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Abstract—This paper presents an energy-based modeling and
control design method for a piezo tube actuated optical fiber. A
non-linear infinite dimensional port Hamiltonian (pH) formula-
tion of the 3D flexible optical fiber is derived from the Cosserat
rod dynamical equations. Then the proposed infinite dimensional
model is discretized using a pH structure and passivity preserving
discretization method for the simulation and control design.
This model is then validated against experimental data obtained
using a built-in experimental setup equipped with a MEMS
Analyzer. A complete pH formulation of the piezo tube actuated
optical fiber is proposed, combining the Cosserat rod model and
actuator dynamics. This model is used for the end-point path
control design using an interconnection and damping assignment
passivity based control (IDA-PBC) method. Both the proposed
pH model of the overall system and the controller are validated
in simulation and against experimental results.

Index Terms—Cosserat rod, piezo tube, port Hamiltonian
systems, optical fiber.

I. INTRODUCTION

THE range of medical applications of continuum robots
has been growing in the last past years. The main purpose

of using these robots is to perform minimally invasive surg-
eries to reduce the potential risks of damage and to improve
the success of the involved procedures in surgeries [1]. Some
examples of important surgeries and problems solved with
continuum robots are given hereafter. Neurosurgical interven-
tions in which wide cranium openings are done. In this type of
interventions, tissue is pushed aside to gain access to deeper
regions of the brain and proximity of the structures where
important functionalities could exist. Oto-rhino-laryngology is
usually performed with straight or flexible endoscopes and
other instruments entering to the nostrils, mouth or ears [2]–
[4]. Applications of continuum robots also include the devel-
opment of scanning fiber endoscopes for optical coherence
tomography (OCT) as presented in [5]. Scanning and imaging
continuum robots are often used for cancer detection, mi-
crovascular oxygen tension measurement, chronic mesenteric
ischemia, subcellular molecular interactions, etc [6]. However,
due to the complexity of the continuum robots and their work
environment, the actuation and control problems of continuum
robots are difficult to handle.

This work has been supported by the EIPHI Graduate School (contract:
ANR-17-EURE-0002) and ANR IMPACTS project (contract: ANR-21-CE48-
0018 ).

Edgar Ayala Perez, Yongxin Wu, Kanty Rabenorosoa, Yann Le Gorrec are
with the FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 24
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Fig. 1: System description of piezo tube actuated optical fiber
and equipment for the control purpose.

The main objective of this work is to develop a first proof
of concept of actuated scanning / imagining system, including
modeling and control design. The proposed system can be
used for both imaging and laser surgery at the tip of an
endoscope for medical uses. The proposed model consists of
an optical fiber rod clamped on and actuated through a piezo
tube and the working principle of this experimental setup is
described in Fig. 1. The piezo tube is the model PT230.94
with 33mm length, 3.2mm outer diameter and 2.2mm inner
diameter. This actuator can move in the two directions X
and Y by applying independent voltages on the two pairs of
electrodes. The optical fiber (30mm length and 126µm radius)
is clamped one the pizeo tube actuator as shown in the right
picture of Fig. 1. The X- and Y- directions motion of the
actuator generates the two-axial motion of the fiber.

The motion of the optical fiber exhibits large deforma-
tions, high flexibility and a nonlinear behavior. In a first
approximation the Euler-Bernoulli beam assumption has been
considered in the scanning optical fiber modeling in [7]–[9].
The piezo tube actuator has been used to generate the motion
of the fiber in [7], [8] but only with a quasi-static model.
In this paper, we propose to use Cosserat rod model [10] to
describe the mechanical behavior of the optical fiber and a
simple dynamic model for the piezo tube actuator. Cosserat
rod formulations can be used to represent the non-planar
and nonlinear dynamics of elastic rods that have a length
greater than radius. It is widely used for the modeling of
continuum robots [10]–[12]. Cosserat model exhibits a rich
set of geometric strain (e.g., shear and torsion) and it is then
particularly well adapted for the modeling of the considered
optical fiber. In order to deal with the multiphysical nature of
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this system and the interconnection between its constitutive
elements, i.e. the rod and the piezo tube, the port Hamilto-
nian (pH) framework is used. The pH formulation consists
in representing the system as the interconnection of three
types of ideal elements: dynamical energy-storing elements,
static energy-dissipating elements, and static lossless energy-
routing elements [13]. They are linked through a central
energy-routing structure, geometrically defined as a Dirac
structure [14]. The basic and most important property of a
Dirac structure is the power conservation. pH formulations are
then particularly well adapted for the modeling and control
of nonlinear multi-physical systems [15]. The pH approach
has been generalized to the distributed parameter systems
which are described by partial differential equations (PDEs)
and their applications [16], [17], [18], [19]. Due to these
advantages, the pH framework is suitable to model the PDEs
of the Cosserat rod dynamics interconnected with the piezo
tube actuator. Futhermore, the energy based modeling leads
to a modular representation of interconnected systems. It is
particularly well suited for control design through the use of
the energy function, leading to controller and control design
techniques with clear physical interpretation. Passivity based
control design techniques have been first introduced for the
control of Euler-Lagrange systems in [20]. They have then
been generalized to pH systems through the Interconnection
and Damping Assignment-Passivity Based Control (IDA-PBC)
[21] method. The control of soft manipulators/actuators using
IDA-PBC methods and lumped parameter models has been
first introduced in [22]–[25]. In this work, we employ the
IDA-PCB method to control the end-tip position of the piezo
actuated optical fiber modeled as a set of interconnected pH
systems.

