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In this paper, the propagation of evanescent Lamb waves in the one-dimensional viscoelastic
phononic metastrip is studied. The metastrips are fabricated by either steel or epoxy. For different
metastrips, complex band structures and transmission spectra of Lamb waves are calculated by the
finite element method. Furthermore, different slicing forms are also discussed. In this paper, the
numerical simulations including K-V model are consistent with the experimental results. We use the
exponential decay curve to quantitatively characterize the attenuation of the evanescent wave inside
the band gap, and we successfully used the complex band structure to predict the displacement
distribution curves in the simulation. The epoxy metastrip has smoother band-gap bounds and
transmission spectrum. The effect of different slicing forms leads to changes in the complex band
structure and the transmission dips occur. The present work lays the foundation for the study of
common viscoelastic materials in real life.

I. INTRODUCTION

Phononic crystals (PCs) are composed of materials
with different properties and arranged periodically in the
spatial space1. The most striking feature of PCs is the
band gap, inside which the wave propagation will be
prohibited2. This feature has led to a range of applica-
tions, such as acoustic insulation3, and filters4. Accord-
ing to the real band structure, bandgap appears when
there are no dispersion curves for a particular frequency
range. However, according to the energy conservation,
the wave cannot disappear inside a bandgap. Then, how
do waves exist? Actually, it is evanescent wave that exists
in the bandgap, which should be characterized by using
complex band structures5. The relationship between the
real part of the wave number and the frequency in the
complex band structure is the dispersion, and the rela-
tionship between the imaginary part and the frequency
characterizes the attenuation characteristics6.

In addition to evanescent bulk waves7–9, complex band
structures are also widely used for studying evanescent
Lamb waves. Some of the investigations are only focus-
ing on flexural waves. Han et al calculated complex band
structure of phononic Euler beam by modifying the trans-
fer matrix method10, where the state parameters in the
transfer matrix method is replaced by the initial parame-
ters. Liu and Hussein investigated the flexural wave prop-
agation in periodic Timoshenko beams11. Effects of the
various types and properties of periodicity on the com-
plex band structures are discussed. Airoldi and Ruzzene
designed a tunable one-dimensional metamaterial beam
using periodic shunted piezoelectric patches12. They
showed that a comprise in the resistance should be struck
between the bandwidth and attenuation, determined by
the minimum imaginary part of wave number. Mean-
while, there are also studies focusing on the full types
of Lamb waves. Oudich and Assouar calculated complex
band structures of two-dimensional phononic plate by us-
ing the extended plane wave expansion method13. Effects
of the plate thickness on the evanescent waves,including

their polarizations are discussed. Gao et al investigated
evanescent waves propagation in periodic nested acous-
tic black hole structure. Different attenuations of flexural
and longitudinal waves are characterized by the complex
band structures and verified experimentally14.

