [26, 27] and activation detection [28]. Depending on the optical detection scheme, 110 

counting and assessing biological properties for quality control could be performed sim- 111 

ultaneously. It is also the case for most of the techniques described above that also allow 112 

simultaneous detection of different species in co-cultivation but could require additional 113 

sample treatments such as fluorescence labeling [29]. 114 

Indeed, cell counting methods described above all imply considering cells one by one 115 

to assess cell concentrations and most require sampling of small volumes poorly repre- 116 

sentative of what occurs in the bioreactor. Concerning co-culture studies, label-free tech- 117 

niques should be preferred. 118 

Global methods and co-culture investigations. 119 

Measurements without sampling are possible either by derivation or using sterilized 120 

optical probes as proposed in [3, 4]. Such methods concern the global “light-culture” in- 121 

teraction rather than the behavior of individual particles. Absorption-based methods like 122 

turbidimetry or Beer-Lambert law derived techniques have usually been used and pre- 123 

ferred for smaller biological entities such as bacteria but can also be applied to mammalian 124 

cells [30]. These techniques could also be performed in larger volumes [3, 31-34] to deter- 125 

mine cell density and viability [35]. 126 



 

 

Methods of concentration determination relying on the estimation of only one pa- 127 

rameter (Beer-Lambert derived methods or cell counters) cannot be used to simultane- 128 

ously monitor concentrations of several species. For this, a multi-parameters method 129 

should be employed. The detection of several species has already been reported but re- 130 

mains a challenge. Non-optical methods such as quartz crystal sensors [36], or electro- 131 

chemistry [37] have recently been used either for bacteria detection in complex fluids or 132 

multiple bacteria detection. White light spectroscopy and light scattering analysis have 133 

already been used for the detection of bacteria in co-culture [38, 39]. We previously deter- 134 

mined B-cell concentration using white light spectroscopy and its use to detect contami- 135 

nations [3, 4]. The use of fiber optic Fourier Transform Infra-Red spectroscopy has also 136 

been reported [40]. Only a few papers mention both cell monitoring and contaminant de- 137 

tection; in particular, advanced signal processing applied to Raman spectroscopy has been 138 

proposed [41]. Together with normal operation condition monitoring, the authors demon- 139 

strated the detection of growth perturbations 5 hours after the discontinuation of cell feed- 140 

ing and detected the effects of contamination with their monitoring algorithm. However, 141 

the nature of the contamination and the time required to detect it were not specified. 142 

Current needs and proposed method. 143 

To summarize, there are needs for an online and sampling-free cell concentration 144 

monitoring device, and for methods allowing simultaneous concentration measurements 145 

for several species. Because they are contactless, optical techniques are good candidates 146 

to meet these needs. Since each biological species exhibit its absorption spectrum, optical 147 

spectroscopy should allow discriminating spectral signatures of species during co-culture. 148 

In this paper, white light spectroscopy was used to measure T-cell concentrations 149 

from the shape of the absorption spectra of different dilutions. Indeed, measuring concen- 150 

trations from the spectral value at only one wavelength (Beer-Lambert derived methods) 151 

we proposed [30] cannot be used to measure concentrations of several species simultane- 152 

ously. Indeed, the shape of the whole absorption spectrum of a mixture is a combination 153 

of the shapes of each individual species. Therefore, mathematical treatment of the mixture 154 

spectrum allows the measurement of concentrations of individual species simultaneously. 155 

The paper is structured as follows. Section 2 presents the materials and methods used in 156 

this study. Numerical and experimental results concerning the spectral shape analysis and 157 

the possibility to extend this method in the case of two simultaneous concentration meas- 158 

urements are the subject of section 3. Results will then be discussed, and conclusions pre- 159 

sented. 160 

2. Materials and Methods 161 

2.1-CEM preparation. 162 

CEM cells (ATCC® CRL-2265TM) are T lymphoblasts were supplied by the French 163 

Blood Agency (EFS Etablissement Français du Sang). They were grown in RPMI-1640 me- 164 

dium (P04-16515, PAN-Biotech®) supplemented with 25 mM HEPES (P05-01500, PAN Bi- 165 

otech®), 10% heat-inactivated FBS (10270 -106, Fischer Scientific®) and 1% penicillin (10 166 

kU.mL-1)/streptomycin (10 mg.mL-1) (FG101-01, TransGen Biotech®). The cells were main- 167 

tained at 37°C in a humidified atmosphere containing 5% CO2. 168 

Different concentrations were prepared by diluting cuvettes in RPMI medium to ob- 169 

tain concentrations between 105 and 106 cells.mL-1. To generate a robust spectroscopy 170 

model, a large number of different spectra is required (i.e. a large number of associated 171 

concentrations). Since each spectroscopy measurement required 2.5 mL of cell solution, 8 172 

weeks of cell culture were necessary. Each week, diluted cuvettes of 8 different concen- 173 

trations distributed between 105 to 106 cells.mL-1 were prepared resulting in 80 experi- 174 

mental data. 3 cell counts (using the LUNA-II Automated Cell Counter, Logos Biosys- 175 

tems®, with trypan blue V/V, 15250061 Fisher Scientific® with 10 µL of cell suspension) 176 



 

 

and one spectral measurement were performed with each cuvette for mathematical mod- 177 

eling purposes. 178 

2.2-Cultivation of CEM cells over 30 hours. 179 

3 days post passage CEM cells were centrifugated at 500 g for 10 min at room tem- 180 

perature. The pellet was resuspended at a concentration of 5×105cells.mL-1. They were 181 

maintained at 37°C for 30 hours. Spectral measurements were performed every hour for 182 

the first 4 hours, every 30 min from T=4 to T=11h, and every 2 hours between T=21 and 183 

T=30h. 184 

2.3-Concentration ranges for optical absorption modeling of Candida albicans. 185 

The Candida albicans yeast strains (ATCC10231) were grown on SAB plates (PO5001A, 186 