The main contributions of the proposed work are: first, a
pH representation of the optical fiber as a dynamic thin rod
is derived based on Cosserat rod model proposed in [10],
[26], [27] and validated through numerical simulations and
experimental results. Furthermore a pH model of the optical
fiber interconnected to the piezo tube actuator is obtained in a
structure preserving way. This model is based on the principle
of energy conservation and exhibits the system properties and
provides a clear physical interpretation for control design.
Second, the IDA-PBC method [21] is employed to achieve
efficient and accurate regulation of the rod endpoint position
for scanning purposes. Both, the proposed pH formulation and
control law are numerically and experimentally validated.

This paper is organized as follows: in Section II the pH
formulation of the optical fiber as a dynamic thin rod is
proposed based on the Cosserat rod model. It is then validated
using numerical simulations and experimental data. In Section
III the piezo tube model is formulated using the pH framework
and connected to the optical fiber in a power preserving
way. Trajectory tracking control design is then investigated
using passivity based control techniques in Section IV and
the simulation and experimental results are presented to show
the effectiveness of the proposed control strategy. Finally,
conclusions and perspectives are given in Section V.

II. PORT HAMILTONIAN MODELING OF COSSERAT ROD
FOR THE OPTICAL FIBER

A. Basics of Cosserat Rod Dynamics for the Optical Fiber

In this section, the optical fiber is considered as a slender
rod which can be approximated as a one dimensional beam
under classical Cosserat’s elastic theory [28]. The rod of length
L is characterized by its centerline curve p(s, t) ∈ R3 and its
material orientation Φ(s, t) ∈ SO(3) as functions of the arc
length (s ∈ [0 L]) and time t. The complete set of partial
differential equations describing the dynamic behavior of the
Cosserat rod and the way they are derived can be found in
[12], [10], [28] and [29]. They are summarized and adopted
in this paper in the system of equations (1)1,2



ps = Φv

Φs = Φû

ns = ρAΦ(ŵq + qt)− f
ms = ρΦ(ω̂Iω + Iωt)− p̂sn − l

qs = vt − ûq + ω̂v

ωs = ut − ûω.

(1)

The partial derivative of p with respect to the arc length in the
local frame is denoted by v, that is v = ΦT ps. In the same
way, the local frame curvature is denoted by u = (ΦTΦs)

∨

where the operator (·)∨ maps from so(3) to R3 [30]. The
internal force and internal momentum are noted as n and n.
The operator (·)∧ or ·̂ maps from R3 to so(3), e.g.

û =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 .
q = ΦT pt and ω = (ΦTΦt)

∨ are the velocity and angular
velocity in the local frame. The notations f and l stand for the
distributed force and moment acting on the rod. The physical
parameters of the rod are the material density ρ, the cross
sectional area A, the second mass moment of inertia tensor I.
The linear elastic laws with material damping are chosen as
the material constitutive laws:

n = Φ [Kse(v − v∗) +Bsevt] ,

m = Φ [Kbt(u− u∗) +Bbtut]
(2)

where the “se” subscript stands for shear and extension and
“bt” stands for bending and torsion. v∗ stands for the initial
state of the shear and axial elongation, and u∗ represents
the initial bending and torsion (curvature). In this work we
consider that the initial position of the optical fiber is a straight
rod i.e., v∗ = (0, 0, 1)T and u∗ = (0, 0, 0)T . Kse ∈ R3×3 is
the stiffness matrix for shear and extension. Kbt ∈ R3×3 is
the stiffness matrix for bending and twisting. The matrices
Bse, Bbt ∈ R3×3 are the Kelvin-Voigt type viscous damping
matrices which depend on the material properties and cross-
sectional geometry. More details can be found in [31].

