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Abstract

Proton exchange membrane fuel cell (PEMFC), as an attractive alter-
native power source, has seen its increasing deployment in both automo-
tive and small stationary applications. To improve the durability of the
PEMFC system, which is one of the primary challenges standing in the way
of its successful market introduction, recent research has engaged in devel-
oping prognostics and health management methods. Although the prog-
nostics methods have been extensively studied to improve the prediction
accuracy, some critical issues have not been fully addressed. For example,
few studies have looked into the prognostics methods by different criteria
and under dynamic operation conditions, and none of them have investi-
gated the data availability and quality for PEMFC prognostics. Due to
the lack of more comprehensive and general prognostics methods as well
as the limitations in data, studies in the post-prognostics decision-making
phase have hardly ever been initiated. This paper tends to provide a full
review of the existing prognostics research by analysing the prognostics
scales, horizon, threshold, and the use of methods. The data used in the
previous studies has also been investigated. Moreover, four principal direc-
tions of post-prognostics decision-making have been proposed and discussed.
This paper reviews the prognostics methods by analysing the prognostics
scales, horizon, threshold and the use of methods for different operating
conditions and reports the available experimental datasets used for PHM
studies and their limitations. Then, we point out that the current research
is devoted to investigating the fuel cell prognostics, but the post-prognostics
decision-making phase has not been sufficiently studied due to the lack of
datasets, inconclusive problematics and incomplete methodology. In this
paper, four post-prognostics subjects are analysed and discussed, including
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degradation tolerant control, multi-stack control, energy management, and
maintenance scheduling. According to the findings, research challenges and
development perspectives in the aspects of data, prognostics and decision-
making are proposed.
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Nomenclature

Abbreviations

ANFIS adaptive neuro fuzzy inference system

DBN − ELM deep belief network extreme learning machine

DOE Department of Energy

ECSA electrochemical surface area

EIS electrochemical impedance spectroscopy

EKF extended Kalman filter

EMS energy management strategy

EOL end of life

ESN echo state network

GMDH group method of data handling

GRU gated recurrent unit

H2 hydrogen

HITP hardware-in-the-loop

IoT internet of things
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LPV linear parameter varying

LSTM long short term memory

LWPR locally weighted projection regression

MAPE mean absolute percentage error

MEA membrane-electrode assembly

MPC model predictive control

PEMFC proton exchange membrane fuel cell

PF particle filter

PHM prognostics and health management

R2 R squared error

RMSE root mean square error

RUL remaining useful life

SOH state of health

SW − ELM summation wavelet extreme learning machine

UKF unscented Kalman filter

Physics symbols

Dfc fuel cell degradation

Pactual actual power

Prated rated power

Prequired required power

tλ time to start prognostics

tf time of EOL
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1. Introduction1

Proton exchange membrane fuel cell (PEMFC) has seen its increasing2

deployment in both on-board and stationary applications, which is an at-3

tractive alternative to fossil fuel devices with high energy output and no4

pollutants. In today’s fast energy transition period, minimizing fuel cell sys-5

tem costs is an important task for its successful market introduction. The6

approach towards this goal is threefold - components design, production,7

and operations, as shown in Figure 1. In addition to the efforts made in the8

design and assembly process, enhanced efficiency and durability can be ex-9

pected through appropriate stack operation. The Department of Energy10

(DOE)’s Fuel Cell Technologies Office has set the 2020 target of 5,00011

hours’ durability for on-road fuel cell electric vehicles, which corresponds12

to an expected driving distance of 150,000 miles within a particular range13

of speeds, while the ultimate goal is 8000 hours [1]. According to an evalu-14

ation project launched by the National Renewable Energy Laboratory, the15

durability of on-board fuel cells has increased 1.5 times since 2006 and the16

maximum operation time has reached 5,605 hours, however, only 22% of the17

tested fuel cell stacks have passed 2,000 hours of operation [1]. The Fuel18

Cells and Hydrogen 2 Joint Undertaking has set the durability targets for19

the light duty fuel cell vehicles in its Multi-Annual Work Plan 2014-202020

(MAWP 2020) that the lifetime of the fuel cell system should be further21

improved to reach 6000 hours before 2024 and 7000 hours before 2030 [2].22

Figure 1: Techno-economic challenges of PEMFC commercialization

The durability issue of PEMFC systems has attracted increasing atten-23

tion in recent years. Concerning the hydrogen-fuelled PEMFC itself, by24
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its very nature, is prone to irreversible degradation phenomena during its 1

storage and operation mode, leading to accelerated performance loss and 2

shortened lifetime [3]. Neglecting the degradation could result in the misun- 3

derstanding of the components’ available lifetime and the overconfidence of 4

the system’s health condition, which will cause serious consequences. The 5

degradation modes and experimental techniques dedicated to studying the 6

PEMFC stack durability in vehicular applications are reviewed in [4], which 7

helps to understand the root causes of the fuel cell and conduct degradation 8

mitigation control. Degradation-related parameters have been investigated 9

in [5] on various fuel cell components and the reactant starvation, known 10

as an important source of the stack degradation, has been analysed in [6] 11

including its causes, consequences and mitigation measures. As the degra- 12

dation remains as one of the weak points of PEMFC technology, efforts 13

have been made to provide guidance to optimize the system control and 14

management strategy and to prolong the stack lifetime. To meet this goal, 15

monitoring the online health state for the fuel cell itself is of significant im- 16

portance in assessing its health state and provide useful information. The 17

necessity of developing internal state observers for fuel cell state estimation 18

has been revealed in [7], in which the authors have argued that the ob- 19

servation of the internal state is important to the management of the gas, 20

water and heat systems in fuel cell applications. Recently, prognostics and 21

health management (PHM) exists and positions itself as an innovative dis- 22

cipline allowing to protect the integrity of the system, predict the downtime 23

and avoid unanticipated operational failure. Jouin et al. [8] have reviewed 24

the PHM activities in PEMFC applications. The PHM procedure contains 25

a set of activities: data acquisition and processing, condition assessment, 26

diagnostic, prognostics, decision support and human-machine interface. It 27

allows us to evaluate the system’s reliability in real operating conditions and 28

improve the system’s durability by predicting its approaching failures and 29

making corresponding operations. They have also pointed out that prog- 30

nostics, as an important process in PHM, has been actively investigated for 31

PEMFC applications, while post-prognostics phases, i.e. decision-making, 32

need more investigation efforts. Moreover, Lin et al. [9] have reviewed fuel 33

cell prognostics methods from different scenarios such as health monitoring, 34

fault diagnosis, prolonging life span, etc. and separates the applied methods 35

into data-driven, model-based and filter-based methods. In order to select 36

different prognostics methods, Sutharssan et al. [10] have reviewed different 37

applications in fuel cell prognostics, e.g. degradation mechanisms, failure 38

models, accelerated tests, etc. Moreover, Liu et al. [11] have reviewed the 39

degradation indexes for PEMFCs that have been applied in different prog- 40
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nostics methods, in which the authors have pointed out that for the PEM-1

FCs operating under dynamic conditions, traditional indexes can hardly be2

applied to predict degradation performance.3

However, the existing review papers focus majorly on prognostics meth-4

ods, which are investigated based on finished experimental degradation data,5

i.e. they use the historical data from the system to perform prognostics and6

validate the performance with these offline data. Although these methods7

contribute to predicting the remaining useful life (RUL), post-prognostics8

decisions are lacking. Developing an integrated PHM cycle to benefit not9

only from the results of the prognostics but also health management path-10

ways is demanding [12]. A general framework of PHM has been proposed in11

[13], in which the health state of the stack corresponds to the modifications12

of the stack quality, maintenance schedules, operating conditions, as well as13

the monitoring phase. In this paper, both prognostics and decision-making14

phases are reviewed and analysed. The question on how to make use of the15

RUL information to prolong the fuel cell lifetime has been proposed towards16

the real objective of PHM. This paper reviews the existing fuel cell prog-17

nostics methods from the perspective of PHM by analysing the prognostics18

scales, horizon, threshold and the use of methods and their performance.19

It also reports the available PEMFC experimental datasets used for prog-20

nostics studies and their limitations, which are never been investigated in21

other relevant papers. We also point out that the post-prognostics decision-22

making phase has not been sufficiently studied due to the lack of datasets,23

inconclusive problematics and incomplete methodology. To this regard, four24

post-prognostics subjects have been analysed and discussed in this paper,25

including degradation tolerant control, multi-stack control, energy manage-26

ment and maintenance scheduling. Prognostics-enabled decision-making27

methodologies of these matters are described. According to the findings,28

remaining challenges and perspectives regarding data, prognostics methods29

and prospective post-prognostics decision-making actuations are proposed.30

The paper is organized as follows: Section 2 introduces the problematics31

of prognostics, in which a rich study on prognostics scales, horizon, threshold32

and methods are reviewed, and the effects of datasets are analysed. Section33

3 outlines the potential study areas of post-prognostics decision-making.34

Finally, Section 4 summarizes the challenges and perspectives before con-35

cluding.36
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Figure 2: Prognostics in a closed loop