In practice, the solid components are not ideally elas-
tic. Viscosity might exist in some extent, especially for
polymers15. According to the viscoelastic model, the
existing studies can be classified into two types. The
first is the generalized Maxwell model. The general-
ized Maxwell model consists of several spring-dampers
in parallel to form and it takes into account the relax-
ation time of the viscoelastic materials. Li et al show
the complex viscoelastic properties of three-dimensional
metamaterials and the effect of thickness and shape of
the hole on the attenuation of Bloch waves is revealed.16.
Yi et al described the mechanical response of a viscoelas-
tic metamaterial composed of epoxy resin and rubber.
They found that by adjusting the mass of the two oscilla-
tors in the cell, a quasi-bandgap is created, which results
in a wider isolation bandwidth.17. Lewińska et al stud-
ied a locally resonant acoustic metamaterial consisting of
tungsten, epoxy and rubber and found that the viscoelas-
tic material affects both the band gap location and also
the attenuation of waves at frequencies around the band
gap18. Then we focus on the Kelvin-Voigt viscoelastic
models, where a frequency-dependent loss is equivalently
added to the imaginary part of the modulus. Collet et
al calculated a two-dimensional complex band structure
of a plate and used the minimum value of the ratio of
the imaginary part of the wave number to the amplitude
of the wave number at the same frequency to estimate
the attenuation of evanescent waves in the band gap19.
Krushynska et al used the K-V model and the general-
ized Maxwell model to calculate dissipative solid acous-
tic metamaterials consisting of rubber. By comparing
these two viscoelastic models it can be found that the
Kelvin-Voigt model provides reliable results at medium
to high frequencies20. Lou et al investigated the lon-
gitudinal wave propagation in the viscoelastic compos-
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ite rod. Coupling of viscosity of the host material and
the damping of the resonator are helpful to widen the
band gap and enhance wave attenuation21. Krushynska
et al compared elastic model, K-V model and generalized
Maxwell model to predict the experimentally measured
viscoelastic curves, this reveals the correlation between
the viscous effect of the plate and the transmission spec-
trum was measured experimentally22. The above work
has further investigated the application of viscoelastic
models to viscoelastic materials. However, these articles
rarely combine the complex band structure and trans-
mission spectrum of viscoelastic materials to analyze the
propagation of evanescent waves in the plate. And few
experiments were conducted.

In this paper, we focus on the propagation of evanes-
cent waves in the viscoelastic metastrips cut from an
epoxy slab perforated with periodic rectangular holes.
Complex band structures and transmission spectra of
the metastrips are calculated using the finite element
method. Viscoelasticity is introduced by considering
the Kelvin-Voigt model. Displacement distributions of
evanescent waves are imaged by using a vibrometer. A
theoretical model is developed that predicts accurately
the displacement distribution in the transmission modes.
Effects of the slicing forms on the complex band struc-
tures are discussed. For comparison, metastrips cut from
a lossless steel slab are also investigated. It is found that
the experimental transmission of the viscoelastic meta-
trip can be precisely evaluated when the K-V model is
involved in the simulation. The spatial attenuation of
evanescent waves can be characterized by the lowest two
orders of imaginary wave number. Different slicing forms
can result in the reconstruction of evanescent waves, lead-
ing to the appearance or close of Bragg gap or avoided-
crossings.

II. NUMERICAL AND EXPERIMENTAL
METHODS

For harmonic wave propagation in the elastic solid, the
dynamic equilibrium equation is:

ρω2u(r) +∇ ·C : ∇su(r) = 0, (1)

where ρ is the mass density, ω is the angular frequency,
C is the elastic Hook tensor. ∇su(r) = 1/2(∇u(r) +
(∇u(r))T ). According to Bloch theorem, the displace-
ment has the following form23:

u(r) = un(r,k)e−ikr, (2)

where r = (x, y, z) is the coordinate vector and k =
(kx, ky, kz) is the wave vector, un(r,k) is a periodic func-
tion of coordinate. For one-dimensional periodic struc-
tures, we have k = (kx, 0, 0). To get the complex band
structure, the wave number should be involved in the gov-
erning equation. This could be obtained by substituting

Figure 1: Structure of the unit cell and the metastrip.
(a) The unit cell. (b) The metastrip of epoxy.

Eq. (2) into Eq. (1), and we can obtain a generalized
eigenvalue equation:

ρω2un(r) +∇ ·C : ∇sun(r)− ıC : ∇sun(r) ·k

−ı∇ ·C :
1

2
[un(r)⊗ k + k⊗ un(r)]

+C :
1

2
[un(r)⊗ k + k⊗ un(r)] = 0, (3)

In this paper, we use the partial differential equation
(PDE) module of finite element software COMSOL to
calculate the complex band structure. First we focus on
the H-type metastrip shown in Fig. 1. The periodic-
ity is a=20 mm. Other geometric parameters of the unit
cell are b/a=0.5, c/a=0.1, d/a=0.1, and e/a=1. Periodic
boundary condition is applied on the surfaces perpendic-
ular to the x-axis direction, and the other surfaces are
set as free. The CBS can be obtained by choosing the
eigenvalue as Λ = −ık and sweeping the frequency of
interest.