1For the sake of simplicity, the spatial and time variables (s, t) are omitted
over the paper unless it causes confusion.

2ps and pt stand for the partial derivative of p with respect to the arc length
∂p
∂s

and with respect to time ∂p
∂t

, respectively.
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B. PH Modeling of Cosserat Rod

The main purpose of this section is to derive from Cosserat’s
rod dynamic equations (1) and proper definition of the energy,
a port Hamiltonian formulation of the optical fiber rod. For that
purpose we choose as state variables, the energy variables i.e.
the extensive variables of Thermodynamics. The first energy
variable is the difference of shear and axial elongation between
the original and deformed states as in equation (3). The second
state variable is the internal translational momentum of the
rod that depends on the cross-sectional area A and the linear
velocity q of the material as in equation (4).

x1 = v − v∗, (3)
x2 = ρApt = ρAq. (4)

The third state variable is the difference in bending and torsion
(curvature) between the original and deformed states of the rod
as in equation (5). The fourth energy variable is the internal
rotational momentum of the rod that is related to the inertia
I and the angular velocity ω as in Equation (6).

x3 = u− u∗, (5)
x4 = ρIΦt = ρIω. (6)

The total mechanical energy is equal to the sum of the potential
elastic energy and kinetic energy of the rod. The potential
elastic energy relates the first energy variable of equation (3)
with the shear and extension stiffness matrix Kse and the third
energy variable of equation (5) with the bending and torsion
stiffness matrix Kbt. The kinetic energy, which includes the
internal translational and rotational momentum of the rod,
contains the second energy variable of equation (4) and the
fourth energy variable of equation (6). Finally the total energy
(Hamiltonian function) is expressed as follows:

H(x) =
1

2

∫ L

0

[Ksex
2
1 +Kbtx

2
3 +

1

ρA
x22 +

1

ρI
x24] ds

=
1

2

∫ L

0

[(Kse(v − v∗)2 +Kbt(u− u∗)2

+ ρAq2 + ρIω2] ds

=
1

2

∫ L

0

xTLx ds

(7)

where the state (energy) variable x = (x1, x2, x3, x4)T and

L = diag
[
Kse

1
ρA Kbt

1
ρI
]
. (8)

Remark 1. The stiffness matrices Kse and Kbt can be
extended to nonlinear elasticity and depend on the shear
and axial elongation v and the bending and torsion u. This
extension does not change the structure of proposed PH
representation of the Cosserat rod and it only changes the
constitutive laws and co-energy variables in (9) and (11).
To our best knowledge, most of Cosserat rod models in the
literature deal with the linear elastic laws which provides
enough accuracy hence we keep the linear stiffness in this
work.

The co-energy variables e associated to the energy variables
x are defined by the variational derivative of the Energy with

respect to the state e = δxH(x) = Lx. The first co-energy
variable which is related to the shear and elongation of the rod
x1, is the force on the local frame (9). The second co-energy
variable that is related to the internal translational momentum
x2 is the local velocity as shown in equation (10).

e1 = Ksex1 = Kse(v − v∗), (9)

e2 =
1

ρA
x2 =

1

ρA
ρAq = q. (10)

The third co-energy variable, related with the bending and
torsion is shown in equation (11). In the same way, the fourth
co-energy variable presented in equation (12) is related to the
internal rotational momentum.

e3 = Kbtx3 = Kbt(u− u∗), (11)

e4 = (ρI)−1x4 = (ρI)−1ρIω = ω. (12)

The Cosserat’s rod model can be written in the port Hamil-
tonian framework with distributed input as in [32]:

ẋ = (J −R)δxH(x) + gud

yd = gT δxH(x)
(13)

where x is the vector of aforementioned state (energy) vari-
ables and δxH(x) = Lx the vector of co-energy variables.
The input vector ud =

[
f l

]T
is composed of the distributed

force and distributed moment. J = Jlin + Jnl is a formally
skew symmetric operator

J =


0 ∂

∂s 0 0
∂
∂s 0 0 0
0 0 0 ∂

∂s

0 0 ∂
∂s 0


︸ ︷︷ ︸

Jlin

+


0 û 0 v̂
û −ρAω̂ 0 0
0 0 0 û
v̂ 0 û −ρJω̂


︸ ︷︷ ︸

Jnl

.

(14)
The operator Jlin is skew-symmetric when the boundary
variables are chosen properly [17]. The matrix Jnl is skew-
symmetric since û, ω̂ ∈ so(3) are skew-symmetric and ρ,
A and I are constant parameters. The dissipation operator
R = RT ≥ 0 and the input map g are defined as

R =


0 0 0 0
0 Bse 0 0
0 0 0 0
0 0 0 Bbt

 ; g =


0 0
IT 0
0 0
0 IT

 . (15)

The output yd = gT δxH(x) is the power conjugate variable
of the input ud, i.e., yd =

[
IT q ITω

]T
=
[
pt It

]T
.