OXOID) prior to liquid culture in SAB (TV5054E, Oxoid) aerobically at 22.5°C at 200 rpm 187 

for 2 days. They were recovered by two centrifugations at 10000 g, 10 min, 20°C, and re- 188 

suspended in PBS 1x pH7.4 (Sigma, USA). The optical density of the re-suspension was 189 

measured in a spectrophotometer at 600 nm (BIOWAVE DNA, BIOCHROM). Afterwards, 190 

different yeast concentrations from 0.5×106 to 4×106 cells.mL-1 were prepared for experi- 191 

ments and analysis. 192 

2.4-Spectroscopic absorption measurements. 193 

Spectral absorption measurements of CEM suspensions were performed using the 194 

experimental setup shown in figure 1 (adapted from [30]). The spectroscopy measuring 195 

system consists of a light source (AvaLight-DH-S-BAL, Avantes®), connected by optical 196 

fibers (Thorlabs M25L01) to a cuvette holder (Avantes CUV-UV/VIS). The white light 197 

source was switched on about 30 min before measurements to allow temperature and 198 

spectral characteristics stabilization. After propagation through the cuvette, the light was 199 

transmitted to the spectrophotometer (Ocean Optics USB 4000 UV-VIS-ES) for spectra ac- 200 

quisition. Before each measurement, a reference spectrum was acquired using a cuvette 201 

containing RPMI medium. Suspensions were homogenized by several gentle inversions 202 

before each spectroscopy measurement. Spectra were recorded in transmission, in the 203 

wavelength range 177 nm and 892 nm with a step of 0.22 nm using the OceanView (Ocean 204 

Insight) software. 205 

 206 

Figure 1: Experimental setup used for measuring absorption spectra. 207 

2.5-Spectral data processing. 208 



 

 

The 80 CEM spectral data were recorded into a text file and then transposed to Excel. 209 

The data obtained in transmission were converted into absorption percentages and all 210 

calculations were performed using MatlabTM R2020b software. Only wavelengths between 211 

330 nm and 860 nm were considered to remove measurements with high background 212 

noise. Artifacts due to energetic emission peaks of the deuterium lamp were numerically 213 

removed. Regularly, absorption spectra of neutral densities (THORLABS NE05B and 214 

NE10B) were recorded and compared to the supplier’s data to ensure correct absorption 215 

spectra measurements. A home-developed spectra quality estimator (unpublished data) 216 

was used to remove badly shaped spectra. A total of 75 CEM spectra were used in this 217 

paper. The same protocol was used for Candida albicans (hereafter CA) spectra. 7 CA spec- 218 

tra were used in this study for demonstration purposes. In this study, the absorption spec- 219 

tra 𝐴𝑏𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝜆, 𝐶) are defined as: 220 

𝐴𝑏𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝜆, 𝐶) = 100 (
1

𝑇𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝜆,𝐶)
)         (1) 221 

Here, 𝑇𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝜆, 𝐶) is the transmittance of the corresponding species. 222 

CEM and CA co-cultures were not performed in this study. The proof of concept of 223 

simultaneous co-cultured species concentrations measurements uses artificially com- 224 

puted spectra from experimental spectra of CEM and CA. They were computed based on 225 

the additivity law of absorbances (or Optical densities OD). From this law, and combining 226 

definitions of absorbance and transmittance, it can be shown that the absorption spectrum 227 

of a mixture of ‘n’ different species is given by equation (2). 228 

𝐴𝑏𝑠𝑀𝑖𝑥(𝜆, 𝐶1 … 𝐶𝑛) = 100 {1 − ∏ (1 −
𝐴𝑏𝑠𝑖(𝜆,𝐶𝑖)

100
)𝑛

𝑖=1 }      (2) 229 

Equation (2) was used to calculate the spectra of CEM and CA mixtures. 230 

3. Results 231 

First, the method to mathematically describe CEM cell and Candida albicans (hereafter 232 

CA) absorption spectra was established. Then, CEM concentration spectral monitoring 233 

during a 30-hour cultivation experiment using shapes of the absorption spectra was per- 234 

formed. In the end, the shape of the absorption spectra of CEM/CA co-culture was recon- 235 

structed and concentrations of each species were calculated using the function describing 236 

the global absorption spectra of mixtures. 237 

3.1- Modeling CEM absorption spectra 238 

Absorption spectra of dilution ranges of CEM cells prepared as explained in section 239 

2.1 were measured using the experimental setup described in section 2.4, resulting in fig- 240 

ure 2. 241 

 242 



 

 

Figure 2: CEM absorption spectra. CEM concentrations range from 7×104 to 1.15×106 CEM.mL-1. 243 
N=75 spectra measured over 8 weeks. 244 

In the Beer-Lambert derived model [30], the value of the maxima of each spectrum 245 

was used to compute the corresponding concentration but this model cannot be used to 246 

simultaneously compute concentrations of species within a mixture. Here, the information 247 

contained in the whole absorption spectrum was exploited to establish a model describing 248 

the evolution of CEM absorption spectra with the concentration. It was based on the ob- 249 

servation that each spectrum from figure 2 could efficiently be fitted using 2 Gaussian 250 

functions with a fitting R2 of the order of 0.98 (data not shown). The absorption spectrum 251 

can then be written as follows. 252 

 253 

𝐴𝑏𝑠𝐶𝐸𝑀(𝜆, 𝐶) =  ∑ 𝑎𝑖(𝐶). 𝑒𝑥𝑝 {− (
𝜆−𝑏𝑖(𝐶)

𝑐𝑖(𝐶)
)

2

}2
𝑖=1       (3) 254 

Here, 𝑎𝑖(𝐶) , 𝑏𝑖(𝐶)  and 𝑐𝑖(𝐶)  are the amplitude, the position, and the width of 255 

gaussian ‘𝑖’. 256 

Note that the amplitudes, the positions, and the widths of the Gaussian functions 257 

depended on the concentration 𝐶. They were called sub-functions of the Gaussians. The 258 

