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bLIS Laboratory, Aix-Marseille University, CNRS, Marseille, France

cFEMTO-ST Institute, FCLAB, Univ. Bourgogne Franche-Comté, UTBM, CNRS, Belfort, France
dFEMTO-ST Institute, FCLAB, Univ. Bourgogne Franche-Comté, ENSMM, CNRS, Belfort, France

Abstract

Proton exchange membrane (PEM) fuel cell has seen its recent increasing deployment in both automotive and stationary appli-
cations. However, the unsatisfied durability of the fuel cell has barriered in the way of its successful commercialization. Recent
research on prognostics and predictive maintenance has demonstrated its effectiveness in predicting the system failure and improv-
ing the durability of the PEM fuel cell. This paper contributes to developing a degradation identification method for the PEM
fuel cell operating under dynamic load. A degradation indicator is proposed based on the polarization model and the nonlinear
regression method is applied to extract the degradation feature by segmenting the voltage measurement. To perform prognostics, a
machine learning method based on a multi-step echo state network is developed, in which a sliding window is used to recursively
reformulate the input sequence with predicted values in the prediction phase. The length of the sliding window is optimized by a
genetic algorithm. The proposed method is verified on the experimental PEM fuel cell degradation data and improves the prediction
performance on both accuracy and computation speed when comparing with other prognostics methods.
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1. Introduction1

Although fossil fuels still account for the majority of global2

energy demand, an energy transition is taking place. Hydro-3

gen, as one of the cleanest fuels, has driven increasing attention4

around the world, which is regarded as a potential solution to5

today’s environmental problems and resource exhaustion. Us-6

ing hydrogen as the fuel, To make use of hydrogen, fuel cell7

re-electrification is a preferable way to maximize its potential8

benefits, as fuel cells can convert the chemical energy of the9

hydrogen into electrical energy directly with an efficiency up to10

60 to 80%, while the by-product is only water. Among differ-11

ent types of fuel cells, proton exchange membrane (PEM) fuel12

cells, which take advantages of their fast start-up characteristics13

and low operating temperatures, are now commercially applied14

in a variety of stationary and embedded applications [1].15

On the road to the massive commercialization of PEM fuel16

cells, enhancing their durability is a prior challenge. The cur-17

rently achieved durability of PEM fuel cells in automotive ap-18

plications is around 4000 - 5000 hours, while an 8000-hour19

lifetime is the ultimate goal [2]. Efforts have been made to20

investigate PEM fuel cell degradation mechanisms, especially21

for those operating under dynamic load [3, 4]. For example,22

dynamic vehicle cycles in rated and idling conditions are sim-23

ulated in [5], in which the PEM fuel cell is subjected to dif-24

ferent degradation mechanisms causing varying stack voltage25

1Corresponding author. E-mail address: meiling.yue@femto-st.fr

degradation rate. An accelerated degradation test is conducted 26

in [6] with normal vehicle driving cycles where signification 27

degradation of the fuel cell has been observed. Varying ther- 28

mal/humidity state, changing reactant demand and potential 29

voltage cycling are identified as the principal reasons for PEM 30

fuel cell degradation in dynamic operating conditions [7]. 31

Fuel cell performance loss can be easily observed by evalu- 32

ating the stack voltage degradation and under constant operat- 33

ing conditions, it is measured directly. Various works on PEM 34

fuel cell degradation estimation and prognostics have been con- 35

ducted using the stack voltage as the direct health indicator 36

[8, 9]. For example, Bressel et al. have proposed to esti- 37

mate the health state of the PEM fuel cell using an observer- 38

based prognostics algorithm and a state variable was created to 39

track its degradation [10]. Wu et al. have predicted the stack 40

voltage degradation of PEM fuel cells by developing a self- 41

adaptive relevance vector machine, which is able to provide 20 42

hours ahead forecast time [11]. Both model-based and data- 43

driven prognostics methods have been developed. For example, 44

Pan et al. have proposed a model-based prognostics method 45

based on Electrochemical Impedance Spectroscopy (EIS) mea- 46

surement and an analytical equivalent circuit model, in which 47

the parameters are obtained by linear regression [12]. A semi- 48

empirical model-based prognostics method based on the adap- 49

tive unscented Kalman filter (AUKF) algorithm has been pro- 50

posed in [13] to improve the initial parameters setting problem. 51

Recent researches have seen increasing interests in developing 52
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data-driven prognostics methods, which can reflect the inher-1