2. Problematics of PEMFC prognostics 1

The prognostics process can be summarized as a process of estimat- 2

ing a system’s RUL and its uncertainties. The definition of RUL refers to 3

the period between the current instant tc and the instant where the failure 4

threshold at tf - end of life (EOL) is reached. The international organization 5

for standardization (ISO) committee has defined prognostics as [14]: 6

7

Standard ISO 13381 (2004). The aim of prognostics is the ”estimation
of time to failure and risk for one or more existing and future failure
modes”.

8

9

Prognostics appears to be a key process which makes the current in- 10

dustries think more about ”predict to prevent” rather than ”fail to fix”. 11

The principle of implementing prognostics is shown in Figure 3. The first 12

part of prognostics process is to learn from the operating system and to 13

extract the degradation feature from the available measurements. When 14

the measurement is no longer available, the second part is to forecast the 15

future information without available measurements. The prediction is made 16

based on the training process and the expected result is the RUL and its 17

uncertainty based on the definition of the EOL threshold. 18

This section reviews the existing PEMFC prognostics studies from dif- 19

ferent aspects: prognostics scales, prognostics horizon, design of the EOL 20

threshold and prognostics methods. Moreover, the current situation and 21

quality of the available datasets used for fuel cell prognostics purpose are 22

analysed. 23
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Figure 3: General principle of prognostics

2.1. Prognostics scales1

2.1.1. Component level2

A PEMFC stack is an assembly of several cells in series, while a single cell3

is composed of several components: electrodes, membrane, bipolar plates,4

gas diffusion layers and sealing gaskets, as shown in Figure 4. The perfor-5

mance degradation of the stack is due to the different level of degradation6

on these components [13]. Jahnke et al. [15] have reviewed the performance7

and degradation models on the component scale, while only the ones applied8

to prognostics studies are considered in this paper.9

According to Jouin et al. [13], electrodes and membrane are identified10

as the most significant degrading components in the cell. The electrodes11

consist of the catalyst and the carbon supports, while the catalyst usually12

suffers from Pt dissolution, coarsening and coalescence process. Efforts have13

been conducted to model the internal degradation mechanisms regarding the14

electrodes. For example, Zhang et al. [16] have proposed an ageing mod-15

elling method for fuel cell catalyst, which is used for the health monitoring16

and prognostics of PEMFCs. In this work, the degradation rate of the elec-17

trochemical surface area (ECSA) has been estimated based on the operating18

conditions. Similarly, a mathematical model has been proposed in [17] to19

represent the ECSA reduction rate as well as the stack voltage decay, which20

allows proper estimation of RUL under different operating conditions. Other21

works have proposed to identify the evolution of the PEMFC degradation22

by monitoring the membrane thickness [18, 19]. A fused model has been23
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Figure 4: Structure of a single cell in a PEMFC stack

proposed in [20] to predict the degradation of the electrode and membrane 1

based on a series of degradation indexes, i.e. the average radius of Pt par- 2

ticles, ECSA and membrane thickness. 3

The hydrophobicity loss of the gas diffusion layer has also been iden- 4

tified as a degradation index of the PEMFC in [21] through hydrophilic 5

pore network modelling. However, it was based on rough approximations 6

and the method has not been verified. Besides, the degradation of bipolar 7

plates and sealing gaskets mainly leads to the increase of the contact resis- 8

tance. Although one can estimate the change of the impedance of a PEMFC 9

using electrochemical impedance spectroscopy (EIS), it is difficult to sepa- 10

rate the contributors: the change of the impedance could result from inter- 11

facial charge-transfer resistance, membrane resistance, contact resistance, 12

mass transport resistant, double-layer capacitance, and Faradaic pseudo- 13

capacitance, etc. Therefore, few studies have used the performance loss of 14

them individually as degradation indexes due to the difficulties in capturing 15

their changes [13]. 16

Nevertheless, the current prognostics works on the component level con- 17

sider the ageing mechanisms of the PEMFC in a separated way, in which the 18

coupled phenomena is not taken into account. Moreover, Jahnke et al. [15] 19

have pointed out that the use of Butler-Volmer theory cannot be justified 20

to describe the electron transfer reactions in nanomaterials with an evolving 21

structure. Robin et al. have presented an indirect coupling approach in 22

[22], in which the degradation rate is given by a look-up table. It helps to 23

determine the degrading state of the fuel cell, however, when it comes to 24
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prognostics, predictions are hard to be made.1

2.1.2. Stack level2

Most prognostics works nowadays are conducted on the stack level [23].3

This is due to the fact that no matter what is the cause of the fuel cell4

performance loss, it can be observed from its stack voltage decay, however,5

the voltage decay of each cell might not be the same, e.g., the edge cells6

degrade faster. Besides, as the purpose of prognostics is to predict the7

RUL, analysing the stack voltage degradation is sufficient to do so unless8

the specific measurement is required.9

To date, most prognostics works on the stack level are developed for the10

PEMFCs operating under constant load. For example, Jouin et al. [24]11

have proposed a prognostics method by adapting the particle filtering pro-12

cess and the algorithm is validated by a long-term experimental dataset with13

constant load. A considerable number of works have been conducted using14

this dataset by developing different prognostics strategies [25, 26, 27]. Be-15

sides, Morando et al. have used a recurrent neural network to estimate the16

RULs by separating the voltage degradation signal into the approximation17

part and the detail part. The tested PEMFC stack is operated under a con-18

stant current profile of 0.6 A/cm2 [28]. The development of the prognostics19

strategies applied to constant loads have enriched the choices of fuel cell20

prognostics methods, however, most of them are not applicable to the fuel21

cells operated dynamically, especially for those in automotive applications.22

Prognostics strategies for the PEMFCs operating under dynamic loads23

have not been fully developed. This is due to the difficulties in catching24

the varying parameters in dynamic operating conditions and also due to25

the scarcity of the open-source datasets [29]. Under dynamic loads, the26

stack voltage is varying according to the load changing so that the challenge27

should be extracting its degradation trend. Li et al. [30] have developed28

a prognostics strategy for an ageing PEMFC stack operating in a hybrid29

system, in which a linear parameter varying model is deployed to reformu-30

late the fuel cell voltage degradation. Using the same dataset, Yue et al.31

[31] have proposed to decompose the voltage signal through multiplicative32

decomposition. However, it requires the fuel cell to operate under a cyclic33

load profile. It is hard to apply these methods for on-board vehicle appli-34

cations if the driving conditions remain unpredictable. Zhang et al. have35

proposed an empirical PEMFC life prediction model in [32] based on driving36

conditions. Zuo et al. [33] have proposed to predict the dynamic voltage by37

defining certain current levels, i.e. extract the voltage values under the same38

current and then perform prognostics. Moreover, Bressel et al. [34] have39
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introduced a degradation coefficient to the state estimation model. This 1