6 sub-functions needed to be mathematically determined. The next step was to determine 259 

what equations described them using fitting iterations explained below. 260 

 261 

3.1.1 Iterated fittings approximation. 262 

The first fitting step consisted in directly fitting spectra with two Gaussians letting 263 

the quantities 𝑎𝑖(𝐶), 𝑏𝑖(𝐶) and 𝑐𝑖(𝐶) free (figure 3(a)). The values of the Gaussian coef- 264 

ficients were plotted as a function of the concentration. Figure 3(a) suggested that the cen- 265 

ter of Gaussian 1 could be considered constant and equal to 496.9 nm. 266 

A second fitting iteration considering 𝑏1 = 496.9 was then conducted (figure 3 (b)) 267 

where 𝑎2 can be considered constant and equal to 23%. Iterations were repeated until no 268 

sub-function could be considered constant anymore (figure 3(e)). 269 

 270 



 

 

 271 

Figure 3: Iterative fitting of experimental CEM spectra with 2 gaussian functions. 272 

At this stage, the CEM spectral shape was written as follows, with one constant 273 

Gaussian function and a variable Gaussian function in which amplitude and width de- 274 

pended on CEM concentration. 275 



 

 

𝐴𝑏𝑠𝐶𝐸𝑀(𝜆, 𝐶) =  𝑎1(𝐶). 𝑒𝑥𝑝 {− (
𝜆−𝑏1

𝑐1(𝐶)
)

2

} + 𝑎2. 𝑒𝑥𝑝 {− (
𝜆−𝑏2

𝑐2
)

2

}    (4) 276 

Note that at the iteration #5 stage, data representing 𝑎1(𝐶) and 𝑐1(𝐶) were much 277 

less dispersed than what they were at iteration #1. The next step was to mathematically 278 

describe sub-functions 𝑎1(𝐶) and 𝑐1(𝐶). This was done by fitting 𝑎1(𝐶) with an expo- 279 

nential function, and 𝑐1(𝐶) with a power function (figure 4). 280 

 281 

 282 

Figure 4: Fitting sub-functions. (a) Fitting 𝑎1(𝐶). (b) Fitting 𝑐1(𝐶). 283 

A first approximated CEM spectra shape function could then be written as follows 284 

with numerical approximated parameters given in table 1. 285 

 286 

𝐴𝑏𝑠𝐶𝐸𝑀(𝜆, 𝐶) =  100. (1 − 10−𝑝1𝑎1.𝐶). 𝑒𝑥𝑝 {− (
𝜆−𝑏1

𝑝1𝑐1.𝐶𝑝2𝑐2)
2

} + 𝑎2. 𝑒𝑥𝑝 {− (
𝜆−𝑏2

𝑐2
)

2

} (5) 287 

 288 

Table 1: List of approximated parameters obtained by iterative fittings (CEM). 289 

Approximated 

parameters 
p1a1 b1 p1c1 p2c1 a2 b2 c2 

Value 7.45×10-7 496.9 2.14 0.41 23.11 976.9 253.9 

 290 

These parameters were approximated since they were obtained sequentially using 291 

iterated fittings. Successive fittings allowed identifying constant sub-functions and mak- 292 

ing explicit the concentration dependency of non-constant sub-functions.  293 

 294 

3.1.2 Parameters calculation using a minimization method. 295 

CEM spectra evolution with concentration formed a surface that could then be di- 296 

rectly adjusted with equation (5) by fitting parameters simultaneously. The “fminsearch” 297 

function (MatlabTM, documentation available at: https://fr.math- 298 

works.com/help/matlab/ref/fminsearch.html) was used to determine the set of parameters 299 

that minimized the following error function. 300 

 301 

𝑒𝑟𝑟𝑜𝑟 =  ∑ ∑ (𝐴𝑏𝑠𝐶𝐸𝑀(𝜆, 𝐶) − 𝐸𝑥𝑝𝑆𝑝𝑒𝑐𝑡𝑟𝑎)2
𝐶𝜆        (6) 302 

Here, 𝐸𝑥𝑝𝑆𝑝𝑒𝑐𝑡𝑟𝑎 represented the 75 absorption spectra shown in figure 2. 303 



 

 

The “fminserach” function required a set of starting points. Approximated parame- 304 

ters given in table 1 were used as starting points to minimize equation (6) (figure 5 and 305 

final parameters were calculated with the minimizer algorithm in table 2). 306 

 307 

Figure 5: Description of the shape of CEM absorption spectra with a minimization algorithm. Black 308 
dot: experimental spectra, colored surface: equation (5) plotted with parameters in table 2. 309 

Table 2: List of parameters obtained using a minimization algorithm (CEM). 310 

Parameters p1a1 b1 p1c1 p2c1 a2 b2 c2 

Value 7.67×10-7 533.7 6.32 0.34 12.21 936.1 177.2 

 311 

Examples of fittings for 2 experimental spectra with different concentrations were 312 

performed (figure 6) using equation (5) and parameters from table 2. The fixed Gaussian 313 

could then be considered as a sort of baseline appearing for large wavelengths. 314 

 315 

 316 

Figure 6: Examples of spectra fittings using equation (5) and parameters in table 2. (a) Example at 317 
1.99×105 CEM.mL-1. (b) Example at 9.41×105 CEM.mL-1. 318 

 319 

Parameters displayed in table 2 differed from those given in table 1. Then the com- 320 

parison of R2 values from fitting (table 1) and minimization (table 2) were compared (Fig- 321 

ure 7). 322 



 

 

 323 

Figure 7: Comparing fitting efficiency with parameters issued from iterative fitting or minimization. 324 
Counter values: concentration measured with a cell counter from experimental cuvettes. 325 

Both sets could describe the experimental CEM spectra efficiently (figure 7) since the 326 