ent relationships between the input and output by simulating2

neural networks and avoid the study of complicated physical3

mechanisms. Data-driven methods have gradually become the4

main methodology for fuel cell prognostics due to their easy-5

to-use and flexible modelling properties [14, 15, 16, 17]. For6

example, echo state network (ESN) has been deployed to fuel7

cell prognostics in recent works thanks to its improve compu-8

tation efficiency [18, 19, 20]. It was first applied to the predic-9

tion of the mean cell voltage of a degrading fuel cell in [21]10

where the accuracy and the computation time are studied re-11

garding the ESN parameters. Furthermore, for predicting the12

fuel cell health state, a multi-reservoir ESN has been devel-13

oped in [22] to optimize the parameterization process and in14

[23], an advanced structure of using moving weight matrix has15

been proposed to improve the prediction accuracy. However,16

these studies are limited to the stack level and have not fully17

considered variable and dynamic loads that may exist in most18

automotive applications. In those cases, the degradation of the19

PEM fuel cells cannot be easily quantified using the measured20

stack voltage, whose value is also affected by system operat-21

ing dynamics [24]. A degradation indicator reflecting intrinsic22

degradation level in dynamic operating conditions is required.23

Some researchers have proposed hybrid degradation indexes in24

multi-time scales for online operation, however, they are lim-25

ited to certain components and the accuracy is not satisfying26

[25]. Li et al. have proposed to represent the dynamic voltage27

response of the PEM fuel cell using linear parameter-varying28

models, and then obtained a real-time health indicator based on29

the online identified model [18]. However, the proposed health30

index in [18] only evaluates the overall performance loss and31

lacks the insights of fuel cell intrinsic degradation analysis. As32

the degradation of the fuel cell is related not only to the ageing33

phenomenon but also to the time-varying online operating con-34

ditions, developing a degradation identification method adapted35

to random external conditions is required.36

This paper contributes to proposing an innovative degrada-37

tion identification method for the PEM fuel cell operating in38

real time, especially under dynamic load. A degradation indica-39

tor is proposed based on the fuel cell polarization model, which40

is extracted using a non-linear regression process regardless of41

the operation conditions. Following that, a multi-step window-42

sliding ESN prognostics method is applied to predict the future43

evolution of the degradation indicator which is identified on-44

line. The parameterization of the ESN is optimized by a ge-45

netic algorithm that ensures improved prediction performance.46

The proposed degradation identification and prognostics meth-47

ods are verified with a long-term operation experimental dataset48

of PEM fuel cell. As there is no additional device to integrate49

into the embedded fuel cell system, the prognostics can thus50

be performed in real time. As the measurements are obtained51

non-intrusively and the proposed method uses directly the out-52

put voltage signal, the prognostics can thus be performed in real53

time.54

The main contributions of this paper can be summarized as55

follows:56

1. A real-time degradation indicator of PEM fuel cells is 57

proposed that can be extracted in both static and dy- 58

namic/random operation conditions; 59

2. An enhanced multi-step ESN-based prognostics strategy is 60

adapted for the prediction purpose; 61

3. The configuration of the proposed prognostics strategy is 62

optimized through a genetic optimization algorithm. 63

4. The proposed prognostics strategy is validated by the long- 64

term experimental PEM fuel cell degradation data. 65

The rest of the paper is organized as follows: Section 2 66

describes the long-term fuel cell degradation experiment and 67

the dataset used to validate the proposed method. Section 3 68

explains the degradation identification method and Section 4 69

presents the enhanced multi-step window-sliding ESN prognos- 70

tics strategy. Finally, Section 5 concludes the paper. 71

2. Data description 72

A long-term fuel cell degradation experiment was carried 73

out in FCLAB Research Federation2, France, and supported 74

by the PRODIG project, which received funding from region 75

Aquitaine, France. The test bench consists of a hydrogen tank, 76

a pressure reducer, purge valves and hydrogen inlet valves, DC 77

electric loads, DC power modules, two fuel cell stack mod- 78