method supposes that the degradation can be tracked through a single lin- 2

ear state variable. The prognostics strategy is applied to a PEMFC system 3

operated under a µ-CHP profile. 4

The current prognostics methods on the PEMFC stack level mostly eval- 5

uate the overall performance loss, while lacking the insights of the intrinsic 6

degradation analysis. As the time-varying online operating conditions can 7

deviate the fuel cell degradation phenomena, developing degradation identi- 8

fication and prognostics strategies that can be adapted to random external 9

conditions is required. 10

2.2. Prognostics horizon 11

The prognostics horizon is used to evaluate whether a prognostics algo- 12

rithm is good to leave enough duration for the future corresponding opera- 13

tion based on the prognostics results. As shown in Figure 5, the prognostics 14

performed at time instant tλ is said to well represent the current health state 15

only if the RUL estimation is in the acceptable error zone. As the shortening 16

of the prognostics horizon, the acceptable error zone is shrinking and the 17

acceptable error margin differs according to applications. Moreover, it has 18

been defined as 16% of the original value for early prediction and 8% for 19

late prediction for a horizon of 300 hours [35]. It is important to ensure the 20

accuracy of the RUL prediction in the case of a greater prognostics horizon 21

in order to schedule the maintenance and the corrective actions to an earlier 22

extend and to achieve more effective cost minimization and risk mitigation. 23

Figure 5: Demonstration of prognostics horizon

Zhou et al. [36] have proposed an improved grey prediction model by 24

adding a Fourier function to the error correction term of the grey model to 25
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consider the varying prognostics horizon, therefore, to improve the predic-1

tion accuracy even if only limited measurements are available. Xie et al. [37]2

have found that recurrent neural networks are efficient tools when conduct-3

ing short-term fuel cell degradation prediction and have used a fused method4

to improve the short-term prediction accuracy. Long short-term memory5

framework can benefit from the short memory of the prediction steps to6

update the network so that to make reliable long-term predictions. Several7

PEMFC prognostics works are conducted based on this method [38, 39, 40].8

In the framework of PHM, making decisions and performing maintenance9

activities strongly depends on the prognostics horizon because different ac-10

tions regarding control and management should be deployed for the system11

failing in different time horizons [41]. Few studies have investigated the12

relationship between the fuel cell prognostics performance and the prognos-13

tics horizon, which have put backwards the development of decision-making14

methods in PEMFC systems.15

2.3. EOL threshold16

One of the metrics to quantify the prognostics results is the RUL, while17

the RUL is calculated according to the definition of EOL threshold [35]. The18

EOL threshold is usually set as a certain percentage of the original value19

from the fuel cell’s health state. The commonly used EOL threshold of20

the PEMFC system is defined by the United States Department of Energy,21

which is losing a percentage of 10% of its nominal power. This criterion22

is given only considering the power loss but not the operational utility of23

the system. It is used to calculate the RUL of the stack in many research24

works [42, 43]. For the dataset described in [24], 96% of the initial stack25

voltage is selected as the EOL considering the length of the dataset in many26

works [44, 45]. A state-of-health (SOH) estimation method proposed in [46]27

has used a degradation path γ to indicate SOH, in which a value of 0.1528

is deduced from the EIS measurements. The prognostics method proposed29

in [47] have used 34% of the degrading state variable as the EOL thresh-30

old. Using a different dataset, the state estimation method proposed in [48]31

have used 50% degradation of the state variable as the EOL threshold for32

the RUL calculation to have a life of about 1550 hours. The uncertainty33

of EOL threshold can impact the prognostics performance. Studies in [26]34

have set the EOL thresholds at 10% and 15% of the initial stack voltage,35

respectively and the prognostics strategies showed different performance on36

the two different EOL thresholds, while the quantity of the learning data37

affects the prediction accuracy. In [49], the authors have proposed to cal-38

culate the RUL of the stack based on the reference value of the requested39
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power and keep tracking the maximum available power of the fuel cell to 1

perform degradation tolerant control. 2

The definition of EOL threshold affects directly the prognostics results, 3

however, it is difficult to determine as it is an unknown value with prospec- 4

tive nature, and it may change due to the variation of operating conditions. 5

If the power profile is known, e.g., implementing a specific mission, the EOL 6

threshold can be easily determined. 7

2.4. Prognostics methods 8

Prognostics methods are categorized into three types: 1) data-driven 9

methods; 2) model-based methods; and 3) hybrid methods [10]. It is also 10

true with respect to the RUL prediction. Previous research has reviewed 11

numerous degradation identification and estimation methods but not all of 12

them can be applied to predict the RUL due to the parameter complexity 13

and measurability [11]. This section does not aim to execute an exhaus- 14

tive survey for all the methods but focus on those dedicated to performing 15

prognostics and predicting the RUL. 16

2.4.1. Data-driven method 17

Data-driven methods are applied to perform prognostics when sufficient 18

data is available to learn the system behaviour using a ”black-box” model. 19

Using data-driven methods, the black-box models are created directly from 20

the data, and they are able to project the future states or match similar 21

patterns in the historical datasets. No precise physical model is required. 22

Different from model-based methods, data-driven methods can reflect the 23

inherent relationships by learning the historical and monitoring data and 24

then predict the future trend. Thus, this approach gradually becomes the 25

main methodology for fuel cell prognostics due to the easy-to-use and flexible 26

modelling properties [50]. 27

In the state-of-the-art, traditional neural networks [45, 51], echo-state 28

networks (ESNs) [28, 30, 31], long short term memory networks (LSTMs) 29

[38, 40] and adaptive neuro fuzzy inference system (ANFIS) [25] and other 30

methods have been adapted to predict fuel cell’s RULs. Efforts have been 31

made to improve the prediction performance of data-driven prognostics 32

methods and reduce the requirements of the degradation data. For example, 33

two recurrent neural networks have been developed in [33] including LSTM 34

and the one with the gated recurrent unit, which show good prognostics 35

performance with root-mean-square-error (RMSE) values under 0.02 for the 36

PEMFC stack operating under dynamic profile. A constraint-based summa- 37

tion wavelet-extreme learning machine has been proposed in [26], in which 38
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the authors point out that constraints are necessary for any connectionist1

methods to in case of limited measurements.2

The accuracy of the data-driven prognostics methods depends on the3

confidence level of the training data as the behaviour models (black-box4

models) are established only based on historical measurements [10, 52]. The5

future states are propagated only due to the models and the measurements6

since there is no physical meaning. The predicted results of data-driven7

methods are usually deterministic values so that the confidence level cannot8

be examined in most cases. Therefore, in prognostics applications, chal-9

lenges are confronted in obtaining enough data to ensure the prediction ac-10

curacy. Besides, over-fitting issues of the algorithm, as well as the adaptabil-11

ity of changing operating conditions should be addressed. Another challenge12

is to configure the connectionist network, such as the number of connect-13

ing points and layers, dropout rate and other model parameters. Most of14

the research has defined the configuration according to the human exper-15

tise and engineering experience [37]. Some researchers have used searching16

algorithms to select good parameters for the data-driven models, however,17

it is time-consumption and requires huge computation [39]. Remarkable18

research works using data-driven prognostics methods are summarized in19

Table 1, which concludes the method, the load profile, the prognostics scale,20

the achieved prediction accuracy and the pros and cons.21

2.4.2. Model-based method22

Model-based prognostics method is to develop mathematical equations23

that include many physical parameters to predict the physics governing fail-24

ures. Many researchers have used precise electrochemical models to predict25

the power sources’ health states [61]. An accurate physical model can fa-26

cilitate the RUL prediction because it can reproduce the behaviour of the27

system and therefore, to calculate the estimated output without any calcula-28

tion burden [62]. Once an appropriate model is found for certain conditions,29

the prediction results are reliable to the users.30

A physical model that used for the prognostics purpose must contain31

time-dependent parameters. For example, a PEMFC model has been pro-32

posed in [62] that can be inserted in the prognostics process. It consists of33

a static part and a dynamic part. The static part models the activation loss34

at the electrodes, which can be identified by fitting the polarization curves.35

The dynamic model is developed according to the changing impedance of an36

equivalent circuit model, in which the parameters are tuned by fitting the37

EIS spectrum. Similarly, Pan et al. [44] have used an analytical equivalent38

circuit model to assess the fuel cell health, in which the parameters are tuned39
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based on EIS measurements by linear regression. A similar approach has1