R2 values obtained when fitting experimental spectra with equation (5) using either pa- 327 

rameters from fitting or from minimization were quite similar, with slightly higher R2 val- 328 

ues with the minimization algorithm. Moreover, it seemed that the shape fitting was inef- 329 

ficient for extreme concentration values. The CEM spectral model given by equation (5) 330 

was used to compute concentrations and to compare results to measurements performed 331 

with the automatic cell counter. 332 

 333 

3.1.3 Measuring CEM concentrations using the shape of the absorption spectra. 334 

Then, the accuracy with which the model calculated CEM concentrations was stud- 335 

ied. First, a rapid estimation of the model accuracy was established and descriptors of the 336 

accuracy were defined. Second, cross-validation of the model was performed to estimate 337 

the accuracy more realistically. 338 

Global evaluation of measurement performances. 339 

Equation (5) was used to fit spectra from figure 2 to calculate CEM concentrations 340 

and resulted in figure 8 (a). It could be observed that despite a low R2 value, the model 341 

could accurately compute CEM concentrations at extreme concentration values. 342 

 343 

 344 

Figure 8: Measuring CEM concentrations using the CEM shape function. (a) Experimental results. 345 
(b) Definition of the Disp. And Bias descriptors. 346 



 

 

Ideally, calculated concentrations should be situated on the Y=X line (dashed black 347 

in the figure). Figure 8(b) was used to define descriptors of the accuracy of the spectral 348 

concentration measurements. Fitting the experimental data with the function: 𝑌 = 𝑋 + 349 

𝐵𝑖𝑎𝑠 is shown as a magenta dashed line in figure 8(b). 350 

The “Bias” was an estimation of how much calculated concentrations were different 351 

from the counter values. A positive “Bias” means that the model overestimated the con- 352 

centration while a negative one shows that the model underestimated the concentration. 353 

The dispersion of the fitting results around the 𝑌 = 𝑋 + 𝐵𝑖𝑎𝑠  line was represented 354 

by the large green area (figure 8(b)). The width of this green line was called “Disp.” (dis- 355 

persion). The larger the “Disp.” could be, the less accurate the measurements would be. 356 

The dispersion could be calculated using a modified form of the Standard Deviation def- 357 

inition as shown in equation (7). 358 

 359 

𝑑𝑖𝑠𝑝 =  √1

𝑛
∑ (𝐶𝑖

𝑐𝑎𝑙𝑐 − (𝐶𝑖 + 𝐵𝑖𝑎𝑠))
2

𝑛
𝑖=1         (7) 360 

 361 

Where 𝐶𝑖 was the counter value of the sample number ‘i’ and 𝐶𝑖
𝑐𝑎𝑙𝑐  the correspond- 362 

ing calculated concentration. 363 

The dispersion and bias values of the experimental results (figure 8(a)) were given 364 

by: 365 

 366 

Disp. = 5.6×104 cells (about 9% at center concentration range). 367 

Bias = 883 cells (virtually zero). 368 

 369 

The virtually zero bias indicated that the model did not over/under-estimate the 370 

counter values. The accuracy was here less than 10% whereas an accuracy of about 20% is 371 

still acceptable (personal communication with the French Blood Agency). However, this 372 

accuracy was relatively good because the model was tested on data used to establish it. 373 

The next step was to evaluate the model by conducting cross-validation. 374 

Cross-validation evaluation. 375 

A first model was established with 5 experimental sets called “model data”. This 376 

model consisted in equation (5) with parameters calculated with the 5 chosen model sets. 377 

This model was then applied to the 3 remaining data sets called “test data”. The bias and 378 

dispersion values were calculated for this first combination. This process was iterated for 379 

all possible combinations. Figure 9 shows the dispersion and bias values for all possible 380 

“model” and “test” sets combinations. 381 

 382 

 383 

Figure 9: Dispersions and bias obtained using a cross-validation evaluation. (a) Dispersion values. 384 
(b) Bias values. 385 



 

 

The average dispersion was equal to 5.2×104 cells (dashed black line in figure 9). It 386 

was slightly higher than what was calculated globally and represented about 8.7% at the 387 

center concentration range (still acceptable). The bias results were more surprising since 388 

the bias value decreased with the combination number as detailed in figure 10.  389 

 390 

Figure 10: Evolution of the bias compared to sets used as « model » or « test » data. W(n) data in the 391 
figure refer to the weeks when CEM were grown and experimental data sets recorded. The 8 data 392 
sets were recorded between Mach and June. Orange and green squares correspond to “model data” 393 
and “test data” respectively. 394 

Positive bias values corresponded to “model data” mostly recorded during the 4 first 395 

weeks (W11 to W17) and “data sets” mostly recorded during the last 4 weeks (W18 to 396 

W23), and vice versa for negative bias values. The average bias over the period was 622 397 

cells, the same virtually zero value as the one calculated globally. 398 

The accuracy of the CEM spectral model was about 13%. This value will be discussed 399 

later regarding the dispersion due to plastic spectroscopy cuvettes. The model was ap- 400 

plied to monitor the evolution of the concentration during a 30-hour CEM cultivation ex- 401 

periment. 402 

 403 

3.1.4 Measuring CEM concentration over 30 hours. 404 

The evolution of the concentration of CEM cells cultivated in a single spectroscopy 405 

cuvette was measured using the CEM spectra shape model (figure 11). 406 

 407 

Figure 11: Monitoring CEM culture over 30 hours. (a) Recorded spectra. (b) Calculated concentra- 408 
tions. 409 

Since the experimental set-up was not yet automated, no data were recorded during 410 

the night. The spectra shape model calculated an initial CEM concentration of 4.6×105 411 



 

 

cells.mL-1 while the cuvette was initially filled with a concentration of 5×105 cells.mL-1. 412 