We define the boundary port variable of the pH rod model
(13) using the co-energy variables at the boundaries in s = 0
and s = L [

f∂
e∂

]
=


e1∂
e2∂
e3∂
e4∂


∣∣∣∣∣∣∣∣
∂=0,L

. (16)

In this paper, the optical fiber rod is clamped to the piezo
tube which leads to a clamped-free boundary condition with
the velocity input on the clamped side (s = 0). From the
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boundary conditions, one can define the boundary input of the
rod as follows:

ub = [e2(0), e4(0), e1(L), e3(L)]T (17)

i.e. velocity and angular velocity at the clamped side (s =
0) and the force and moment at the free side (s = L). The
boundary output are chosen as the power conjugated boundary
port variables i.e.

yb = [e1(0),−e3(0),−e2(L), e4(L)]T . (18)

The energy balance equation associated to this system reads:

∂H
∂t (x) =

∫ L
0

(−δxHTRδxH + yTd ud) ds + yTb ub
≤

∫ L
0
yTd ud ds + yTb ub.

(19)
For more details on the parametrization of the boundary
variables, the readers can refer to [17]. In this work, we
consider that the optical fiber is controlled through the piezo
tube motion acting on its boundary conditions and in this case
the distributed force and moment acting on the rod are equal
to zero, i.e. ud =

[
f l

]T
= 0.

C. Spatial Discretization and Numerical Validation

The differential part of the skew symmetric operator, Jlin,
is discretized in space following the procedure of [33] where
the concept of staggered grids is introduced. For the sake of
the simplicity, we first introduce the variable fr = Jline. We
have the following relation:

fr1
fr2
fr3
fr4

 =


0 ∂

∂s 0 0
∂
∂s 0 0 0
0 0 0 ∂

∂s

0 0 ∂
∂s 0



e1
e2
e3
e4

 . (20)

The spatial resolution h and the number of discretization points
n are chosen such that (n + 1

2 )h = L. The first part of the
system is discretized over the grid presented in Figure 2 for
x1 and x2. A similar grid is used for the discretization of x3
and x4.

0 L

s

Fig. 2: Staggered grid for a clamped-free rod

In this discretized model, the state variables are ordered
following the vector xd = [x1d x

2
d x

3
d x

4
d]
T ∈ R4n where the

discretized energy variables are defined as xid = [xi1 ... x
i
n]T ,

with i = 1, 2, 3, 4 where the xik(k ∈ {1...n}) are the
approximations of the state variables respectively evaluated
at s = {(k− 1)h, (k− 0.5)h}. e20, e40, e1n+1 and e3n+1 denote
the boundary conditions at the clamped base and at the free
tip of the rod. The vector of discretized co-energy variables is
defined as 

e1k
e2k
e3k
e4k

 = Lk


x1k
x2k
x3k
x4k

 (21)

and thus, by central approximation of the spatial derivative
equation (22) appears,

f1k
f2k
f3k
f4k

 =
1

h


e2k+1 − e2k
e1k − e1k−1
e3k+1 − e3k
e4k − e4k−1

 . (22)

From which the vector fd = [f1d f2d f3d f4d ]T could be
expressed as an approximation of equation (20). In this way
the matrices shown in equations (23) and (24) could be found
for a clamped-free rod as in [18]

f1d =
1

h


1
−1 1

. . . . . .
−1 1


︸ ︷︷ ︸

D

e2d +
1

h


−1
0
...
0

 e20, (23)

f2d =
1

h


−1 1

. . . . . .
−1 1

−1


︸ ︷︷ ︸

−DT

e1d +
1

h


0
...
0
1

 e1n+1. (24)

Similarly, this discretization should be done for the second
pair f3d and f4d . This leads to the final port Hamiltonian
representation:


ẋ1d
ẋ2d
ẋ3d
ẋ4d

 =




0 D 0 0
−DT 0 0 0
0 0 0 D
0 0 −DT 0

+

0 û 0 v̂
û −ρAω̂ 0 0
0 0 0 û
v̂ 0 û −ρJω̂


︸ ︷︷ ︸

Jd

−

0 0 0 0
0 Bse 0 0
0 0 0 0
0 0 0 Bbt


︸ ︷︷ ︸

Rd



e1d
e2d
e3d
e4d


︸ ︷︷ ︸
ed

+
1

h

g1g2g3
g4


︸ ︷︷ ︸

gd


e20
e1n+1

e40
e3n+1


︸ ︷︷ ︸

u

;