been found in [63]. Besides, EIS measurements are also applied to fuel cell2

component degradation analysis because different operating conditions and3

degradation degrees will lead to the derivation of the arc shapes, as shown4

in Figure 7. By extracting features from the EIS measurements, predictions5

could be performed [64]. For example, an identification method to find the6

low-frequency resistance, i.e. the rightmost intersection with the real axis7

of the EIS arcs, has been proposed in [65], which can estimate the fuel cell8

degradation with only small disruptions. Pivac et al. [66] have used the9

same parameter on the EIS arcs as the indicator of stack degradation and10

built an equivalent circuit model to represent the degradation of the catalyst11

layer.12

However, PEMFC systems are dynamic, time-varying and nonlinear elec-13

trochemical systems, and the internal reactions and failure modes are very14

complicated, which change under different operating conditions. Therefore,15

it is not easy (even impossible) to find precise physical models or mathemat-16

ical models to describe detailed fuel cell degradation mechanisms and failure17

modes. Even if the physical model is available, it is hard to represent it in the18

analytic form and the model built for one application cannot be transferred19

to another application. Moreover, although efforts have been made to find20

accurate and dynamic degradation models, the difficulties in measurements21

have limited the development of model-based prognostics methods. For ex-22

ample, a degradation model has been proposed in [67] to simulate the pinhole23

formation process on the membrane during the chemical degradation. The24

required measurement is conducted on the microscale. Other degradation25

modelling works may even be performed on the nanoscale [68]. It is techni-26

cally and economically infeasible to install micro-sensors (nano-sensors) on27

the stack in order to catch its degradation without specific needs. These28

models are not favourable for industrial employment. Typical model-based29

PEMFC prognostics methods are summarized in Table 2.30

2.4.3. Hybrid method31

Rather than finding the exact relationship using multiple physical pa-32

rameters, research has been conducted to use hybrid methods to perform33

prognostics on the PEMFC. The hybrid methods combine the two previous34

types of prognostics methods, which develop models to describe the degra-35

dation process mathematically, while the model parameters changing over36

time are estimated by learning algorithms. This kind of method avoids the37

complicated process to study the internal degradation mechanisms regard-38

ing different fuel cell components and uses a substitute way to construct39
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behaviour models. Yuan et al. [7] have reviewed the model-based observers1

that are used for fuel cell prognostics. To this end, the PEMFC is repre-2

sented by an equivalent circuit model and the prognostics is executed by3

solving state space models through filtering algorithms: extend Kalman fil-4

ter (EKF) [48], unscented Kalman filter (UKF) [51, 72], particle filter (PF)5

[73, 23, 46, 74], etc. The prognostics is implemented by propagating the cur-6

rent estimated health state and its uncertainty to the future. The learning7

process could be model-based, data-driven or a combination of both, be-8

cause both physical models and data can be integrated into the state vector9

model [75].10

Hybrid prognostics methods are favourable for the good prediction per-11

formance and as they need only a few parameters to build the models, the12

modelling process is simplified compared to model-based methods. Owing13

to the learning process, the hybrid methods also share the advantage of good14

generality from data-driven methods. Besides, the uncertainties are easy to15

be represented when applying filtering-based hybrid prognostics methods so16

that the prediction results tend to be more reliable by defining the confidence17

level. Efforts have been made to improve the filtering-based hybrid prognos-18

tics methods, for example, in [76], instead of using the uniform distribution19

for the parameter initialization of the PF, the initialization procedure has20

been improved by the historical EOL data, which considers more parameter21

uncertainties.22

Hybrid methods are widely used in fuel cell prognostics and are of high23

flexibility in applications, however, the implementation cost may get heav-24

ier. Although building physical models is not a primary condition for hybrid25

methods, it still needs the expertise knowledge on the system degradation.26

If the degradation process is complex, it will add to the calculation burden27

of the training procedure. Therefore, it is very important to find a compro-28

mise between the model complexity and the training expense when applying29

hybrid prognostics methods. Table 3 summarized the representative works30

using hybrid prognostics for PEMFC applications.31

2.5. Long-term experimental datasets32

As discussed above, prognostics methods are developed to adapt the33

characteristics of the datasets, in other words, the datasets can affect the34

performance of prognostics methods. Currently, only a few available long-35

term experimental datasets dedicated to the PEMFC prognostics research36

are available. This section has reviewed these datasets and has pointed out37

the limitations by analysing the data quality.38
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2.5.1. Current situation1

A survey on the available datasets used for performing prognostics is2

conducted. It is summarized in Figure 6. Most of the datasets are under3

privacy policy and not available but for project members, which has limited4

the production of research works.5

Figure 6: Statistics of datasets oriented for prognostics

The mostly used PEMFC degradation dataset for prognostics is an open-6

source dataset that was released during the event of the IEEE PHM 20147

Data Challenge launched by the IEEE Reliability Society, FCLAB research8

federation, FEMTO-ST Institute, and the Laboratory of excellence AC-9

TION [83]. It was collected from the ageing experiments carried out by the10

FCLAB Research Federation (FR CNRS 3539, France, http://eng.fclab.fr/)11

on its test facilities. The assembled fuel cell are 5-cell stacks. Each cell has12

an active area of 100 cm2. Two long-term ageing experiments were launched13

with different operating conditions: constant and variable. The first stack14

was operated under its nominal current density (0.70 A/cm2), while the15

second stack was tested with a ripple current (0.70 A/cm2 with oscilla-16

tions of 0.07 A/cm2 at a frequency of 5 kHz). To identify the degradation,17

fuel cell characterizations were performed each week, i.e. every 160 hours18

approximately, i.e. at time t = 0; 48; 185; 348; 515; 658; 823; 991h, which in-19

cludes polarization curves and EIS measurement. The polarization curves20

are measured under a current ramp from 0 A/cm2 to 1 A/cm2 of 1000 sec-21

onds. The air and H2 flows are reduced until the current value reaches 20 A22

and are then kept constant. The EIS measurements are realized under differ-23

ent constant current: 0.70 A/cm2, 0.45 A/cm2, 0.20 A/cm2. A period of 1524

minutes is used to stabilize the stack. The results are showed in the Nyquist25

20



plots over a frequency range from 50 mHz to 10 kHz. Figure 7a and Figure 1

7b show examples of the characterization measurements, in which the shape 2

changes of the polarization curves and the EIS arcs are caused by the stack 3

degradation. By measuring the parameters from the measurements, models 4

could be derived to study the stack ageing mechanism and conduct prog- 5

nostics. To visualize directly the stack voltage degradation, historic voltage 6

curves are plotted. Figure 7c shows the stack voltage drop signal over time 7

in constant operating conditions, while Figure 7d shows the stack voltage 8

drop signal in variable operating conditions with a ripple current. 9
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Figure 7: Fuel cell characterizations and voltage evolution

Similar experiments have been conducted within the framework of the 10

project PHM PAC [28] and the project PROPICE [48]. A micro combined 11

heat and power (µ-CHP) dataset was reported in the framework of project 12

SAPPHIRE [84], which come from a pilot project collaborated with the 13

Electricity of France (EDF). The applied µ-CHP load profile simulates the 14

behaviour of a stationary PEMFC application during a complete year. Rel- 15

evant prognostics works are developed based on PF [77] and EKF [34], re- 16
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spectively. To demonstrate the on-board degrading performance of the fuel1