ules, a compact data acquisition system and a computer for con- 79

trol and data logging. The structure of the two-fuel-cell-stack- 80

module is shown in Figure 1. One of the stack modules is used 81

for the dynamic load test, which is supposed to be applied in 82

electric bicycles and is, therefore, tested using a dynamic load 83

profile acquired in real operating conditions. The fuel cell stack 84

is designed with an open cathode and dead-end anode structure 85

and a 24 Vdc air fan is integrated with the stack for air supply 86

and temperature regulation. The speed of the air fan is regu- 87

lated by varying the duty cycle of an input PWM signal of 25 88

kHz so that the temperature is controlled at the optimal level. 89

Moreover, in the cathode side, the air is supplied with an air 90

fan. With the air fan, sufficient quantity of air is guaranteed in 91

normal operation. In other words, the fuel cells always work in 92

the high stoichiometry mode. The pressure in the cathode side 93

is kept equal to the atmosphere pressure. On the anode side, the 94

pressure of hydrogen is fixed and a purge is performed every 30 95

seconds. The fuel cells are self-humidified. Some critical pa- 96

rameters of the studied fuel cell stack module are listed in Table 97

1. 98

The dynamic load profile is obtained in real operating condi- 99

tions of a hydrogen bike, which is supplied by a 36 V battery, 100

while the fuel cell is used as a range extender, connected in par- 101

allel with the battery. Both are used to supply the bike with an 102

average power demand of 53.6 W. A 2.5-hour operation profile 103

is shown in Figure 2, in which the fuel cell starts up to charge 104

the battery until the battery’s state-of-charge (SOC) gets to a 105

pre-defined threshold and shuts down when the battery is fully 106

charged. Based on this profile, the current load profile for the 107

2FCLAB Research Federation: http://www.fclab.fr/
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Figure 1: Two-fuel-cell-module structure

Table 1: Parameters of the studied fuel cell stack module

Parameter Value
Active surface 33.625 cm2

Number of cells 15
Nominal pressure at hydrogen inlet 0.35 bar
Nominal output power 73.5 W
Maximum operating temperature 75 ◦C
Maximum current 13.45 A (0.4 A/cm2)
Lowest permitted stack voltage 7.5 V
Pressure interval at hydrogen inlet 0.1 to 0.4 bar

long-term PEM fuel cell degradation experiment is reproduced1

to reach 1500 hours of operation time. The stack voltage and2

the current are recorded with a sampling frequency of 5 Hz and3

the characterization of the stack is performed every week by4

collecting polarization curves.5

Figure 2: Test profile of a hydrogen bike

The measured stack voltage is shown in Figure 3. Some de-6

tails of the stack voltage and the corresponding current profile7

are plotted in Figure 4 (a) and Figure 4 (b), respectively. Some8

unintentional stops happen during the experiment due to test9

bench incidents. As the degradation of the fuel cell is on a10

longer time scale, i.e., thousands of hours, the stops have little11

influence on its long-term performance loss. 12

Figure 3: Stack voltage evolution in the dynamic operating test

(a) Details of the stack voltage evolution

(b) Details of the current profile

Figure 4: Details of the stack voltage and the corresponding current profile

3. Degradation Identification 13

The performance loss process of the PEM fuel cell stack 14

shown in Figure 3 may be due to different causes, e.g., varying 15

thermal and humidity state, fuel starvation, cycling with large 16

voltage dynamics, etc. It is hard to represent its performance 17

loss by the stack voltage evolution as it is also dependent on 18

the load characteristics and system dynamics. Confronted with 19

this problem, a time-varying degradation indicator is proposed 20
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in this section to evaluate the degradation of the PEM fuel cell1

operating under such dynamic load.2

3.1. Fuel cell polarization model3

The polarization test is a common method to characterize a4

fuel cell. Polarization curve displays the stack voltage output5

V f c against its operating current i. The polarization curve model6

of a n-cell fuel cell can be built as the reversible cell voltage7

V0 subtracting several irreversible losses including the activa-8

tion losses and the crossover losses Vact+cross, the ohmic losses9

Vohmic, the concentration losses Vconc:10

V f c = nVcell = n(V0 − Vact+cross − Vohmic − Vconc) (1)

A detailed parametric model of Vcell is derived in [26, 27]:

Vcell(i) = V0 −
RT
2aF

ln
(

iloss + i
i0

)
− iReq − Bc ln

(
1 −

i
iL

)
(2)