(25)
y1
y2
y3
y4

 = gT
∂H
∂x

=
1

h

[
gT1 gT2 gT3 gT4

] 
e1d
e2d
e3d
e4d


with

g1 =


−1
0
...
0

 ; g2 =


0
0
...
1

 ; g3 =


−1
0
...
0

 ; g4 =


0
0
...
1

 .
The discretized energy function of the rod is given by

Hd(xd) =
1

2
xTd Ldxd. (26)

Before proceeding to the experimental identification of the
considered system, we first propose to validate the pH Cosserat
rod model with the existing results in the literature. To this end,
the discretized pH model (25) is compared with the numerical
schemes used for simulation of the Cosserat’s rod using the
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code proposed in [29]. For these numerical simulations we
used the parameters of the rod given in Table I, the rod being
divided in 40 elements. A force of [0.5 0 0]N at the tip is first

TABLE I: Main rod’s parameters

Parameter Value Units
Length (L) 0.4 m

Young’s modulus (E) 207 GPa
Radius (r) 0.0012 m

Density (ρ) 8000 kg/m3

applied as initial condition, and then released. Fig. 3 shows
the displacements of the rod’s tip versus time for the port
Hamiltonian model and the Cosserat rod model presented in
[10]. Figure 3 shows that the results obtained using these two

Fig. 3: Comparison between the port Hamiltonian rod model
and the Cosserat rod model

are in global accordance with almost 86% curve fitness. The
small differences in the behavior of the two systems is due to
the natural damping of the different integration methods that
are used.

D. Optical Fiber Parameters Identification

We consider now the experimental validation of the pro-
posed pH model of the optical fiber. Some physical parameters
of the fiber, such as the one associated to its geometry
(length, radius) or to its composition (material density or
Young’s modulus), are supposed to be known. However, the
dissipation coefficients Bse and Bbt are unknown and need to
be identified. In this respect, some experimental measurements
of the tip displacement of the optical fiber are performed.
These measurements are obtained using a MEMS Analyzer
Polytec MSA-500 (see Figure 4a) using the experimental setup
of Figure 4b.

Fig. 4: Experimental setup: a) Polytec MSA-500 analyzer;
b) Experimental setup. 1: Optical fiber; 2: piezo tube; 3:
3D printed base; 4: 2X Mitutoyo objective; c) Optical fiber
position tracking under the MEMS Analyzer; d) Optical fiber
motion measurement by Laser Doppler Vibrometry (LDV).

The MEMS Analyzer (Polytec MSA-500, Fig. 4 a)) mea-
sures the displacement using out of plane vibration Laser
Doppler Vibrometry (LDV). An Arduino UNO is programmed
to send 3, 4 and 5 volts to a 20X voltage amplifier to obtain
60, 80 and 100 volts respectively to move the piezo tube and
the optical fiber to an initial position. Then this voltage is
turned off (0 volts) to release the fiber, and simultaneously, a
TTL signal is sent to the MEMS analyzer. This TTL signal
is used as a trigger signal for the measurement. The motion
of different points on the optical fiber Fig. 4 c) are measured
by the Laser Doppler Vibrometry of the MEMS Analyzer as
shown in Fig. 4 d).

We consider that the parameters given in table II are fixed
from the optical fiber’s mechanical properties.

TABLE II: Fixed Parameters

Parameter Value Units
Young’s modulus (E) 9 GPa

Radius (r) 126 µm
Density (ρ) 1930 kg/m3

The parameters to be identified are the ones associated with
the dissipation occurring in the system i.e. the dissipation
matrices. They are identified using the Matlab@ function fsolve
and the Levenberg-Marquardt algorithm. Simulations are done
using 20 elements for the discretization.
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a) b)

d)c)

Fig. 5: Experimental measurements for optical fiber’s param-
eters identification. a) 5V Input used for identification. b) 4V
Input validation. c) 3V Input validation. d) 3V, 4V and 5V
simulation comparison

The displacement obtained for a 5V input, as shown in
Figure 5a, is used to identify the parameters. The fitting
percentage between the identified model and the experimental
measurement is over 90%. The resulting shear and extension
matrix and bending and torsion matrix are given respectively
by:

Bse = diag
[
10.9e− 7 9.9e− 7 6.0e− 7

]
Ns; (27)

Bbt = diag
[
4.7e− 7 3.4e− 7 13.4e− 7

]
textNm2s.

(28)
The model is then validated using a 3V and 4V input as
shown in Figure 5b and 5c, respectively. These curves fitting
percentage are both over 88%. Finally a comparison between
the three simulations is given in Figure 5d.