Meanwhile, experimental measurements are carried
out to investigate the propagation of evanescent waves.
Asymmetric wave source is applied on the left of the
metastrip by attaching a piezoelectric patch on the strip
in Fig. 1(b). The responses are collected on the right
part of the metastrip by using the Polytec scanning vi-
brometer. Detailed experimental process can be refered
in Ref.24. For comparison, we also calculate the transmis-
sion spectrum of a three-dimensional finite metastrip by
applying an out-of-plane excitation. As a comparison, we
calculated the steel material for the same structure and
the results are shown in Appendix.

III. EVANESCENT WAVE IN THE EPOXY
METASTRIP

As a kind of polymer, the viscosity of epoxy is gen-
erally more pronounced compared to the common solid
(e.g. steel), making it more difficult to predict its wave
behaviors with an elastic model. Therefore, we introduce
the K-V model to characterize the viscoelastic behaviour
of epoxy. In general, the K-V model has the following
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Figure 2: Complex band structure (a) and transmission spectrum (b) of the epoxy metastrip. The left and right
panels in (a) show the variation of frequency with the real and imaginary wavenumbers respectively. The colorscale
indicates the polarization of waves from in-plane modes (blue) to out-of-plane mode (red). The black solid line is the

real band structure of the elastic model. The grey area represents the band gap. Regarding the transmission
spectrum, the red line represents the experimental result. The blue and yellow lines represent the numerical results

based on the K-V model and elastic model respectively.

form:

E = E
′
+ ıωη, (4)

where the Young’s modulus E consists of both real part
E and imaginary part. The imaginary paft of modulus is
frequency-dependent with η being the viscous coefficient.
The material parameters used for epoxy are E = 2.4 ×
1010 + ı6 × 103ω Pa, Possion’s ratio ν = 0.41 and mass
density ρ = 2037.67 kg/m3. The K-V model is reduced
to the elastic model when the viscosity is neglected.

A. Complex band structure and transmission
spectrum

Complex band structure and the transmission spec-
trum of the epoxy metastrip involving K-V model are
shown in Fig. 2. To distinguish different polarized
modes, we further calculate the polarization amount pw
of out-of-plane waves:

pw =

∫
s
|w|2dS∫

s
(|u|2 + |v|2 + |w|2)dS

, (5)

where (u, v, w) are the three components of displacement
vector (u). The elastic model is additionally calculated
for comparison. As shown in Fig. 2(a), the results of the

complex band structure calculated by K-V model change
significantly compare to the elastic model, and in the
real part of the complex band structure, a smooth band
structure appears at frequencies near the high symme-
try point. As the frequency increases, the effect becomes
more obvious. Comparing the transmission spectrum, a
clear attenuation phenomenon can be observed within
the band gap of the shaded region as shown in Fig. 2(b).
The steel results are shown in Fig. 8 in the Appendix.
The red line represents the experimental result, the blue
line and yellow line represent the result of the K-V model
and elastic model of FEM respectively. Both the K-V
model and the elastic model are consistent with the ex-
perimental transmission spectrum well at low frequencies
14.3-16 kHz and 18.6-30.1 kHz, but only the K-V model
consistent with the transmission spectrum better in the
high frequency range 35.5-43.2 kHz. It can be found that
the transmission curves are smoother with the addition
of the viscosity term, and it can be clearly observed that
the results obtained from the K-V model are more con-
sistent with the experimental curves. Compared to the
curves in Fig. 2 and Fig. 8 it can be seen that there
are similarities and differences in the overall trend. The
epoxy metastrip include smoother band gap boundaries
and less wavy curves. Since the structure of the metas-
trip is the same, these differences can only be attributed
to the viscoelastic nature of the epoxy.
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Figure 3: Attenuation of evanescent waves in epoxy metastrip. Panels (a) and (b) show the displacement
distribution of the metastrip at 24 kHz obtained from simulations and experiment, respectively. The colorscale