where R is the gas constant, T is the operating temperature, F11

is the Faraday constant, a is charge transfer coefficients of the12

electrodes, iloss is the stack internal current, which is assumed13

to be assimilated to the hydrogen crossover current alone and14

there is no current caused by membrane shorting, i0 is the ex-15

change current at the electrodes, Req is the equivalent ohmic16

resistance, Bc is an empirical parameter considering the water17

and gas accumulation effects and iL is the limiting current at the18

cathode [27].19

3.2. Degradation description20

To find an adequate degradation indicator for the PEM fuel21

cell operating under dynamic current, it is important to know22

that which component degradation will cause which parameter23

varies in (2). Some parameters, like R and F, are constant. T is24

controlled in the experiment so that it is also regarded as con-25

stant, so as V0. Some parameters are difficult to know whether26

they vary with time or not, therefore, they are set to fit the model27

with the measurements, namely a and Bc. iloss is not considered28

as it is assumed to be assimilated to the hydrogen crossover29

current. Thus, the variations of the left three parameters, Req, i030

and iL, should be considered as the source of degradation.31

Req: The resistance increase can be caused by various phenom-32

ena. It includes the electronic and contact resistance in-33

crease, as well as the ionic resistance increase related to34

the membrane degradation [27]. The increase of the elec-35

tronic and contact resistance can be observed at the sur-36

face layer of the bipolar plates, the electrode/electrolyte37

interface, etc, while the increase of the ionic resistance is38

dominant by the electrolyte materials and influenced by39

the membrane water concentration and temperature [28].40

i0: The effective exchange current is a function of the elec-41

trode catalyst loading and the catalyst specific surface area42

[29]. For the fuel cell operated under dynamic load, the43

cycling will lead to the major degradation of the elec-44

trodes: the catalyst layer degradation and the carbon sup-45

port degradation, especially, the catalyst loss is aggravated46

by the potential cycles [30].47

iL: The limiting current on the cathode varies due to the 48

changes on the diffusivity of oxygen, the gas pressure and 49

the thickness of the gas diffusion layer [31]. The diffusiv- 50

ity and the pressure of the oxygen at the cathode are domi- 51

nated cause of the concentration loss, which are influenced 52

by the gas and water accumulation and can be recovered 53

or mitigated by proper water management. The thickness 54

of the gas diffusion layer cannot change over some nano- 55

meters, therefore, it can be ignored [27]. 56

Some works have modelled the variation of the three parame- 57

ters using physical models or semi-empirical models, however, 58

some of them are developed with assumptions, which have not 59

been validated [27]. Moreover, complex parameters bring dif- 60

ficulties when performing prognostics and some measurements 61

needed in the model are not economically or technically fea- 62

sible, therefore, establishing a degradation indicator that can 63

track the degradation of the PEM fuel cell is necessary. 64

3.3. Degradation indicator α 65

Figure 5 plots the polarization curves measured in the 2nd, 66

4th, 5th, 8th and 9th weeks, which indicates different degrees 67

of fuel cell degradation. The polarization curves were obtained 68

by varying the current value between 0 and the maximum (10 69

A). 8 current values, as shown in Figure 5, were set increas- 70

ingly to the test stack through an electronic load. For each test 71

point, the current value was maintained for 10 minutes to get a 72

stable voltage measurement. Then the polarization curves were 73

formed by interconnecting the 8 test points in current-voltage 74

coordinate plane. 75

The model of (2) is identified with different values of Req, i0 76

and iL, whereas the evolutions of the parameters are shown in 77

Figure 6. From Figure 6, it is found that the equivalent resis- 78

tance Req increases by approximately 80%, while the exchange 79

current i0 decreases by a rather same value. The fitting result 80

of iL has remained nearly constant. It is due to that under the 81

dynamic cycling load, the water accumulation is well managed 82

and contributes rarely to the concentration loss. This observa- 83

tion inspires us to assume the same linear evolution of Req and 84

i0 and assign a constant value to iL. Therefore, a unique time- 85

varying variable α(t) is chosen to describe the deviation of the 86

parameters, which reflects the state of health of the fuel cell: 87

Req = Req,init · (1 + α(t)) (3)

i0 = i0,init · (1 − α(t)) (4)

The introduction of variable α(t) ensures the identification 88

of the fuel cell degradation level in the dynamic operation of 89

the fuel cell. Even if the stack is operated under random load 90

and the degradation cannot be directly identified by the voltage 91

signal, α(t) can be used as a degradation indicator to predict 92

indicate the health state of the fuel cell. 93

As degradation can only be observed over long periods of 94

at least several hundred hours, the fuel cell degradation is sup- 95

posed to be quasi-constant on a short time scale, i.e., several 96

hours [10, 32]. It allows us to segment the operation time into 97
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Figure 5: Polarization curves fitted with different α values

short periods and fits the model with different α values on each1

segment. This is realised by wrapping the pre-defined function2

as a model, which contains several parameters and an indepen-3

dent variable α, and fitting it using the Levenberg-Marquardt4

algorithm [33]. The pseudo-code is shown in Algorithm 1.5

Algorithm 1 Identification of the degradation indicator α

Load available measurement data of I, V . Load data
Initialize the parameters in model (2) . Initialization
Define:
Interval = l
Number of steps = j
Time step i = 0
for i = 0, ..., j, do