This value was correct, especially considering that the cell counter measurements were 413 

not fully representative of the real concentration within the culture flask (see discussion 414 

and [30]). 415 

Black circles (figure 11(b)) showed concentrations calculated using the Beer-Lambert 416 

derived model [30]. Results were similar to calculations obtained with the present shape 417 

model, but a slight underestimation was observed with the Beer-Lambert derived model 418 

after 20 hours which seemed to increase with time. 419 

While fitting the evolution of CEM concentration with an exponential function, a 420 

doubling time was determined of about 24h35 considering data over the 30 hours experi- 421 

ment. This corresponds to what was expected. A doubling time of 20h was measured dur- 422 

ing the first 11 hours of the experiment while a doubling time of 27h42 was measured 423 

during the last 10 hours. This will be discussed later. 424 

Results obtained during this 30-hour cultivation experiment showed an evolution of 425 

the CEM population in accordance with what was expected. Data seemed to be less dis- 426 

persed than was could have been expected from section 3.1.3. Indeed, because the exper- 427 

iment was conducted in a single spectroscopy cuvette, the dispersion due to the cuvette 428 

did not exist here. The dispersion was measured with respect to the exponential fitting as 429 

follows. 430 

 431 

𝑑𝑖𝑠𝑝Δ𝑡 =  √
1

𝑛
∑ (𝐶𝑐𝑎𝑙𝑐(𝑡𝑖) − 𝐸𝑥𝑝𝐹𝑖𝑡Δ𝑡(𝑡𝑖))2𝑛

𝑖=1        (9) 432 

 433 

Here, Δ𝑡 referred to the period during which the dispersion was measured (i.e. first 434 

11 hours, last 10 hours, and whole 30 hours experiment period), 𝐶𝑐𝑎𝑙𝑐(𝑡𝑖) the concentra- 435 

tion calculated at time 𝑡𝑖 and 𝐸𝑥𝑝𝐹𝑖𝑡Δ𝑡(𝑡𝑖) the value of the exponential fitting during the 436 

Δ𝑡 period at time 𝑡𝑖. Following dispersions were obtained. 437 

 438 

• Disp(0-11)h = 1.9×104 cells 439 

• Disp(21-30)h = 2.2×104 cells 440 

• Disp(0-30)h = 1.8×104 cells 441 

 442 

Whatever the period, the dispersion was around 2×104 cells (i.e. 3.3 % at the center 443 

range), much lower than the values obtained using multiple cuvettes for model establish- 444 

ment. 445 

To summarize, the spectral model allowed accurate calculation of CEM concentra- 446 

tion. The next section presents illustrations of simultaneous concentration measurements 447 

in co-cultures. 448 

3.2- Measuring concentrations with reconstructed co-cultures. 449 

The global spectral shape function described in equation (2) could also be used to 450 

analyze reconstructed spectra of a mixture of CEM cells and Candida albicans yeasts with- 451 

out co-culture experiments. It was first necessary to determine the spectral shape function 452 

of Candida albicans. 453 

 454 

3.2.1 Establishing the Candida albicans spectra shape equation. 455 

CA spectra shape equation was established using the same method used for CEM 456 

cells (sections 3.1.1 and 3.1.2) generating figure 12.  457 



 

 

 458 

Figure 12: CA absorption spectra. 459 

The spectra shapes of CA yeasts (Figure 12) were similar to the spectra of CEM cells 460 

(Figure 2). The main stages of the spectra shape function construction are summarized 461 

below. 462 

 463 

1. CA spectra could efficiently be fitted with 2 Gaussian functions. 464 

2. Only 4 iterated fittings were required resulting in the existence of 3 sub-func- 465 

tions describing the evolutions of 𝑎1(𝐶), 𝑏1(𝐶) and 𝑎2(𝐶). Each of them 466 

could be fitted with a logarithm function. 467 

3. The final parameters obtained with the minimization algorithm are given in 468 

table 3. 469 

 470 

Equation (8) represented the CA spectrum shape function. 471 

 472 

𝐴𝑏𝑠𝐶𝐴(𝜆, 𝐶) =  (𝑝1𝑎1 + 𝑝2𝑎1. 𝑙𝑜𝑔10(𝐶)). 𝑒𝑥𝑝 {− (
𝜆 − (𝑝1𝑏1 + 𝑝2𝑏1. 𝑙𝑜𝑔10(𝐶))

𝑐1

)

2

} 473 

+ (𝑝1𝑎2 + 𝑝2𝑎2. 𝑙𝑜𝑔10(𝐶)). 𝑒𝑥𝑝 {− (
𝜆−𝑏2

𝑐2
)

2

}    (8) 474 

 475 

Table 3: List of parameters for Candida albicans function. 476 

Parame-

ters 
p1a1 p2a1 p1b1 p2b1 c1 p1a2 p2a2 b2 c2 

Value -218.6 41.1 -7884 1130 2036 -182 33.36 562.3 479.5 

 477 

The CA model allowed the determination of dispersion and bias values. 478 

 479 

• Disp. = 2×105 cells (about 10% at the center concentration range). 480 

• Bias = 7804 cells. 481 

 482 

3.2.2 Examples of double concentrations measurements. 483 



 

 

Examples of reconstructed CEM/CA co-culture were then calculated using equation 484 

(2) and both concentrations were fitted using equation (2) written as follows. 485 

 486 

𝐴𝑏𝑠𝑀𝑖𝑥(𝜆, 𝐶𝐶𝐸𝑀 , 𝐶𝐶𝐴) = 100 {1 − (1 −
𝐴𝑏𝑠𝐶𝐸𝑀(𝐶𝐶𝐸𝑀)

100
) . (1 −

𝐴𝑏𝑠𝐶𝐴(𝐶𝐶𝐴)

100
)}   (10) 487 

 488 

Examples of reconstructed spectra and simultaneous concentration measurements 489 

are shown in figure 13. 490 

 491 

 492 

Figure 13: Measurements of co-culture concentrations of two species, CEM cells, and Candida albi- 493 
cans. The titles correspond to concentrations of both species measured by colony counting (Counter) 494 
and spectroscopy (Spec.). 495 