represents the amplitude of normalized displacement. Numerical displacement distribution along the central line of
the top surface is shown in solid line in the bottom part of panel (a). Measured displacement distribution along the
central line of the top surface is shown in solid line in the bottom part of panel (b). The predicted results are shown

by green dashed lines where α = 0.66, k1 = −2.03 + 3.11i, β = 0.33, k2 = −2.06− 9.46i. The bule dashed line
represents the exponential-like decay of the measured displacement fitted by the minimu imaginary part of the wave
number in the complex band structure. Panels (c) and (d) show the similar results at 40 kHz. Where the coefficients

in the prediction curve α = 0.5, k1 = −0.55− 0.07i, β = 0.5, k2 = −0.56− 6.35i.

B. Attenuation of evanescent wave

The fields of the epoxy metastrip at 24 kHz and 40
kHz were obtained experimentally, as shown in Fig. 3
(The steel results are shown in Fig. 9 in the Appendix).
Similarly, it can be learned that the attenuation is smaller
at 40 kHz and larger at 24 kHz, which can be clearly
shown in the fields.

To quantitatively characterize the attenuation of the
evanescent wave inside the band gap, the images of the
displacement according to the change of coordinates are
given. The imaginary part has a parabolic variation and
has a maximum at the central frequency as shown in Fig.
2(a). According to Bloch’s theorem, there is an exponen-
tial decay along the wave propagation direction inside the
structure25–27. To demonstrate this phenomenon, we se-
lect two frequency points (24kHz and 40kHz) and plot
the displacement distribution curves at the top surface
of the structure25, as shown in Fig. 3. We measured the
displacement at the centerline of the metastrip by simu-
lation and experiment, and we use the modes of the com-
plex band structure to predict the curves obtained from
the simulation. At the same frequency of the complex

band structure, there exist many modes. The prediction
curve has the following form:28

w(x, y) =

m∑
n=1

αnwn(x, y)eiknx, (6)

where wn represent the displacement fields extracted
from the modes, respectively. kn represent the complex
wave vectors corresponding to the modes. αn are the
coefficients. Here, we perform the calculation of the pre-
diction curve using the two lowest modes. The expression
has the following form:

w(x, y) = αw1(x, y)eik1x + βw2(x, y)eik2x. (7)

The red lines in Figs. 3. (a) and (b) represent the dis-
placement distribution curve obtained from simulation
and experiment at 24 kHz. The green dashed line repre-
sent the predicted curve by using complex structure.The
modes of the complex band structure are found at the
corresponding frequencies and their displacement fields
are extracted and multiplied by the coefficients of decay,
and finally their prediction curves are obtained. The blue
dashed line indicates the displacement distribution curve,
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where a is the values obtained by fitting the curve. Sim-
ilarly, Fig. 3(c) and (d) represent the displacement dis-
tribution curve for simulation and experiment at 40 kHz,
respectively. Both of simulation and experimental results
are within the error tolerance. By comparing the graphs
in Fig. 3 horizontally and vertically, the results of the ex-
ponential values of the decay curves obtained from sim-
ulation and experiment are similar with the same decay
trend at the same frequency. The simulated numerical
curves largely coincide with the predicted curves and the
feasibility of fitting the numerical curve using the modes
of the complex band structure is demonstrated. For the
attenuation curves at different frequencies, the attenua-
tion trends are different. This is related to the degree of
attenuation of the evanescent wave, the minimum imagi-
nary value of the complex band structure. It can be found
that with the increase of the minimum imaginary part,
the decay effect of the curve is different. Based on the
viscoelasticity of epoxy metastrip and the K-V model, a
closer fitted curve can be obtained, indicating that the
K-V model can predict the viscoelastic behavior of epoxy
metastrip.