Define model (2) with (3) and (4) . Model definition
Input X = I[0 + i ∗ l : l + i ∗ l] . Segmentation
Output Y = V[0 + i ∗ l : l + i ∗ l]
Fit the model with α and find the best fit . Model fit

end for

The identification result is shown in Figure 7 and the details6

are in Figure 8, in which the voltage measurement is segmented7

with an interval of 3 hours. It can be noticed that the voltage dy-8

namics in load transition periods are not well established using9

the identified degradation indicator and the polarization curve10

model. In fact, the voltage dynamics in transition states are11

mainly caused by system dynamics, such as thermal dynam-12

ics, which is not considered in the polarization curve model.13

The evolution of the extracted α is shown in Figure 9, in which14

some recoveries in the signal are observed. These recoveries are15

reversible degradation phenomena due to the characterizations,16

which are of different operating conditions that affect the gas17

and water diffusion within the cells are affected. However, these18

reversible phenomena are part of transient regimes and will dis-19

appear once the stack comes back to a permanent regime. As20

the implementation of prognostics relies on the degradation in-21

formation contained in the signal, the extracted α is smoothed22

using a Savitzky–Golay filter to avoid the influence of disturb-23

(a) Change of Req to its initial value

(b) Change of i0 to its initial value

(c) Change of iL to its initial value

Figure 6: Evolution of degradation parameters Req, i0 and iL

ing information. 24

4. ESN-based prognostics method 25

A data-driven prognostics method based on neural network 26

modelling is proposed in this section. The idea is to use the 27

available dataset to build the system behaviour model and to 28

project the current system state to the future. Data-driven prog- 29

nostics methods have the model-free advantage that can be ap- 30

plied regardless of the physical characteristics of the system. In 31

this section, a typical recurrent neural network (RNN), i.e., the 32

ESN, is adapted for the prognostics purpose. 33

4.1. Principle of ESN 34

The ESN has seen its wide use in time-series prediction ap- 35

plications [34]. Different from traditional RNNs, the ESN uses 36

a ”reservoir pool” to build the structure of nonlinear systems, 37

which achieves high prediction speed and competitive predic- 38

tion performance. The implementation of the ESN is shown in 39

Figure 10 and explained in what follows. 40

The state update model of ESN is written as: 41

ũ(t) = f (wresu(t − 1) + winx(t)) (5)

5



Figure 7: Reconstructed and measured stack voltages

Figure 8: Details of the reconstructed and the measured stack voltages

u(t) = (1 − k)u(t − 1) + kũ(t) (6)

y(t) = g(woutu(t)) (7)

where x(t) ∈ RNx and y(t) ∈ RNy are the input and output,1

which, in this study, are the sequences of the degradation in-2

dicator α, u(t) ∈ RNu is the internal state in the reservoir and3

ũ(t) ∈ RNu is its update, ũ(t) = u(t) − u(t − 1), win ∈ RNu×(1+Nx)
4

is the input weight matrix, wres ∈ RNu×Nu is the recurrent weight5

matrix in the reservoir, and wout ∈ RNy×(1+Nx+Nu) is the out-6

put weight matrix. k is the leaking rate with a range of (0, 1].7

The tanh function is generally adopted as the activation func-8

tion f (•) of the reservoir, and g(•) of the output layer could9

be defined with a simple linear function such as g(•) = 1. win10

and wres are initialized randomly and they are constant so that11

there is no need to train them. Only wout is going to be trained12

by linear regression. When the training dataset is provided, de-13

noted as Xt = [x(1), ..., x(Nt)] and Yt = [y(1), ..., y(Nt)], where14

Nt is the number of sequences in the input and the output, the15

corresponding reservoir states, Ut = [u(1), ...,u(Nt)] can be cal-16

Figure 9: Evolution of the dynamic degradation indicator α

Figure 10: ESN structure illustration

culated according to (5) and (6). The output weight matrix is 17

calculated as: 18

wout = (ΨT
t Ψt + λI)−1ΨT

t Yt (8)

where I is Nu order unit matrix, λ is the regulation parameter 19

and 20

Ψ = [1; Xt; Ut] =

 1 1 . . . 1
x(1) x(2) . . . x(Nt)
u(1) u(2) . . . u(Nt)

 (9)