 496 

CEM and CA concentrations were calculated considering all possible combinations 497 

of species concentrations (i.e. 450 combinations). Bias and dispersions related to each com- 498 

bination were computed. 499 

 500 

• CEM: disp. = 1.28×105 cells (21% at the center range) 501 

• CEM: bias = 3.2×104 cells 502 

• CA: disp. = 5.8×105 cells (29% at the center range) 503 

• CA: bias = -1.6×105 cells 504 

 505 

Dispersions and bias were quite large because of two factors. First, cuvettes and 506 

counter dispersions were added when reconstructing CEM/CA mixtures. This would not 507 

be the case for real co-cultures in a single cuvette as mentioned in section 3.1.4. Second, a 508 

crosstalk (influence of CA presence on CEM measurements and vice versa) existed be- 509 

tween CEM and CA measurements as shown in figure 14 where CEM and CA calculated 510 

concentrations were plotted as a function of species concentrations in the reconstructed 511 

spectra. 512 

 513 



 

 

 514 

Figure 14: CEM and CA calculated concentrations as a function of initial species concentrations in 515 
the reconstructed spectra. Blue circles: data, colored surface: mean planes. (a) CEM. (b) CA. 516 

Colored planes in the figures represented the mean evolution of the species concen- 517 

trations calculated in the 3D representations. Equations of the mean planes were written 518 

as follows. 519 

 520 

𝑃𝐶𝐸�̃�(𝐶𝐶𝐸𝑀, 𝐶𝐶𝐴) =  𝑝0𝐶𝐸𝑀 + 𝑝1𝐶𝐸𝑀 . 𝐶𝐶𝐸𝑀 +  𝑝2𝐶𝐸𝑀 . 𝐶𝐶𝐴     (11) 521 

𝑃𝐶�̃�(𝐶𝐶𝐸𝑀, 𝐶𝐶𝐴) =  𝑝0𝐶𝐴 + 𝑝1𝐶𝐴 . 𝐶𝐶𝐸𝑀 + 𝑝2𝐶𝐴 . 𝐶𝐶𝐴      (12) 522 

 523 

Parameters are given in table 4. 524 

 525 

Table 4: List of parameters of average planes. 526 

Parameters 𝑝0𝐶𝐸𝑀 𝑝1𝐶𝐸𝑀 𝑝2𝐶𝐸𝑀 𝑝0𝐶𝐴 𝑝1𝐶𝐴 𝑝2𝐶𝐴 

Value -7.5×104 1.029 0.04 3.6×105 -0.17 0.8 

 527 

Ideally, 𝑝0𝐶𝐸𝑀, 𝑝2𝐶𝐸𝑀, 𝑝0𝐶𝐴 and 𝑝1𝐶𝐴 should be equal to zero but here, the cross- 528 

talk was revealed by the non-zero values of 𝑝2𝐶𝐸𝑀 and 𝑝1𝐶𝐴. This aspect is discussed 529 

below. 530 

 531 

4-Discussion 532 

4.1- Format of the spectroscopy data. 533 

In our study, optical spectra were expressed in absorption measured in percentage, 534 

but investigations could have been conducted in any other equivalent formats since ab- 535 

sorbance (or OD), transmission, or transmittance spectra all strictly contain the same in- 536 

formation. Our goal was to provide a method to measure concentrations in-line, without 537 

sampling, close to or inside a bioreactor. To this end, compact and low-cost components 538 

must be chosen for this purpose. We did not consider methods based on the use of ultra- 539 

sensitive detectors such as Photomultiplier Tubes usually used in plate readers. Therefore, 540 

data corresponding to low transmission (i.e. high OD) were not fully reliable in our case. 541 

Therefore, we decided not to consider absorbance measurements. The choice between 542 

transmission and absorption was made considering that absorption spectra were easier to 543 

mathematically describe than transmission spectra. 544 



 

 

4.2- Ways to optically measure concentrations. 545 

With the present study and our previous one, 3 optical methods are now available to 546 

measure cell concentrations: considering the value of the absorption maxima (Beer-Lam- 547 

bert derived model [30]), considering the shape of the absorption spectra using iterated 548 

fittings or a minimization algorithm. All three are roughly equivalent. However, although 549 

equivalent (figure 11(b)), the Beer-Lambert derived method cannot be employed to meas- 550 

ure concentrations of several species simultaneously. Successive fittings or minimization 551 

algorithm were also equivalent (figure 7) with slightly higher R2 when spectra were fitted 552 

with the minimization algorithm. In any case, both must be considered because the suc- 553 

cessive fittings produced starting values for the minimization algorithm. 554 

4.3- Successive fittings. 555 

Iterated fittings showed that it can be approximated that only the amplitude 𝑎1 and 556 

the width 𝑐1 of the first Gaussian evolved with the concentration. As already mentioned, 557 

the second Gaussian should be considered as a baseline. 𝑐1(𝐶) was described with a 558 

power function. This function cannot be related to any light-matter interaction process 559 

and another function could have been used instead. 𝑎1(𝐶) was fitted with an exponential 560 

function. This function led to the best adjustment efficiency with R2=0.96. This exponential 561 

function was chosen because the evolution of 𝑎1(𝐶) with the concentration was very sim- 562 

ilar to the evolution of the maximum value [30]. This exponential equation was directly 563 

derived from the Beer-Lambert law. Both ‘a’ parameters were very close: 7.5×10-7 [30] and 564 

p1a1 parameter equal to 7.45×10-7 in the present study. This showed that the concentration 565 

related principally to the absorption amplitude than other Gaussian characteristics. This 566 

was also observed by the fact that the aspect of 𝑎1(𝐶) was conserved throughout the suc- 567 

cessive fittings (to be compared to the evolution of 𝑐1(𝐶) for example). Previously, the 568 

position of spectra maxima was shown to evolve with concentration [30]. In the case of 569 

figure 3(e) only, this should not happen because the centers of both Gaussian were fixed. 570 