By comparison, it is found that due to the viscoelastic-
ity of the epoxy metastrip and the elastic of the steel(The
results for steel are shown in the appendix), the coupling
between the propagation and evanescent modes caused
by the loss can be clearly found in the complex band
structure due to the more involute tendency of the solid
part of the epoxy resin metastrip near the high symme-
try point compared to the elastic case, which leads to a
more circular band gap boundary.

IV. I-TYPE OF THE METASTRIP

Next, we study the effects of different cutting meth-
ods and structures on the wave characteristic. In this
work, we consider two cutting methods, as shown in Fig.
4. The models for Fig. 4(a) yellow and blue shaded ar-
eas called H-type (as discussed in section III) and I-type,
respectively. The different cutting methods lead to a dif-
ferent structure of the individual cell connections, which
has an impact on the band structure and transmission
spectrum29. Therefore, we now further calculated the
complex band structure and transmission spectrum of
the I-type metastrip. The metastrips used in the experi-
ment are shown in Fig. 4(b).

The complex band structure of the I-type epoxy metas-
trip is shown in Fig. 5(The steel results are shown in
Figure 10 in the Appendix). The shaded areas are the
band gap. It is obvious that the I-type leads to the ap-
pearance of more wave modes. As shown in Fig. 5(a)
point A, a mode in the torsional direction can be clearly
observed. Since the direction of the periodic boundary
is the same as that of wave propagation, and the ap-
pearance of the model shown in the figure indicates that
it is a non-excitable mode. It is called the deaf band27

which cannot be excited. This is related to the sym-

Figure 4: Schematic diagram of H-type and I-type and
the metastrip in the experiment. (a) The yellow and

blue cut areas indicate the H-type and I-type,
respectively. The coordinate system is established in

the position shown in the figure, at this time y = 0. (b)
The metastrip of epoxy.

metric form of the mode corresponding to the excited
state of the source, and therefore they cannot transmit
acoustic energy in the PCs. In the deaf band range, even
with out-of-plane wave propagation, a directional band
gap can still be generated. The mode at point B is an
in-plane mode, rotating at a central point. Though its
band runs through the entire frequency range, it does
not affect band gap. However, as can be seen in Fig.
5(b), there are many sharp vibrations in the transmis-
sion spectrum compared to the H-type. This is due to
the cutting method which leads to a narrow width of the
beam structure on both sides and the force of the beam.
The transmission spectrum obtained by the K-V model
is closer to the experimental result compared to the elas-
tic model. Especially in the high frequency region, the
amplitude of the K-V model is closer to the experimental
value. This indicates that the K-V model can better pre-
dict the transmission spectrum of the viscoelastic model.

V. THE EFFECT OF DIFFERENT SLICE
POSITIONS ON THE COMPLEX BAND

STRUCTURE

We explore the complex band structure and transmis-
sion spectrum of the I-type metastrip in IV, and here we
further investigate the effect of different slicing distances
on the complex band structure. In this section we use the
elasticity model of the epoxy to do the simulation work
to calculate the complex band structure and to investi-
gate the effect of different slice distances on the complex
band structure.

As shown in Fig. 4(b), the yellow shaded region of
the I-type structure is cut by translating it along the y-
axis direction. Define the initial displacement of I-type as
y=0. We calculated the complex band structure at differ-
ent positions and the results are shown in Fig. 9. When
y=10 mm, which is what we previously described as the



6

Figure 5: The complex band structure and transmission
spectrum for the epoxy metastrip. (a) The complex

band structure for the I-type epoxy metastrip and the
modal distruibutions at marked points A and B. The
left and right plots show the frequency variation with

the real and imaginary wave number, respectively. The
grey regions represent the band gaps. Panel (b) shows
the transmission spectrum. The red line represents the
experimental result, the blue and yellow lines represent

the K-V model and elastic model of FEM.