cell stack, two experiments are conducted in [30] and [42] in the framework2

of project PRODIG and project Asdecoeur, in which the stacks are deployed3

to dynamic load profiles and the prognostics strategies are developed based4

on data-driven methods. A similar dataset is released in [33] where a single5

PEMFC is conducted to the New European Driving Cycle (ECE R15) to6

test its durability. A 1000-hour data profile is produced. Ou et al. [71] have7

conducted stack durability tests for two PEMFCs with 15 cells and 30 cells,8

respectively, using a locomotive profile and generated 505-hour degradation9

data. Vichard et al. [85] have launched a long-term ageing experiment of10

an open-cathode PEMFC under an accelerated postal delivery driving cycle,11

which showed the considerable influence of the ambient temperature on the12

stack degradation. Moreover, there is another on-road fuel cell degradation13

dataset from the MobyPost project, where the fuel cell system acts as a14

range extender. It has operated 10 fuel cell hybrid electric vehicles for the15

real-world commercial postal delivery, which integrated lithium-ion batteries16

in the vehicle powertrain in order to deal with the transient power demand,17

and therefore, to avoid frequent startups and shutdowns of the fuel cell. This18

dataset has recorded the operating conditions including the load current and19

voltage, hydrogen pressure, temperature, relative humidity, state of charge20

of the battery and the hydrogen tank. A prognostics method based on neu-21

ral networks has been developed using this data in [51]. Another similar22

dataset obtained from a fuel cell city bus in China is described in [43].23

Other datasets conducted for fuel cell prognostics are obtained from24

accelerated stress tests, which are designed to target the electrocatalyst25

degradation. They are mostly used to estimate and predict the fuel cell26

degradation on the component level [65]. This kind of test is usually per-27

formed on a membrane-electrode assembly (MEA) in a single cell, which is28

operated under a potential cycling profile. The DoE’s recommended cycling29

profile for electrocatalyst degradation is between 0.7V and 0.9V, while a30

degradation diagnostic study in [66] has accelerated the degradation process31

by cycling between 0.6V and 0.9V. Those tests focus on tracking the evo-32

lution of the MEA’s internal parameters, which are conducted to develop33

degradation models but not to predict the RUL.34

2.5.2. Quality of data35

For the datasets as the one shown in Figure 7c, the degradation is not36

monotonous due to the monitoring characterizations. The most common37

characterization methods for PEMFCs in the laboratory are polarization38

curves and EIS measurement. When the operation is stopped for charac-39
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terization, recoveries on the stack voltage could be observed, which indicate 1

the reversible phenomena during the PEMFC ageing process. In practice, 2

these reversible phenomena may be due to the changing operating conditions 3

that affect the gas and water diffusion within the cells, i.e. starvation and 4

flooding [13]. However, compared to the long-term irreversible performance 5

decay of the fuel cell, these reversible phenomena can be recovered when the 6

stack is brought back to its normal operation, i.e. quasi-static regime. 7

Efforts have been made to improve the prognostics performance with 8

the existence of reversible degradation. Morando et al. [28] have proposed 9

to divide the observed signal into static part and transient part and per- 10

form prognostics separately. To deal with the recoveries in the stack volt- 11

age, Kimotho et al. [73] have introduced a self-healing coefficient into the 12

degradation model and used particle filtering to adapt the model with the 13

observed data after each characterization. Jouin et al. [24] have proposed 14

a combined degradation model including both irreversible and reversible 15

degradation and used an ensemble of particle filters to estimate the model 16

parameters and predict the RUL. Moreover, Zhang et al. [86] have used an 17

equivalent circuit model to describe the polarization resistance and brought 18

an idea of multi-level prognostics. 19

2.6. Partial synthesis 20

Recent years have seen rapid development in PEMFC prognostics in 21

terms of prognostics methods and degradation modelling and estimation. 22

More publications come out in recent five years, as shown in Figure 8. This 23

survey is conducted by searching terms ”PEM fuel cell” or ”PEMFC”, ”prog- 24

nostics” and/or ”degradation prediction” in the title, abstract and keywords 25

of all peer-reviewed articles in the major academic research databases. 26

Although more studies start to focus on solving PEMFC durability prob- 27

lems, some key issues have not been fully addressed. Based on the Table 1 - 28

Table 3 and the previous analysis, the current prognostics works are mostly 29

based on limited finished experimental datasets, operating conditions are 30

rarely considered. Only a few works have developed prognostics methods 31

for the PEMFCs operating under dynamic load. Although there is no pref- 32

erence in selecting the prognostics methods as each method has its pros and 33

cons, we should consider the user requirement, data availability and degra- 34

dation conditions. Besides, there is not a uniform performance evaluation 35

criterion which is lacking for the moment and should be important in the 36

prognostics-based decision-making process. 37

Prognostics and RUL are not the goals of PHM as how to use RUL 38

to implement control and management and how to improve the PEMFC 39
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Figure 8: Yearly evolution of publications from 2010 to date containing terms ”PEM fuel
cell” or ”PEMFC”, ”prognostics” and/or ”degradation prediction”. The search was made
on the 20th February 2021.

durability are where the research orients. Post-prognostics and decision-1

making technologies are underdeveloped for the moment. They are discussed2

in the next section.3

3. Post-prognostics: decision-making4

As the ultimate objective of PHM is not to predict the RUL, but to take5

actions to prolong the lifetime of PEMFC systems. It exists in three levels:6

control, management and maintenance. In this section, four aspects of the7

post-prognostics decision-making phase are discussed. They are degradation8

tolerant control, multi-stack control, energy management and maintenance9

scheduling.10

3.1. Degradation tolerant control11

The majority of PEMFC control studies have focused on enabling power12

tracking capability on the system level, e.g., to control the oxygen flow rate13

in the cathode to protect it against reactant starvation. However, degra-14

dation tolerant control subject to address its durability issue is of scarcity.15

Deng et al. [87] have proposed a linear parameter varying (LPV) state space16

model which is oriented to design a fast linear controller for the PEMFC sys-17

tem. A model predictive control (MPC) strategy is proposed in [88] for the18

PEMFC system using a similar LPV model, on one hand, to track the power19

demand, and on the other hand, to ensure the maximum working efficiency20

and maximizing the stack durability. To enable MPC strategy on different21
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scales, Jouin et al. [89] have proposed a combined prognostics method based 1

on PF that can achieve accurate predictions on both short-term and long- 2

term. Polverino et al. [90] have proposed a physical model-based control 3

algorithm aiming at mitigating the stack degradation on ECSA. Similarly, 4

a non-linear model predictive control strategy has been proposed in [91] to 5

maximize the active catalytic surface area at the cathode catalyst layer and 6

to avoid starvation at the catalyst sites. Moreover, Bressel et al. [49] have 7

proposed a multi-physical LPV model for the PEMFC in the electrochemical 8

macroscopic representation formalism. The degradation-related parameters 9

are considered in the model to realize the ageing tolerant control. It allows 10

regulating the required PEMFC power in presence of the performance decay. 11

Cheng et al. have proposed in [92] that the degradation can be mitigated 12

by managing the PEMFC air supply system. The control is realized based 13

on the exhaust gas recirculation function included in the air supply system 14

model, which can reduce the oxygen ration in the inlet air, and therefore, to 15

mitigate the fuel cell output voltage degradation. Besides, the degradation 16

tolerant control can also be conducted on a hybrid system. Kong et al. [93] 17

have developed an interconnection and damping assignment-passivity based 18

control strategy for a fuel cell/supercapacitor hybrid system, in which the 19

degradation information is given by filtering state estimation. With the ex- 20

istence of fuel cell degradation, this method ensures the normal operation 21

of the system, while avoiding overload. 22

Degradation tolerant control is very important to guarantee the integrity 23

and the continuous operation of the fuel cell system without faults and shut- 24

downs. The RUL information provided by prognostics algorithms should be 25

combined with the control strategies as it should be taken into consideration 26

not only the current degradation state but also the RUL corresponding to 27

the system’s EOL. Research on this issue still needs to be resolved and more 28

efforts are needed. 29

3.2. Multi-stack control 30

The durability of a multi-stack fuel cell system depends not on the RUL 31

of any single stack but the co-working mechanism of the stacks, which may 32

contribute differently to the demanded power. Therefore, to maximize the 33

lifetime of a fuel cell system composed of multiple stacks needs a control 34

strategy to alter the operations between stacks. It could be regarded as an 35

assignment optimization problem and optimization algorithms are deployed 36

in the literature to find optimal solutions. Chretien et al. [94] have applied 37

two convex optimization algorithms, i.e. the Mirror-prox for Saddle Points 38

method and the Least Absolute Shrinkage and Selection Operator principle. 39

25



The optimization problem is solved by formulating a mathematical expres-1

sion which minimizes the output power error and at the same time, adding2

the RUL of each stack as the constraint. A multi-stack control algorithm3

based on mixed-integer programming has been proposed in [95]. The control4

is realized owing to the successive optimal resolutions based on a fuel cell5

stack behaviour model considering the wear and tear process. Moreover, an6

optimal power allocation method considering the degree of PEMFC degra-7

dation in each stack has been proposed in [96], in which the degradation is8

considered by a virtual resistance model. The developed strategy can assure9

the normal operation of the multi-stack system even if one of the stacks fails.10