However, looking at successive iterations (figure 3), it was clearly seen that 𝑏2 slightly 571 

evolved with the concentration which was in accordance with what was observed before. 572 

This evolution was lost when considering 𝑏2 as a constant. However, this was compen- 573 

sated by the fact that the dispersion of 𝑐1(𝐶) strongly decreased with successive fittings. 574 

Indeed, considering 𝑏2  not constant would have kept 𝑐1(𝐶) more dispersed and the 575 

overall fitting R2 would not have been improved. We decided to simplify the mathemati- 576 

cal expression of 𝐴𝑏𝑠𝐶𝐸𝑀(𝜆, 𝐶) simpler by considering 𝑏2 constant. 577 

The second Gaussian is considered as a baseline with absorption occurring mainly in 578 

the near infrared region. CEM concentration could have been measured with only one 579 

Gaussian function but the R2 of the fitting would have been lower, possibly leading to a 580 

reduced concentration measurement accuracy. Trying to keep R2 as high as possible is 581 

crucial when considering co-cultures where one of the species exhibits a high absorption 582 

around 800 nm wavelength. 583 

4.4- Considerations about data dispersion and bias. 584 

Basic plastic spectroscopy cuvettes were used in these experiments and blues lines 585 

(figure 8(a)) were related to their dispersion. An ancillary study (results available on de- 586 

mand) was conducted to estimate the effect of cuvette variability. The normal distribution 587 

of the absorptions measured at 600 nm wavelength on 100 cuvettes showed a full width 588 

at a half-maximum of ±2.5% corresponding to ±3.8×104 cells at center range. Blue lines in 589 

figure 8(a) represented this cuvette variability. It should be compared to the calculated 590 

dispersion observed in figure 9(a) related to the cross-validation calculations. Aspects con- 591 

cerning CEM cell concentration measurements using an automatic cell counter should 592 

also be considered. This device uses only 10 µL of the suspension to calculate cell concen- 593 

tration by image processing. During monitoring experiments [30], a dispersion of about 594 

10% of the automatic counter result was measured not due to a dysfunction of the cell 595 



 

 

counter but linked to the small volume hardly representative of the actual cell concentra- 596 

tions within the culture flask or in the spectroscopy cuvette. 597 

Dispersion and bias (Figure 8(b)) were calculated in a “vertical” way between the 598 

black dashed line and the experimental data. The algebraic distance between the black 599 

and magenta dashed lines (distance orthogonal to these lines) was not considered since 600 

the definition of the dispersion and bias was related to the discrepancy between the con- 601 

centration optically measured and the concentration measured with the automatic coun- 602 

ter. A “horizontal” dispersion also existed due to the above-mentioned remark concerning 603 

the automatic cell counter. The dispersion was only 3.3% at the center range while moni- 604 

toring cell growth within the same cuvette (figure 11) and this value corresponds to the 605 

real method accuracy. This value is sufficient for real applications. For example, counting 606 

cells with a Malassez cell leads to accuracies between 10-20 % and is human dependent. 607 

Commercial cell counters are very accurate, but they require very small volumes (10-20 608 

µL) which are hardly representative of the content of the suspension under investigation. 609 

We measured dispersion of about 10% with an automated cell counter (reference [30] of 610 

the paper). As already mentioned, “an accuracy of about 20% is still acceptable (personal 611 

communication with the French Blood Agency). 612 

To summarize, dispersion values mentioned in sections 3.1.3 and 3.2.1 are mostly 613 

linked to cuvette optical properties variability and cell counter representativeness and not 614 

to an intrinsic inaccuracy of the spectral measurements. Variability of the cuvette proper- 615 

ties is no longer a problem when monitoring cell culture in a single cuvette (3% reported 616 

in section 3.1.4). Also, because spectral measurements are performed with large volumes 617 

(about 70 µL) they are more representative of the suspension content.  618 

One of the most surprising observations was that the bias decreased with the combi- 619 

nation number and seemed related to the weeks during which “model sets” and “test sets” 620 

were selected along the cross-validation estimation. No clear explanation for this phenom- 621 

enon has yet been found since this bias decrease seemed not to be correlated to the number 622 

of passages that cells have undergone; environmental factors may be responsible (first 623 

experiments were performed in March and last experiments in June). 624 

4.5- Remarks about the cell multiplication times. 625 

Concentrations measured from the shape of the absorption spectra were compared 626 

to those measured from the Beer-Lambert derived model [30] (Figure 11(b)). Normally 627 

mammalian cell population doubles every day. A common doubling time value of 26 628 

hours is traditionally considered. However, doubling times strongly depend on cultiva- 629 

tion protocols [42]. Results shown in figure 11(b) suggested that doubling time evolved 630 

with time. Apparently, cells divided faster during the first 11 hours (doubling time 631 

20h00min) than during the last 10 hours (doubling time 27h42min). Overall, the doubling 632 

time estimated during 30 hours of experiment was 24h35, closer to what is usually 633 

acknowledged. Two explanations can be proposed: (i) This variation in the doubling time 634 

was not yet observed because cell concentration controls were normally not performed 635 

every 30 min as it was in the present study. (ii) Cultivation took place in a spectroscopy 636 

cuvette with a reduced volume of RPMI medium (2.5 mL) which could have reduced the 637 

multiplication rate when cell concentration became larger. Indeed, available nutrients de- 638 

creased more rapidly in such small volumes while CO2 level increased more rapidly. Note 639 

that measurements were made over 30 hours of cultivation, far from the stationary phase, 640 

which occurs after several days in normal culture conditions. 641 

4.6- Concerning the reconstructed co-cultures CEM/Candida albicans. 642 

75 CEM spectra were used to construct the shape model which was therefore quite 643 

representative. Conversely, only 6 dilution ranges of Candida albicans were used explain- 644 

ing that the shape model could be less accurate. Moreover, the absorption spectra of yeast 645 

and mammalian cells were quite similar. This made the fitting of both species quite diffi- 646 

cult and reduced the accuracy of the result because of the crosstalk between each species' 647 