III. MODELING OF THE PIEZO TUBE ACTUATED OPTICAL
FIBER

The piezo tube actuated optical fiber shown in Figure 6
includes a four legged base for the continuum robot, a four
degrees adjustable base for the sensors, a 20X voltage ampli-
fier and two Keyence sensors that measure the displacements
of the actuator and of the rod’s tip. The continuum robot and its
simplified scheme are shown in Figure 7. The communication
interface is designed using Simulink/Control Desk and dSpace
controller board.

a)

1

2

3

4
5

6

Fig. 6: a) 1: piezo tube actuated optical fiber; 2: four legged
base; 3: A400DI voltage amplifier; 4: four degrees adjustable
support; 5: Keyence displacement sensor for piezo tube actua-
tor position measurement; 6: Keyence displacement sensor for
optical fiber tip measurement.

A. PH Modeling of piezo tube Actuator and Interconnected
System

For control design purpose, and for a sake of simplicity,
the piezo tube actuator is considered as a simple spring-mass-
damper system as shown in the right side of Figure 7 in this
work. A voltage dependent force Fpzt(V) is applied to generate
a displacement of the mass M of the actuator that is also
subject to the restoring force from the rod Frod = e10. A
stiffness coefficient K and a damping coefficient B are taken
into account to cope with the piezo tube dynamics.

b

a

c

d

Fig. 7: Left: (a) piezo tube (b) actuated optical fiber (c),(d)
Laser sensors. Right: Piezo tube modeled as a spring-mass-
damper system for one direction, the other direction is the
same as this model.

As for the optical fiber, the model is derived using the port
Hamiltonian framework. The energy variables are the relative
position ppzt of the actuator and the momentum mpzt5pt,
defined in equation (29)

xp1 = ppzt, xp2 = mpzt. (29)

The Hamiltonian function is defined as the sum of the potential
and kinetic energies as follows:

Hpzt =
1

2
[Kx2p1 +

1

M
x2p2] =

1

2
[Kp2pzt +

1

M
m2

pzt]. (30)
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The co-energy variables are defined by[
ep1
ep2

]
= ∇Hpzt(xpzt) =

[
K 0
0 1

M

] [
xp1
xp2

]
. (31)

Remark 2. In this work, we consider the piezo tube actuation
on both x−axis and y−axis are independent. Hence, the
piezo tube dynamics can be modeled by two spring-mass-
damper systems. Hence, the energy variables of the piezo tube
xp1, xp2 ∈ R2.

The piezo tube actuator pH model reads{
ẋpzt = (Jpzt −Rpzt) epzt + gpztupzt + gpzturod
ypzt = gTpztepzt

(32)
where:

Jpzt =

[
0 I
−I 0

]
;Rpzt =

[
0 0
0 b

]
; gpzt =

[
0
I

]
, (33)

where b ∈ R2×2 is the damper matrix, I is the two by
two identity matrix. The input upzt = F (V ) are the forces
generated by the applied voltage on the piezo tube on x−
and y− direction. urod are the restoring forces exerted by
the rod at the clamped point (s = 0) for two directions. The
output of the system are the velocities of the piezo tube that
are also the boundary inputs of the optical fiber, i.e., e20. The
interconnection relations between the piezo tube (32) and the
discretized optical fiber rod (25) are given by[

e20
urod

]
=

[
0 I
−I 0

] [
e10
yrod

]
. (34)

Finally, considering the above interconnection relations, the
finite dimensional model of the overall system reads:[
ẋrod
ẋpzt

]
︸ ︷︷ ︸
ẋt

=

[
(Jd −Rd) Z

C (Jpzt −Rpzt)

]
︸ ︷︷ ︸

(Jt−Rt)

[
erod
epzt

]
︸ ︷︷ ︸
et

+ ginF(V )

(35)
where et = ∇Ht(xd, xpzt), Hamiltonian function

Ht =
1

2

[
Kse(v − v∗)2 + ρAq2 +Kbt(u− u∗)2

+ρIω2 +Kp2pzt +
1

M
m2
pzt

] (36)

and interconnection matrices:

Z =


g1 0
0 0
0 0
0 0

 ; C =
1

h

[
0 0 0 0
−gT1 0 0 0

]
.

The input vector is given by:

gin =
[
0 0 0 0 0 1

]T
.

As for the optical fiber, some physical parameters of the
actuator need to be identified. The mass of the piezo tube
plus optical fiber holder is approximately 1g. The parameters
to be identified are the stiffness K, the damping b and the
proportional gain linking the voltage to the force. In order to
identify these parameters, a step input of 200V is applied to
the actuator, and the parameters are identified using the Matlab

function lsqcurvefit. The best fitting parameters are given in
Table III.