To date, the multi-stack control strategies are developed for constant11

load demand case, while for variable load demand profile, the problem be-12

comes complicated as not all the stacks should be used in low demand period.13

This needs the addition of a start-and-stop operation scheme. Besides, the14

well-developed prognostics strategies described in Section 2 have not been15

used for the multi-stack control. The existing methods are based on degra-16

dation models rather than online degradation prediction results.17

3.3. Energy management18

When using multiple power sources at the same time to supply a cer-19

tain load, an energy management strategy (EMS) is developed to govern20

the energy distribution in the hybrid system. The performance of a hybrid21

system can be highly affected by the design of EMSs [64]. Based on non-22

exhausted bibliography research, for fuel cell hybrid systems, various EMSs23

have been developed to take power sources’ degradation into consideration24

and therefore, to prolong the lifetime of the fuel cell or the overall system25

[97]. To be health-conscious, most researchers tend to develop degradation26

models for the PEMFCs to quantify performance degradation and to get27

the optimal solutions by designing rule-based and optimization-based EMSs28

[98]. The degradation models are integrated into the objective functions to29

minimize the overall cost or the hydrogen consumption. For example, fuel30

cell degradation origins such as low humidification and frequent and rapid31

voltage changes are considered in the EMS in [99] to mitigate the fuel cell32

degradation by setting key parameters. A robust fuzzy MPC method is33

proposed in [100] to coordinate the fuel cell degradation and energy storage34

system scheduling by formulating rule-based strategies. A deterministic dy-35

namic programming strategy and a rule-based strategy have been developed36

in [101] to minimize the cost and at the same time, respect the operation37

limits to avoid degradation. A linear time-varying MPC strategy is proposed38

in [88] for the PEMFC system, which is, on one hand, to track the power39
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demand, and on the other hand, to ensure the maximum working efficiency 1

and maximizing the stack durability. Moreover, an equivalent consumption 2

minimization strategy has been developed in [102], which considers the fuel 3

cell degradation in the objective function. 4

However, existing researches usually consider fuel cell degradation by 5

setting constraints or using fitting degradation models in the strategies, 6

which are less accurate and cannot assess the real degradation state of the 7

system. The developed prognostics technologies such as those discussed in 8

Section 3 are rarely applied to the energy management of HEV applications. 9

To complete the PHM cycle for a hybrid fuel cell system, the decision-making 10

process turns out to be a part of the EMS. As the degradation of the fuel cell 11

leads to its reducing efficiency and therefore, high fuel consumption. Two 12

control strategies have been proposed in [103]. The maximum power strategy 13

requires larger fuel systems, while the fuel cell operated with maximum 14

efficiency strategy consumes less hydrogen. However, the optimal point is 15

shifted regarding a degraded fuel cell, i.e. the actual power provided by the 16

fuel cell is lower than the required value based on the following equations: 17

Pactual = Prequired · (1 −Dfc) (1)

Dfc =
Vactual
Vrated

(2)

where Dfc is the degradation degree of the fuel cell. It can be represented 18

as a ratio of the actual voltage to the rated voltage. Therefore, to obtain 19

the corrected power value required in an energy management problem, the 20

degradation degree of the fuel cell should be determined and the corrected 21

value is written as: 22

Pcorrected =
Pactual

1 −Dfc
(3)

As the degradation degree can be predicted by prognostics, the remain- 23

ing work should be developing a decision-making process that can make use 24

of the prognostics information and generate appropriate commands on the 25

system. Yue et al. [104] have proposed a health-conscious EMS by devel- 26

oping a prognostics-enabled decision-making process, which integrates the 27

prognostics results into the design of the fuzzy logic controller. The results of 28

prognostics are used to determine the degradation level of the power sources 29

and the EMS is designed based on fuzzy logic control whose parameters 30

are refined based on the degradation level using a decision fusion algorithm. 31

27



A MPC-based energy management strategy has been proposed in [105], in1

which the durability of the fuel cell has been considered by the output power2

slope of constraints.3

3.4. Maintenance scheduling4

In most industrial applications, to ensure the continuous and reliable5

operation of the system, the preventive maintenance is performed regularly,6

whether it is needed or not [106]. It is designed periodically based on the7

usage conditions of the equipment and the severity of the component degra-8

dation. However, to some extent, it causes over care which is a waste of time9

and money, especially when it needs to send technical personnel to remote10

operation area. Therefore, if the degradation status of the system can be11

predicted, maintenance can then be scheduled whenever it is needed, i.e.12

to be upgraded to the predictive maintenance, which is more dynamic. It13

automatically assesses the current health state of the system and predicts14

future failure. In this way, the maintenance interventions can be scheduled15

beforehand, and if the degradation can be regulated by the control mod-16

ule, the operation of the system can be improved, and the lifetime can be17

prolonged.18

Predictive maintenance is attracting the favourable attention in the re-19

cent years in different applications, e.g. pump systems, aircraft and space-20

craft, batteries, micro-electro-mechanical systems, etc., however, few predic-21

tive maintenance methods for PEMFC systems have been investigated yet22

[107, 108, 109]. Predictive maintenance methods proposed for other appli-23

cations may inspire the development of predictive maintenance for PEMFC24

systems. For example, in the literature, Meng et al. [110] have reviewed the25

maintenance methods for lithium-ion batteries and have proposed that an26

optimal management/schedule strategy is necessary for reducing the down-27

time and minimizing operation cost for the battery system. Linear program-28

ming models have been used in [111] to include battery degradation process29

in the optimization and have achieved fewer battery replacements to reduce30

the maintenance cost. Moreover, Nguyen et al. [41] have proposed a new31

dynamic predictive maintenance framework based on an LSTM classifier.32

Based on the intelligent classification results, they have constructed an opti-33

mal decision model to determine whether to replace the engine and the time34

to order spare parts. A tree-based classification method has been proposed35

in [112] to implement predictive maintenance for the railway switches and36

the marginal benefit of usage has been proposed in [113] as the metric for37

the lithium-ion battery system operation and maximizing the total life-cycle38

benefit. Moreover, the Internet of Things (IoT) technique has been deployed39
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in many industrial applications for the predictive maintenance owing to its 1

smartness and advanced automatic process [58]. Those approaches have 2

been applied to the industrial machinery monitoring, which are not neces- 3

sarily applicable for PEMFC systems [114]. 4

3.5. Partial synthesis 5

Even though research on PEMFC prognostics has seen significant progress, 6

it is still not sufficient to be integrated into PHM as the post-prognostics 7

decision-making phase has not been sufficiently investigated. Four aspects 8

have been proposed in this section, i.e. degradation tolerant control, multi- 9

stack control, energy management and maintenance scheduling, in which 10

the degradation prediction of PEMFCs plays an important role. The first 11

three aspects have seen recent advances in developing control and optimiza- 12

tion strategies, however, prognostics should play a more important role in 13

their further development. Predictive maintenance of PEMFC systems is 14

actually undeveloped and requires more efforts in research. Methods like 15

combinatorial optimization techniques, IoT, digital twin, case-based rea- 16

soning, knowledge-based modelling, etc., that have been applied to other 17

applications could be migrated to the field of PHM on PEMFCs and inspire 18

the development of predictive maintenance method for the fuel cell systems. 19

4. Challenges and perspectives 20

As stated above, the PHM process adopted in PEMFC applications is 21

not completed due to its insufficient development in prognostics methods, 22

as well as the decision-making methods. This is also due to the limitations 23

in data, which influence the performance of prognostics methods, however, 24

have not been fully studied yet. The remaining challenges and perspectives 25

are revealed in this section. 26

4.1. Challenges and perspectives on data 27

4.1.1. Data volume and observability 28

To perform prognostics or implement post-prognostics decisions, suffi- 29

cient data samples are necessary for the learning algorithms and modelling 30

process, as well as in the validation stage. Data collected for this purpose 31

is rarely found and the research is held behind by the limited data samples 32

[115]. To overcome the insufficient data volume, methods have been investi- 33

gated in an attempt to increase the data volume by duplicate or randomly 34

generating data, i.e. grey forecasting, feature extraction, and virtual sam- 35

ple generation [106, 116]. Limited data also results in increasing uncertainty 36
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[117]. Methods should be investigated to manage and reduce the uncertainty1