The general working procedure is as following: 21

1. Choose the size of the reservoir Nu and other parameters 22

concerning the level of sparsity of connection, as well as 23

the leakage; 24

2. Generate the input weights win by sampling from a random 25

binomial distribution; 26

3. Generate the reservoir weights wres by sampling from a 27

uniform distribution; 28

4. Calculate the update of the state in the reservoir as the ac- 29

tivation function f (•) of the input at the current time step 30

multiplied by the weights plus the previous state multi- 31

plied by the the reservoir weights, as written in (5); 32

5. Create input sequences and connect them to the desired 33

outputs using linear regression and obtain the trained ESN. 34

6



Based on the procedure of training an ESN, a input window1

and a prediction window need to be defined, which are used to2

formulate the input sequences and the output sequences of the3

ESN, respectively. The input window length is the length of the4

input sequence and the prediction window length is how many5

steps are going to be predicted following the input sequence.6

The input window length and the prediction window length are7

selected according to the volume of available input data. Sup-8

posing the number of available measurements s is up to N, a9

window length of p is used for the input sequence, written as:10

x(i) = [s(i + 1), s(i + 2), ..., s(i + p)], i = 0, ...,N − p (10)

For simplicity, it is written x(i) = [s(i + 1) : s(i + p)] in the fol-11

lowing text. Then, the corresponding output with a prediction12

window length of q is written as:13

y(i) = [ŝ(i + p + 1), ŝ(i + p + 2), ..., ŝ(i + p + q)],
i = 0, ...,N − p

(11)

Similarly, it is written with the form of y(i) = [ŝ(i + p + 1) :14

ŝ(i + p + q)] in the following text.15

4.2. Adapt ESN for prognostics purpose16

The prognostics process can be summarized as a process of17

estimating a system’s remaining useful life and the uncertain-18

ties. The international organization for standardization (ISO)19

committee has defined prognostics as [35]:20

21

Standard ISO 13381 (2004). The aim of prognostics is
the ”estimation of time to failure and risk for one or
more existing and future failure modes”.