H-shaped structure as a comparison. It can be observed
that the three band gaps in frequency range 14.3-16 kHz,
18.6-30.1 kHz, 35.5-43.2 kHz gradually appear with the
increase of slicing distance. The deaf band disappears as
in Fig. 4(a). For the band of the in-plane mode C in Figs.
7(a)-(e), the complex band structure coincides with the
band structure, which indicates the traveling wave. For
point D in Fig. 7 (c)-(f), this band represents an evanes-
cent wave. The initial frequency increases gradually and
the frequency range increases as y increases. Viewing the
bands corresponding to the avoid crossing of point E in
Fig. 7(f). The avoid crossing appear in Fig. 7(a)-(e),
which is a phenomenon of non-crossing of bands due to
the mutual coupling between different modes. The two
modes are interchanged around the intersection and this
coupling appears weaker as the slice distance increases30.
By observing Fig. 7(a)-(e), it can be found that the band
gaps located at 14.3-16 kHz and 35.5-43.2 kHz gradually
appear. For the band at point F in Fig. 9, it can be ob-
served that as y increases, the slope of its tangent line in-
creases and then decreases and finally becomes negative.
This change is easier for the generation of low frequency
band gap and the band gap of the lowest level bending
wave becomes narrower and then wider. As the slicing
distance increases, it is found that the value of minimum
imaginary part gradually becomes smaller. On the con-
trary at 18.6-30.1 kHz, the value of minimum imaginary
part first decreases and then increases, reaching a max-
imum when y=10 mm. In summary, the slicing method
has less effect on the out-of-plane mode and more on the
in-plane mode.

Figure 6: Complex band structure and band structure
(black line) at different slice positions. (a) y=1 mm, (b)
y=3 mm, (c) y=5 mm, (d) y=7 mm, (e) y=9 mm, (f)

y=10 mm.

VI. CONCLUSION

We studied the propagation of Lamb waves under the
condition of one-dimensional periodicity of the metastrip
and the viscoelastic behavior is studied by comparing two
materials: steel and epoxy. Based on the finite element
method, we calculate the complex band structure and
transmission spectrum of the two-dimensional metastrip,
and its transmission spectrum was measured experimen-
tally. The K-V model is added to the calculation of the
complex band structure and transmission spectrum to
make the numerical results more accurate. The expo-
nential decay curve obtained from the numerical results
coincides with the experimental results, which character-
izes the decay of the evanescent wave numerically and
experimentally by using the complex band structure and
we successfully used complex band structure to predict
simulation displacement distribution curve. Finally, we
investigated the effects of different slicing forms on the
complex band structure and transmission spectrum, and
showed that different slicing forms can change the com-
plex band structure. I-type slicing form leads to the ap-
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pearance of deaf bands, which in turn do not get excited.
Different slice forms affect the complex band structure.
It causes the frequency to change between the different
modes and opens the band gap and a rejection band ap-
pears.
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Appendix A: Evanescent wave propagation in
metastrip made of steel

The selection of material parameters in simulation is
based on experiment. In this work, the material parame-
ters of the steel are Young’s modulus E = 210 Gpa, Pois-
son’s ratio ν = 0.3 and mass density ρ = 7850 kg/m3.
The complex band structure of the H-type unit cell of
steel and the transmission of the metastrip is calculated,
as shown in Fig. 7.

It is obviously found that there are three band gaps in
the range of 20.2-23.4 kHz, 27.6-46.5 kHz and 53.8-64.5
kHz, and they are shaded in the Fig. 8(a). In Fig. 8(b),
the blue line is the result of the experiment and the red
line represents result of the simulation. We use the trans-
mission spectrum to verify the complex band structure.
Compared with the results between the experiment and
the simulation, the experimental curve is consistent with
the simulation curve. In the band gap, the reduction of
the transmission can be clearly observed.