in the prognostics. On the other hand, the quality of data and the amount of2

information in the monitoring data may also influence the implementation3

of the prognostics. Different inspection policies considering the variation of4

degradation states must be investigated [118].5

On the other hand, some developed prognostics models are based on6

specific physical parameters of the PEMFC system, while some of which are7

not easily accessed or measured without characteristic sensors, e.g., micro-8

sensors and nano-sensors. Although the technique of advanced sensors is9

on the way of developing, it increases the capital cost of the system and10

slows down the process of commercializing the application of PHM in en-11

gineering domains [110]. The possible measurements in a PEMFC system12

are summarized in Table 4, which are categorized according to their tech-13

nical and economical feasibility. Developing reliable prognostics approaches14

with technically and economically observable data is one of the challenges15

faced by the researchers and the goal is to use a minimum number of actual16

sensors to monitor the degradation state change.17

4.1.2. Data availability18

Compared with other prognostics applications, such as batteries, power19

electronics, pump bearings, engine and turbine degradation, available datasets20

for PEMFC prognostics is very limited. This is due to the high requirements21

in the experimental capability of performing long-term fuel cell degradation22

tests and the high cost on the equipment. Moreover, few laboratories have23

published their experimental data for research, while most of them are pri-24

vate or not ready for publication. Open data service is very important to25

accelerate the development of PHM engineering on PEMFCs. In addition26

to in-situ experiments, pilot projects that can gather and distribute online27

operation data in the real world. They must be supported by the admin-28

istration of the company and the government to simplify the data sharing29

procedure.30

4.2. Challenges and perspectives on prognostics31

4.2.1. Prognostics time scale32

The degradation of PEMFCs, to its very nature, is a long-term phe-33

nomenon. In the light of the monitoring cost and the information level, the34

inspection intervals greater than one hour are usually considered in PEMFC35

prognostics [35]. However, the time scales of the related control, manage-36

ment, maintenance scheduling problems that are concerned in the post-37

prognostics decision-making phase may change. For example, the scheduled38

30



Table 4: Feasibility of measurements in PEMFC systems

Feasibility Measurements

Feasible

-System and stack voltage
-Single-cell voltages
-System and stack current
-System and stack temperatures
-Cooling water temperature
-H2 and air temperatures (inlet/ outlet)
-H2 and air pressures (inlet/ outlet)
-Air compressor speed

Possible but not technically
or economically feasible

-Stack impedance
-Stack internal resistance
-Stack internal temperatures

Technically or economically
unfeasible

-Local current density
-Membrane thickness
-Active catalyst area
-H2 and air flows (inlet/ outlet)
-Cooling circuit mass flow
-H2 and air hygrometry rate
-Water content in PEM
-Inlet gases composition
-Outlet effluents composition

maintenance based on prognostics cannot be implemented immediately if 1

the fuel cell system is under operation. The maintenance schedule should 2

also be adapted to the order time. Oppositely, the control and management 3

strategies acting directly on the fuel cell system can modify the control sig- 4

nal immediately or in a short period. An illustration of decision policies 5

regarding spatial and time scales is shown in Figure 9. 6

To fulfil different post-prognostics decision-making missions, multi-dimensional7

and multi-scale models designed for PEMFC prognostics should be de- 8

veloped. Moreover, another problem in the validation stage of the post- 9

prognostics decision-making process is how to continuously supervise the sys- 10

tem and conduct immediate controls to avoid and to mitigate the degrada- 11

tion that appears as a long-term phenomenon. To solve this problem, multi- 12

criteria optimization, operational research techniques, combinatorial opti- 13

mization (heuristics and meta-heuristics), case-based reasoning and knowledge- 14

based reasoning are the promising methods that are worth studying. Be- 15
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Figure 9: Spatial and time scales of post-prognostics decision-making process

sides, to implement control together with the scheduling and assignment1

problems is another underlying problem and should be considered to con-2

tribute to an integrated decision layer of PHM.3

4.2.2. Prognostics performance metrics4

Another barrier holding behind the development of prognostics methods5

is the lack of uniform performance evaluation metrics. Current prognos-6

tics research tends to evaluate the prognostics results by comparing the real7

experimental data and calculating the accuracy and precision of the pre-8

dictions. However, the performance of the prognostics methods regarding9

other properties of the results has rarely been investigated. Without specific10

performance evaluation metrics, it brings difficulties for the researchers to11

evaluate and distinguish one prognostics method from others and it is hard12

to define the progress on method improvement. To standardize prognostics13

performance metrics, three more aspects should be specified: the prognostics14

horizon, the confidence level to the results and the EOL threshold.15

The prognostics horizon is very important to evaluate the prognostics16

performance as it is related to how much information is available from the17

beginning to the current state. Some studies have evaluated the prediction18

accuracy with respect to prognostics horizon, however, no clear relationship19

has been derived between them [23]. As the goal of PHM is to continuously20

monitor the health state of the system and conduct appropriate actions21
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regarding the system’s health state, it is important to develop reliable prog- 1

nostics methods by taking the prognostics horizon into consideration. 2

Another scenario to evaluate the prognostics results is the confidence 3

level. In some data-driven methods, deterministic values are used as the 4

predicted RUL results, which are, to some extent, not reasonable. The 5

prediction comes with uncertainty, therefore, it is necessary to evaluate the 6

uncertainty when making predictions. The probability of the predicted RUL 7

falling into the confidence interval is important to define the goodness of the 8

prognostics results and to evaluate whether the prediction is early or late 9

since late predictions may cause more serious problems than early predic- 10

tions. 11

The last concern about performance evaluation is the EOL threshold. 12

Decision-makers use the predicted RUL to make decisions that are inte- 13

grated into the lifecycle of the systems, in which the RUL is determined by 14

the definition of the system failure threshold. Current prognostics works 15

have assigned static thresholds to represent the failure of the PEMFC stack, 16

typically, a certain percentage of the initial voltage/power value. This value 17

is usually reported to be determined based on the data length, i.e., prior 18

knowledge of the dataset, which is unsupervised and contributes to the un- 19

certainty of the predicted RUL [119]. But what if the prior knowledge does 20

not exist? A possible solution could be to set the thresholds dynamically 21

according to the operating conditions, the current degradation tendency 22

parameters and the available maintenance choices [120]. As proposed in 23

[121], integrating a classification method with online predictions is capable 24

to adapt the threshold values considering the real-time operation state of 25

the system. This kind of research can be migrated to the PEMFC appli- 26

cations, with which researchers can take measures to make the following 27

post-prognostics decisions based on dynamic thresholds. 28

4.2.3. Method adaptability 29

Efforts have been made to improve the performance of prognostics with 30

the existing prognostics methods, as discussed in Section 3. However, if the 31

prognostics methods are to be used for the post-prognostics control strate- 32

gies, several limitations of the methods appear. For example, internal stack 33

parameters cannot be accessed experimentally, therefore, these parameters 34

will be missing in the model-based approaches; while to be valid, data-driven 35

approaches must be fed with a wide range of data, covering all the opera- 36

tion, degradation and ageing modes, which is very costly and sometimes not 37

affordable for some applications. Besides, the prognostics methods proposed 38

based on the characterization measurements are not applicable for real-time 39
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applications due to the inconvenience of disrupted operations. Therefore,1

to complete the PHM cycle of PEMFC applications, a probable way is to2

combine all approaches into a larger model, comprising a supervision level,3

where the processing consigns are sent to the appropriate model, and pa-4

rameter exchange can flow in both directions depending on the limitation of5

each one.6

4.3. Challenges and perspectives on post-prognostics decision-making7

4.3.1. Uncertainty treatment8

First and foremost, the insufficient development of post-prognostics decision-9

making phase is due to the difficulties in managing the uncertainties. In fact,10