22

23

Therefore, to perform prognostics, we need to predict the24

system performance until the system failure. Based on the time25

series forecasting process described in Section 4.1, the last p-26

length sequence in the training phase is used to predict a se-27

quence with the length of q. Then, the prognostics starts, in28

which we cannot predict the subsequent states because the in-29

put sequences run out, the prediction cannot continue. As we30

need to continue to predict the time series until the end of life31

of the system, new input sequences should be formulated to32

successively move the input window. Thus, to retain the degra-33

dation tendency and to manage the prediction uncertainty, the34

predicted values of the last step with a sliding window of length35

m are reinjected to the input sequence of the next step, as shown36

in Figure 11. Therefore, the last m values of the input sequence37

are indeed the predicted values. This process allows the con-38

tinuous formulation of the input even without measurements so39

that the prognostics can be realised. This process is repeated40

until reaching the end-of-life (EOL) threshold, which, in this41

paper, is supposed to be the value of 0.423, 97% of the maxi-42

mum degradation of the tested fuel cell regarding the length of43

the experiment. 1400 hours for the tested fuel cell.44

The pseudo-code of implementing ESN adapted for prognos-45

tics purpose is shown as Algorithm 2, where Ntrain is the num-46

ber of training steps equal to N − p and Npredict is the prediction47

steps until the system’s EOL.48

Figure 11: ESN adapted for prognostics purpose

4.3. Implementation of ESN-based prognostics 49

In order to optimize the configuration of the ESN, the pro- 50

posed ESN-based prognostics method consists of three phases: 51

training phase, evaluation phase and prediction phase. The 52

length of the identified degradation indicator α, shown in Fig- 53

ure 9, is also divided into three parts for the use of each phase. 54

The ESN is trained in the training phase using the prepared in- 55

put and output sequences and then, the following 400 hours are 56

regarded as the evaluation phase. During the evaluation phase, 57

the measurement is supposed to be unavailable so that the out- 58

put sequence is reformulated by the predicted values of the last 59

step. The trained ESN model is used to output the predictions of 60

α and the real values of α is used to evaluate the performance of 61

the prognostics. and determine optimal parameters of the ESN. 62

Here, the result of prognostics is evaluated by calculating the 63

root mean square error (RMSE), written as (12). In order to find 64

the optimal settings of the ESN, an optimization method, i.e., 65

the genetic algorithm (GA), is applied to generate different pa- 66

rameter combinations and run the prognostics algorithm repeat- 67

edly until find the optimal settings. optimize the configuration 68

of the ESN. The idea is to code the unknown parameters into bi- 69

nary digits, known as a chromosome, then, calculate the RMSE 70

on the evaluation phase by selecting, crossover and mutating 71

the chromosomes repeatedly until finding the optimal solution 72

[36]. The advantage of GA is its ability to locate the global 73

optimum or near-global optimum solution without exhausting 74

search of the solution space. Besides, the processing time only 75

increased as the square of the project size and not exponentially. 76

Some configured parameters of the proposed ESN-based prog- 77

nostics method and the adopted GA are listed in Table 2, where 78

the length of the sliding window of m and the number of reser- 79

voir neurons N are optimized by the GA. The influence of other 80

ESN parameters in prognostics results is not so critical and the 81

configuration method in [37] has been adopted. 82

RMS E =

√∑n
k=1(xk − x̂k)2

n
(12)

Finally, in the prediction phase, no measurement is available 83

while the ESN has already been optimized and validated by the 84

evaluation phase, therefore, the data of both the training phase 85

and the evaluation phase are used to train the ESN and output 86

the prognostics results on the prediction phase are entered into 87
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Algorithm 2 ESN for prognostics purpose

Load training dataset s . Load data
Smooth the training data . Smoothing
Normalize the training data . Normalization
Define:
Input window length = p
Prediction window length = q
Sliding window length = m
Number of training steps = Ntrain

Number of prediction steps = Npredict

Time step i = 0
while xi < xEOL do

for i = 0, ...,Ntrain, do . Training phase
ytrain[i, :] = s[i + p + 1 : i + p + q] . Prepare input

and output
xtrain[i, :] = s[i : i + p]

end for
Fit the ESN with prepared input xtrain and output ytrain

Initialize xpredict[0, :] by connecting x[Ntrain + m : Ntrain +

p] and ytrain[−1, 0 : m]
for i = 0, ...,Npredict, do . Start prognostics

Predict ypredict[i] using the fitted ESN and xpredict[i, :]
Reformulate xpredict[i, :] by connecting xpredict[i −

1,m : p] and ypredict[i, 0 : m] . Reformulate input
end for

end while

Table 2: Configuration of ESN-based prognostics method

Parameter Value
Input window length p 50
Prediction window length q 10
Leaking rate 0.2
Spectral radius 0.6
Regression parameter 0.01
GA population size 100
Number of generations 400
Length of chromosome 10

the trained ESN model and output the prediction results. The1

whole procedure is shown in Figure 12. The prognostics results2

are discussed in the following section.3

4.4. Result discussion4

For comparison, at first, m is fixed at 1. The optimal N is5

found between 10 and 400 using an iterating loop. The opti-6

mal values of N, the RMSEs of the prognostics results in both7

evaluation and prediction phases and the implementation time8

with different training data lengths are recorded in Table 3. The9

prognostics performance on the evaluation phase and the pre-10

diction phase, as well as the errors are shown in Figure 13 for11

a visual check. The beginning of the training phase has lower12

accuracy because of the insufficient training data. After 20013

hours, the training error is closed to zero, which demonstrates14

that the configure ESN is of good performance. During the eval-15

uation phase, the measurement is supposed to be unavailable so16

Figure 12: Procedure of ESN-based prognostics method

that the output sequence is reformulated by the predicted values 17

of the last step, as described in Section 4.2. The optimal result 18

is plotted in red dashed line. However, when it comes to the 19

prediction phase, the RMSEs get worse. This is because there 20

is only one predicted value being considered in the next step, 21

which could be accidental and cannot transfer enough informa- 22

tion. Moreover, the implementation time of GA is less than 1 23

minute, while the implementation time of ESN-based prognos- 24

tics is less than 1 second. 25

Table 3: ESN-based prognostics results (m=1)

Training data length (hours) 500 600 700 800
m 1 1 1 1
N 90 94 83 81
RMSE of training 0.036 0.019 0.012 0.017
RMSE of evaluation 0.030 0.032 0.056 0.039
RMSE of prediction 0.112 0.140 0.304 0.182
Prognostics implementation
time