In order to further study the wave attenuation charac-
teristics, we select the frequency at 35 kHz and 60 kHz
from the real part of Fig. 8(a) in the band gap, and
the results are shown in Fig. 9. It can be observed that
the plate wave has an attenuation effect inside the band
gap. At 35 kHz, the waves are separated through about
one unit cells, while at 60 kHz the waves are separated
through about three unit cells. The experiment can get
similar results to the simulation. According to the imag-
inary part of the complex band structure it can be ob-
served that at the frequency of 60 kHz, the minimum
imaginary part is small compared to that of 35 kHz, so
the decay of the evanescent wave is slower and there-
fore the evanescent wave can pass through more unit cell
structures, while at 35 kHz it can only pass through the
first cells.

The images of the displacement according to the

change of coordinates are given. The imaginary part has
a parabolic variation and has a maximum at the cen-
tral frequency as shown in Fig. 8(a). We select two
frequency points (35kHz and 60kHz) and plot the dis-

Figure 7: The metastrip of steel. The top metastrip is
H-type and the bottom metastrip is I-type.

placement distribution curves at the top surface of the
structure, as shown in Fig. 9. Same as epoxy, we use
the modes of the complex band structure to predict the
curves obtained from the simulation. The red lines in
Figs. 9. (a) and (b) represent the displacement distribu-
tion curve obtained from simulation and experiment at
35 kHz. The green dashed line represent the predicted
curve by using complex structure.The modes of the com-
plex band structure are found at the corresponding fre-
quencies and their displacement fields are extracted and
multiplied by the coefficients of decay, and finally their
prediction curves are obtained. The blue dashed line in-
dicates the displacement distribution curve. Similarly,
Fig. 9(c) and (d) represent the displacement distribution
curve for simulation and experiment at 60 kHz, respec-
tively. The simulated numerical curves largely coincide
with the predicted curves and the feasibility of fitting the
numerical curve using the modes of the complex band
structure is demonstrated. For the attenuation curves at
different frequencies, the attenuation trends are different.
This is related to the degree of attenuation of the evanes-
cent wave, the minimum imaginary value of the complex
band structure.

Similarly, we calculated the complex band structure
as well as the transmission spectrum for the I-type steel
metastrip, and the results are shown in Fig. 10. The
complex band structure of the steel material is similar to
that of the epoxy material. The deaf band can be ob-
served at point A and the in-plane mode at point B and
the same oscillation phenomenon appears in the trans-
mission spectrum. Here, we can still use the elastic model
to get a better transmission spectrum.
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Figure 8: Complex band structure (a) and transmission spectrum (b) of the steel metastrip. The left and right
panels in (a) show the variation of frequency with the real and imaginary wave numbers respectively. The colorscale
indicates the polarization of waves from in-plane modes (blue) to out-of-plane mode (red). The grey area represents

the band gap. Regarding the transmission spectrum, the red line represents the numerical result. The blue lines
represent the experimental result.
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Figure 9: Attenuation of evanescent waves in metastrip. Panels (a) and (b) show the displacement distribution of
the metastrip at 35 kHz obtained from simulations and experiment, respectively. The colorscale represents the

amplitude of normalized displacement. Numerical displacement distribution along the central line of the top surface
is shown in solid line in the bottom part of panel (a). Measured displacement distribution along the central line of

the top surface is shown in solid line in the bottom part of panel (b). The predicted results are shown by green
dashed lines where α = 0.5, k1 = −3.02 + 9.42i, β = 0.5, k2 = −3.01 + 3.14i. The bule dashed line represents the

exponential-like decay of the measured displacement fitted by the minimu imaginary part of the wave number in the
complex band structure. Panels (c) and (d) show the similar results at 60 kHz. Where the coefficients in the

prediction curve α = 0.5, k1 = −0.66, β = 0.5, k2 = −0.66 + 6.28i.
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Figure 10: The complex band structure and
transmission spectrum for the steel metastrip. (a) The
complex band structure for the I-type steel metastrip

and the modal distributions at marked points A and B.
The left and right plots show the frequency variation

with the real and imaginary wave number, respectively.
The grey regions represent the band gaps. Panel (b)
shows the transmission spectrum. The blue and red

lines represent the experimental and simulated results,
respectively.