the prognostics refers not only to the prediction of the RUL but also to its11

uncertainty. The uncertainties existing along with the prognostics procedure12

have a significant influence on the prognostics-based decision-making phase13

[122]. The entire process of PHM indicates that prognostics is a closed-14

loop procedure so that the uncertainties in each phase of this procedure15

are accumulated along with the operation. These uncertainties may contain16

uncertainty in the data, uncertainty in the prognostics algorithm and un-17

certainty in the post-prognostics decision-making process. An overview of18

sources of uncertainties is summarised in Table 5. Some of the uncertain-19

ties can be avoided, while others cannot. For example, uncertainty in the20

data can be eliminated to some extent as long as dedicated datasets can21

be used for the prognostics purpose with adequate measurements, sampling22

frequency, volume and normal operation. Uncertainties during the prognos-23

tics and decision-making process can hardly be avoided as they are due to24

the nature of the adopted methods. For these uncertainties, one should be25

able to quantify and manage them.26

To deal with the uncertainty and to interpret it to facilitate the prognostics-27

based health management, efforts on its quantification and representation28

are required. When applying statistics technique to quantify the uncer-29

tainty, it is important to consider the variance of the predicted RUL [123].30

Existing prognostics research using state-space models has considered the31

uncertainty of the variables when propagating them to the future, and is able32

to predict the future state uncertainty using probability distribution, how-33

ever, the state-space models are supposed to be linear ones, which cannot34

represent the real-world nonlinear applications, e.g., fuel cell degradation,35

so that they bring uncertainty to the system by themselves. Monte Carlo36

sampling-based method should be one of the solutions to this problem by37

using infinite samples [117]. Future research needs to continue the study also38

on the applicability of the uncertainty management technique to PEMFC39
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prognostics applications. Moreover, robust decision models for the decision- 1

making process are required to deal with all the uncertainty generated in 2

models, predictions, operating conditions, etc., described in Table 5. 3

Table 5: Sources of uncertainties in data, prognostics and decision-making process

Uncertainty in data Uncertainty in prognostics Uncertainty in decision-
making

-Data observability
-Sampling frequency
-Data volume
-Test interruptions

-Model uncertainties
-Input uncertainties
-Measurement uncertainties
-External uncertainties

-RUL uncertainties
-Control and management
strategy uncertainties
-User uncertainties

4.3.2. Experimental validation 4

Present research on PEMFC prognostics is mostly based on finished ex- 5

perimental datasets and the performance is verified and validated by the 6

pre-defined experimental results, i.e. precision, convergence, accuracy, etc. 7

However, this is not the goal of PHM. The goal of PHM is to use the RUL 8

predictions to perform continuous supervision and control actions on the 9

system and therefore, to mitigate the degradation and enhance the durabil- 10

ity. The validation of the post-prognostics decision-making phase in PHM 11

is a quality assurance process [124], while it is lacking in most research due 12

to the difficulties in executing such an experimental platform for thousands 13

of hours and designing comparison experiments. Also, the high cost on the 14

equipment and hydrogen has limited the implementation of such long-term 15

experiments. Although some decision-related research has been conducted 16

in the literature, none of them has been validated with online prognostics re- 17

sults. Moreover, appropriate protocols of testing the durability of PEMFCs 18

should be designed [125]. The ageing process of the PEMFC differs from 19

different operating conditions and the relationship between test protocols 20

and the degradation performance should be studied. 21

For the present, hardware-in-the-loop (HITP) and power HITP may 22

be the most favourable methods to validate the prognostics-based control 23

strategies as it can simulate the complex real-time embedded systems by 24

adding necessary mathematical representations. The prognostics and con- 25

trol algorithms can be implemented based on the value of the electrically 26

emulated sensors in the system and changes in the control signals will act 27

back on the system. It increases the flexibility of the test as it can test the 28

system with different failure conditions, which is very important in the ver- 29

ification of prognostics algorithms. Besides, it can provide an efficient and 30
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safe environment for the researchers to test the controllers and increase the1

scope of the testing. The benefits are exceptional as the test is implemented2

with the closed-loop control.3

5. Conclusion4

As PEMFC systems are highly multiphysical and multiscale systems, the5

behaviour of the stack is hard to catch due to the high difficulty to access the6

internal parameters. Developing PHM methods is of prime importance for7

the successful system design, control, diagnostics and optimization. This pa-8

per has reviewed the PHM research developed for PEMFC systems in terms9

of the current status and perspectives of prognostics and decision-making10

methods. Current prognostics methods have seen their progressive devel-11

opment in recent years, however, there are certain problems that have not12

been clearly defined, e.g. prognostics horizon, failure threshold, evaluation13

metrics, etc., which have been discussed in this paper and is expected be14

standardized as the post-prognostic actuation is envisaged. The available ex-15

perimental datasets used for PEMFC prognostics studies have been reported16

and the fact that most of the current prognostics studies were based on the17

same open-source dataset and the limitations of the dataset have barriered18

the development of the prognostics methods. Furthermore, methodologies19

of developing post-prognostics decision-making issues have been described.20

According to the findings, remaining challenges and perspectives regard-21

ing data, prognostics methods and prospective post-prognostics decision-22

making actuations have been proposed. A prerequisite for further progress23

is to enhance the availability and the observability of the data used for the24

prognostics purpose. Then, the development of prognostics methods should25

rely on the improving performance metrics and adequate uncertainty treat-26

ment. Finally, importance should be paid to developing post-prognostics27

control and management strategies by solving the difficulties in incorporat-28

ing the prognostics information and experimental validation.29
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tics of pem fuel cells under a combined heat and power profile, IFAC-19

PapersOnLine 48 (2015) 26 – 31. doi:https://doi.org/10.1016/j.20

ifacol.2015.06.053.21

[78] M. Ibrahim, N. Y. Steiner, S. Jemei, D. Hissel, Wavelet-based22

approach for online fuel cell remaining useful lifetime prediction,23

IEEE Transactions on Industrial Electronics 63 (2016) 5057–5068.24

doi:10.1109/TIE.2016.2547358.25

[79] L. Mao, L. Jackson, T. Jackson, Investigation of polymer electrolyte26

membrane fuel cell internal behaviour during long term operation and27

its use in prognostics, Journal of Power Sources 362 (2017) 39–49.28

doi:https://doi.org/10.1016/j.jpowsour.2017.07.018.29

[80] C. Yang, Z. Li, B. Liang, W. Lu, X. Wang, H. Liu, A particle filter30

and long short term memory fusion algorithm for failure prognostic31

of proton exchange membrane fuel cells, in: 2017 29th Chinese Con-32

trol And Decision Conference (CCDC), IEEE, 2017, pp. 5646–5651.33

doi:10.1109/CCDC.2017.7978172.34

46



[81] D. Zhou, F. Gao, E. Breaz, A. Ravey, A. Miraoui, Degradation predic- 1

tion of pem fuel cell using a moving window based hybrid prognostic 2

approach, Energy 138 (2017) 1175–1186. doi:https://doi.org/10. 3

1016/j.energy.2017.07.096. 4

[82] K. Chen, S. Laghrouche, A. Djerdir, Fuel cell health prognosis us- 5

ing unscented kalman filter: Postal fuel cell electric vehicles case 6

study, International Journal of Hydrogen Energy 44 (2019) 1930–1939. 7

doi:https://doi.org/10.1016/j.ijhydene.2018.11.100. 8

[83] R. Gouriveau, M. Hilairet, D. Hissel, S. Jemei, M. Jouin, E. Lechartier, 9

S. Morando, E. Pahon, M. Pera, N. Zerhouni, Ieee phm 2014 data 10

challenge: Outline, experiments, scoring of results, winners, IEEE 11

2014 PHM Challenge, Tech. Rep. (2014). 12

[84] E. Pahon, S. Morando, R. Petrone, M.-C. Péra, D. Hissel, N. Yousfi- 13
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