0.93s 0.94s 0.93s 0.94s

Figure 14 shows the prognostics results with different train- 26

ing data lengths, in which both m and N are optimized. The 27

GA optimization results of the two parameters and the RMSEs 28

of both the evaluation phase and the prediction phase, together 29

with the improvements compared with Table 3 are shown in Ta- 30

ble 4. By optimizing the number of values that are reinjected 31

into the input sequence of the next step, prognostics results in 32

the prediction phase have been improved up to 90.8%. 33

4.5. Comparison with different methods 34

The proposed prognostics method is compared with differ- 35

ent methods in the literature. The comparison methods include 36

particle filter [9] and stacked long short-term memory (LSTM) 37

[38]. The training phase considers the same generated sam- 38

ples. In the compared particle filter method, a second order 39

exponential model is used, and the details of model parameters 40

of particle filter prognostics method is listed in Table 5. The 41

stacked LSTM used for comparison is with two hidden layers 42

8



(a) Prediction result with training data length = 500 hours (b) Prediction result with training data length = 600 hours

(c) Prediction result with training data length = 700 hours (d) Prediction result with training data length = 800 hours

Figure 13: Implementation of prognostics with different training data lengths (optimizing N)

Table 4: GA optimization and ESN-based prognostics results (optimizing m)

Training data length (hours) 500 600 700 800
Optimized m 3 5 3 3
Optimized N 95 80 234 265
RMSE of training 0.017 0.019 0.019 0.005
RMSE of evaluation 0.031 0.039 0.047 0.033
Improvements of evaluation -3.3% 2.5% 16.1% 1.5%
RMSE of prediction 0.051 0.017 0.028 0.020
Improvements of prediction 54.5% 87.9% 90.8% 89.0%
Prognostics implementation
time

0.91s 0.90s 1.12s 1.03s

and a dense (output) layer for prediction. The details of the con-1

figuration of the stacked LSTM prognostics method is shown in2

Table 6.3

The performance of the three different prognostics method is4

compared in Table 7. As it can be seen from Table 7, the pro-5

posed multi-step ESN-based prognostics method has achieved6

the best prediction accuracy at 600-hour, 700-hour and 800-7

hour training data length, while the accuracy is worse than the8

particle filter method at 500-hour training data length. This is9

because when more information is fed to the model, the model10

can leverage more trend information, thus improving the pre-11

Table 5: Model parameters of particle filter prognostics method

Parameter Value
Input dimension 1
Output dimension 1
Number of state variables 7
Number of particles 2000

diction accuracy. Besides, the performance of stacked LSTM 12

prognostics method is the worst due to the non-optimized con- 13

figurations. When comparing the implementation time, the pro- 14

posed ESN runs the fastest, which is more competitive for on- 15

line applications. 16

5. Conclusion 17

A degradation identification and prognostics method for real- 18

time operating PEM fuel cells was proposed in this paper. The 19

degradation indicator was derived based on the polarization 20

model and could be extracted from the stack voltage measure- 21

ments with random system dynamics. To perform prognostics, 22

an enhanced multi-step ESN was adapted for the prediction pur- 23

pose and the parameters of the ESN were optimized through an 24

9



(a) Prediction result with training data length = 500 hours (b) Prediction result with training data length = 600 hours

(c) Prediction result with training data length = 700 hours (d) Prediction result with training data length = 800 hours

Figure 14: Implementation of prognostics with different training data lengths (optimizing m and N)

Table 6: Model parameters of stacked LSTM prognostics method

Parameter Value
Time steps 4
Number of neurons on hidden layer 1 100
Number of neurons on hidden layer 2 100
Number of neurons on dense layer 1
Optimizer adam
Loss mean squared error
Epoch number 50
Batch size 50
Dropout rate 0.01

evaluation phase by a genetic algorithm. Compared to non-1

optimized case, the RMSEs of the predictions were improved2

up to 90.8% by introducing an optimized sliding window length3

when reformulating the input of the ESN in the prognostics4

phase. Moreover, the proposed method achieved better accu-5

racy and less computation time when comparing with other6

prognostics methods.7

The proposed method of degradation identification and prog-8

nostics allows one to estimate and predict the PEM fuel cell9

health state under variable and dynamic operating conditions.10

The degradation identification can be realized in real time with-11

out using supplementary measurements and the prognostics 12

strategy is model-free. This method is control-oriented and can 13

facilitate the development of degradation tolerant control strate- 14

gies as well as advanced predictive maintenance solutions. 15
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[37] M. Lukoševičius, A Practical Guide to Applying Echo State Networks,19

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 659–686.20

doi:10.1007/978-3-642-35289-8-36.21

[38] F.-K. Wang, X.-B. Cheng, K.-C. Hsiao, Stacked long short-22

term memory model for proton exchange membrane fuel cell sys-23

tems degradation, Journal of Power Sources 448 (2020) 227591.24

doi:https://doi.org/10.1016/j.jpowsour.2019.227591.25

12