TABLE III: Identified piezo tube’s parameters

Parameter Value Units
Stiffness (K) 27.5713 N/m
Damping (b) 0.2821 Ns/m
Force factor 0.7557 V/N

Figure 8 shows the performances of the identified model
with respect to the experimental measurement.

Fig. 8: Experimental measurements for piezo tube’s parameters
identification

It is well known that the piezo tube is subject to non-
linearities such as hysteresis and creep phenomena [34]. In
this work, the piezo tube actuator is approximated by a simple
mass spring damper system, and the hysteresis and creep phe-
nomena are not explicitly taken into account. Yet the hysteresis
is accounted for in an indirect way through the parameters
estimation of the Cosserat rod model. Indeed, the Cosserat rod
model also exhibits an hysteretic behavior when it is controlled
at one boundary of its spatial domain and the measurement
occurs at the other boundary. The overall hysteretic behavior
of the system is then considered during the identification
process. The experimental data corresponding to the open loop
response at different frequencies ({0.5, 1, 2, 5}Hz) is shown in
Fig. 9. These results show that the proposed interconnected
model allows to cope with the hysteretic behavior of the
system while using a simple dynamic model for the piezo
tube actuator at low frequency (< 1Hz). Thus, the proposed
model can be used for the optical fiber regulation problem
in a low frequency range. However, when a higher frequency
signal is applied to the system, the simple piezo tube actuator
model is not accurate enough to cope its hysteretic behavior.
In this respect, a more accurate nonlinear model for the piezo
tube actuator will be investigated in the future. Regarding
now the creep effect: in this work, we limit the working
conditions to small deformations in order to avoid this non
linear phenomenon. Some experimental results showing the
creep effect during small and large deformations is given in
Fig. 10. With the small deformation limitation (under 10µm),
we see that our model cope with the main dynamic behavior
of the system. Furthermore, for the scanning and imaging
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purposes, the system does not usually stay in the static position
for a long time such that the creep can be neglected. The creep
effects due to large deformations will also be investigated in
the future.

Fig. 9: Experimental and simulation comparison of the hys-
teresis phenomena

Fig. 10: Creep effect for the large displacement

IV. POSITION CONTROL VIA IDA-PBC METHOD

In this section we consider the control of the end position
of the optical fiber using the block diagram of Figure 11.

IDA-PBC
Piezo 

PHS

Rod 

PHS

Sensor

Sensor
Filtered 

Derivator

Fig. 11: Complete closed loop system block diagram

p∗ is the desired output position. The controller uses as
input the position and velocity of the piezo tube, pPZT and pPZT
respectively, and the end position of the optical fiber p. The
controller is first designed as a state feedback u(x) = β(x)
using the Interconnection and Damping Assignment-Passivity

Based Control (IDA-PBC) design method in order to map the
open loop system into the target system defined by

ẋ = (Jcl −Rcl)∇Hcl. (37)

in which Jcl = −JTcl and Rcl = RTcl ≥ 0 are the desired
interconnection and dissipation matrices. The closed loop
energy function Hcl is chosen such that

x∗ = arg minHcl(x
∗) (38)

where x∗ is the desired equilibrium. The interconnection and
dissipation matrices, and the energy of the closed loop system
are chosen such that the matching equation

g⊥
[
(Jcl −Rcl)

δHcl

δx
− (J −R)

δH

δx

]
= 0 (39)

is satisfied with g⊥ a full rank annihilator of g i.e., g⊥g = 0.
The resulting controller is then given by the relation:

β(x) = (gT g)−1gT
[
(Jcl −Rcl)

δHcl

δx
− (Jt −Rt)

δHt

δxt

]
.

(40)
In the present case we choose as annihilator:

g⊥ =


In 0 0 0 0 0
0 In 0 0 0 0
0 0 In 0 0 0
0 0 0 In 0 0
0 0 0 0 In 0

 (41)

and the closed loop interconnection matrix as Jcl = Jt. The
damping matrix is chosen to modify the damping of the piezo
tube i.e. Rcl = diag[0, Bse, 0, Bbt, 0, b̃]. Then we can choose
the desired closed loop Hamiltonian as follows

Hcl =
1

2

[
Kse(v − v∗)2 + ρAq2 +Kbt(u− u∗)2

+ρIω2 + K̃(p− p∗)2 +
1

M
m2
pzt

] (42)

in order to satisfy the matching equation (39) and to assign
the desired equilibrium position as Eq (38). In (42), p∗ and K̃
represent the desired position of the continuum robot and the
desired stiffness used for energy shaping respectively.