 

 

measurements. The parameters given in table 4 allow an understanding of the effect of 648 

shape similarity on the results. Concerning the CEM mean plane, 𝑝2𝐶𝐸𝑀 was related to 649 

the contribution of CA. It should be zero while 𝑝1𝐶𝐸𝑀  should be equal to 1. This was not 650 

exactly the case because 𝑝2𝐶𝐸𝑀=0.04 and 𝑝1𝐶𝐸𝑀 = 1.029. This means that the CEM calcu- 651 

lation was slightly influenced by CA. 652 

We recall that this illustration of co-culture monitoring was performed using recon- 653 

structed mixture spectra. The goal was to demonstrate simultaneous concentration calcu- 654 

lations from the shape of the absorption spectra. Simultaneous monitoring of CEM cells 655 

and Escherichia coli bacteria co-culture is currently being investigated and accuracies of 656 

about 3% for both species’ concentrations measurements are observed (data not shown). 657 

4.7- Position of our studies and model to others. 658 

Initially, our work aimed the monitoring of cell cultivation and the detection of bac- 659 

terial contaminations in cell cultures in real time, without sampling and labeling. Indeed, 660 

spectroscopy methods offer the possibility to simultaneously measure single and multiple 661 

species concentrations in (co)-cultures. Our model was established on spectra shapes and 662 

allowed monitoring of single and co-cultures of biological elements and co-determination 663 

of concentrations of two different species.   664 

Other studies have been performed using either label-free non-optical techniques or 665 

spectroscopies as detailed thereafter and reviewed in [20]. They present different ad- 666 

vantages and drawbacks, in terms of high-throughput and online analysis. Using other 667 

parameters, they succeeded in the detection of only one element and did not analyze ab- 668 

sorption spectra.   669 

Label-free non-optical techniques can be used to study contaminations but most of 670 

the time aimed the study of the presence of one element with another one. Among them, 671 

as an example, QCM was used to detect E. coli in raw milk [36] with a response time of 672 

the sensor of about 4 hours, a duration acceptable for real-time detection. However, this 673 

technique requires strictly controlling sample temperature and milk was different from 674 

cell culture where cell concentration evolves with time. Electrochemistry was performed 675 

with pure bacteria suspensions and enabled a detection limit down to 30 CFU.mL-1 [37].    676 

Other techniques based on the application of Beer-Lambert law were reported for co- 677 

detection. Some authors tried to detect Plasmodium berghei and Trypanosoma evansi in mice 678 

whole blood by measuring the absorption at a single 650 nm wavelength [38]. They could 679 

detect only Plasmodium with a high response, already a challenge in whole blood, and 680 

reported difficulties in getting signatures below 600 nm because of a too low Signal to 681 

Noise ratio. Their results could be linked to the difficulty to detect multiple species at only 682 

one wavelength and/or to the difference in size and/or composition of both species.  683 

UV/Vis spectroscopy has been described as well-suited for the determination of cell 684 

density [20]. Studies within the UV region and more particularly in a reduced wavelength 685 

window around 290 nm allowed performing of only cell counting while measuring ab- 686 

sorption in 96-well plates but no multiple detection was achieved by this method that is 687 

halfway between conventional Beer-Lambert law and spectroscopy over a wide wave- 688 

length range [31]. Other studies were performed on the full UV-visible range and meas- 689 

ured the absorption of Chinese Hamster Ovary (CHO) cells [34, 35]. Cell concentrations 690 

and viabilities were estimated on the base of Partial Least Squares (PLS) models. These 691 

studies require either an optical commercially available probe enabling potential transpo- 692 

sition of the technique to an in-line system like ours [35] or were performed in very small 693 

volumes (2 µL), which are less representative. In contrast, our model using a wide wave- 694 

length range is able to detect a single cell and determine its concentration even in presence 695 

of other elements in large volumes, which are more representative of the cultivation flask.  696 

Only one method developed recently and based on light scattering analysis allowed 697 

simultaneous measurements of two species. The authors succeeded to determine the bio- 698 

mass of two bacteria Lactococcus lactis and Kluyveromyces marxianus different in size (0.5- 699 

1.5 µm for LL and 4-8 µm for KM) in co-culture in 48-wells plates [39]. The experimental 700 



 

 

setup that they proposed, slightly more complex than the one presented here, could also 701 

be efficiently transposed in an online and sample-free device. This technique is also influ- 702 

enced by morphological changes and could be as accurate as our model. Since our analysis 703 

enabled analysis of co-cultivation of species that exhibit similar sizes (about 10 µm) gen- 704 

erating similarity of measured absorption spectra (figures 2 and 12), i.e. determination of 705 

concentrations in extreme cases, it could easily be even more accurate with species with 706 

different absorption spectra such as bacteria [3,4]. 707 

5-Conclusion 708 

This paper highlighted a mathematical description of the shape of the absorption 709 

spectra of CEM cells. This description was used to measure CEM cell concentrations as it 710 

could have been done using Beer-Lambert-derived methods. Our model allowed moni- 711 

toring of a CEM cultivation over 30 hours in a single spectroscopy cuvette with an accu- 712 

racy of 3.3% and a determination of the cell population doubling rate, even evolving a bit, 713 

to 24h35min in accordance with what should be expected. In addition, using the shape of 714 

the absorption spectra allowed measuring simultaneously individual species concentra- 715 

tions in the case of co-culture. This accuracy could be increased while analyzing species 716 

with more different spectra shapes.  717 

In addition to a high accuracy, the use of white light spectroscopic method presents 718 

a big advantage of being easily integrated within a device without sampling, in a closed 719 

environment and enable real-time measurements, useful for quality control during ATMP 720 

and cell production.  721 
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