Substituting (42) in (40) leads to the final control law

β(x) = K̃(p∗ − p) +Kppzt + (b− b̃)qpzt. (43)

Remark 3. One can see in (43) that the controller uses the
velocity as input. This velocity is not measured and needs
to be reconstructed from the position. In a first instance a
numerical approximation of the derivation plus a low-pass
frequency filter is used. An alternative approach consists in
designing an observer to reconstruct the velocity.

A. Numerical Validation

The first simulation that is performed consists in the position
control in the 2-D x−y space. In this case, a desired position
of [x, y] = [10,−10]µm is chosen. In Figure 12, the upper
figures show both end-point trajectories (red lines) and desired
positions (blue lines) in x− (left figure) and y− (right figure)
axis. The bottom figure shows the error between the desired
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position and the current position of the system. One can see
the desired position can be reached in 1 second.

Fig. 12: 10µm and −10µm Desired position simulated re-
sponse

The second numerical validation consists in the regulation
of the successive desired positions which are composed of 100
points with a spiral form. The position of the points on the
trajectory are defined as

xs = rs cosφs; ys = rs sinφs (44)

where rs is the vector that contains radius elements linearly
distributed on [0, 5µm] and φs is the vector that contains
angular element linearly distributed on [0, 6π]. Figure 13
shows the 100 desired positions on the spiral form (blue cross)
and the controlled position (solid red line). One can see the
optic fiber tip can follow the desired in a satisfactory way. It
takes 45 seconds to move the tip position from the original
point [0, 0]µm to [0, 5]µm.

Fig. 13: Path following with a spiral

B. Experimental Validation

In this subsection we only consider the motion of the
optical fiber in one direction. First we apply the IDA-PBC
controller (43) with different values of the parameter K̃.
The step responses of the closed loop system with different
K̃ = 500, 1000, 2000, 5000 are shown in Fig. 14 with desired

position 5µm. One can see that the time response becomes
faster when K̃ is larger. When K̃ = 5000, the closed loop
response has an important overshoot. From the energy point
of view, this parameter corresponds to the rod stiffness of the
closed loop system. When the stiffness increases, the time
response decreased but the overshoot increases too. In the
considered example K̃ = 2000 is a good compromise, the
response is fast without overshot, hence, we will use this
parameter for the controller afterwards.

Fig. 14: Closed loop responses with different K̃

We compare the proposed IDA-PBC controller with a clas-
sic PD control with the same gain K̃ = 2000 and derivative
gain b̃ = 1. In Fig. 15, one can see that the closed loop
response for the PD controller (blue dotted line) is slower
than the one with IDA-PBC (red solid line).

Fig. 15: Comparison between IDA-PBC control and PD con-
trol

Figure 16 shows the response of the closed loop system to
6µm set point position. From t = 2s, the desired position is
defined at 5µm and the tip position reaches the desired posi-
tion in less than 1s. At t = 4s, the system is perturbed by an
external disturbance caused by the working table movement.
The tip position can still return to the desired position around
t = 6s.

The last experimental validation consists in ramp position
control. Figure 17 shows the desired position (blue dotted line
in the upper figure), end point position (red solid line in the
upper figure) and the error of tracking of the closed loop
system (lower figure). The error remains in between −0.5µm
and 0.5µm.
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Fig. 16: Experimental validation with a perturbation

Fig. 17: Experimental optical fiber tip tracking of a desired
reference and tracking error

V. CONCLUSION

This paper presents a port Hamiltonian approach for the
modeling and control of a piezo tube actuated flexible optical
fiber. The dynamics of the optical fiber is described by the
Cosserat rod model and the piezo tube as a simple mass spring
damper system in a first approximation. Taking the power
conservation and modular nature of the pH representation, the
overall model still keeps the pH structure which is useful for
the control design. Based on the proposed pH model, an IDA-
PBC method is developed to control the optical fiber’s free
end. Numerical simulations are done to validate both, the new
proposed model and the controller. The controller simulation
is performed in the 2D considering set point and trajectory
control. At last, an experimental validation is performed. For
that purpose, some key physical parameters are first identified.
The controller is then validated using set point and trajectory
control in the 1 direction. The experimental results show the
efficiency of the controller even in presence of perturbations.

In future works, experimental validation in both [x, y]
directions will be investigated. The nonlinear model model
of the piezo tube actuator such as irreversible pH model
[35] or Bouc-Wen model [36] will be considered in the
future investigation. Furthermore, the proposed system will be

integrated to bio-medical endoscopy application for scanning
and imaging purpose.
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