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Abstract—Background: Downstream tasks, like clinical textual data
classification, perform best when given good quality datasets. Most
of the existing clinical textual data preparation techniques rely on
two main approaches, removing irrelevant data using cleansing tech-
niques or extracting the valuable data using feature extraction tech-
niques. Although both approaches showed promising results on exper-
imental datasets, they still have limitations, mainly when applied to
real-world datasets. The latter datasets are challenging because they
might include incomplete, inconsistent and heterogeneous records.
Therefore, understanding the nature of the data is vital in order to
improve its quality before its transmission to the classification model.

Methods: This paper proposes a cleansing approach (called EMTE)
which extracts phrases (medical terms, abbreviations, and negations)
using pattern-matching rules based on the linguistic processing of the
clinical textual data. Without requiring any training, EMTE extracts the
valuable medical data from clinical textual records even if they have
different writing styles. Furthermore, since EMTE relies on dictionaries
to store abbreviations and pattern-matching rules to detect the ab-
breviations, negations, and medical terms, it can be easily maintained
and extended for industrial use.

Experiments: To evaluate the performance of our approach, it
was compared to three other techniques. All four cleansing techniques
were applied to a large industrial imbalanced dataset, consisting of
2.21M samples from different specialties with 1,050 ICD-10 codes. The
outputs of these cleansing techniques were fed to several Deep Neural
Network (DNN) algorithms to solve the ICD-10 (International Classifi-
cation of Diseases, 10t edition) multi-label classification problem. In
this problem, the clinical textual samples are the input data, and the
ICD-10 codes are the actual labels.

Results: The experimental results on several Deep Neural Net-
work (DNN) algorithms showed that our cleansing approach signifi-
cantly improves the trained models’ performance when compared to
the other tested techniques and according to different metrics.

Index Terms—Deep Learning, Natural Language Processing (NLP),
Computer-Aid Diagnosis, Chief Complaints, Text mining, Abbreviations,
Negations, Phrases.

1 Introduction

The International Classification of Diseases, the 10*" edition
(ICD-10), is a standard tool to classify disease diagnoses
from a patient’s medical signs, symptoms, and other health
conditions. Governments, Health Insurance Companies, and
Healthcare providers also use the ICD codes to report and
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communicate patients’ medical cases. ICD-10 codes are hi-
erarchical alphanumeric labels with a length between three
to seven characters depending on the depth of the hierarchy
and the disease’s specificity level. The specificity of the ICD-
10 codes is crucial and controls which treatment plan the
physicians follow on the patients. For example, in Table 1,
"K40.21" does not require a direct surgical intervention while
"K40.11" requires an immediate surgical intervention.

On the other hand, physicians usually manually assign
one or multiple ICD-10 codes to describe the patient’s ill-
ness and symptoms during every patient visit. However, this
manual operation is time-consuming and error-prone due to
the large available number of ICD-10 codes. Consequently,
hospitals and medical institutes are motivated to turn to auto-
diagnosis tools. In recent years, researchers have provided
several approaches that tackle different problems in health-
care, including ICD-10 prediction from clinical textual data,
extracting medical terms using feature extraction techniques,
and cleansing approaches to remove the irrelevant data and
purify the input data.

Unfortunately, most of these existing approaches have
limitations and show poor results when applied to industrial
datasets [1]. The significant limitations of these approaches
are: studying part of the ICD-10 codes without preserving the
specificity of the codes, applying data preprocessing without
studying its impact on the data, and using small datasets to
train models to extract features from clinical textual data
without studying other essential features like the specialty
[2], [3]. We believe the main reason behind this gap is the
lack of knowledge about the nature of the data. Clinical
textual data are diverse, incomplete, and redundant. They
includes abbreviations, periods, negations, and terms of one
or more words. Also, these data have different writing styles.
For example, negations could appear on the left side like
"no rectal bleeding" or the right side like "smoker: no". In
addition, a medical term could appear with its expanded form
("long-term") "Diabetes Mellitus" or using an abbreviated
form ("short-term") "DM". For all these reasons, extracting
valuable information from medical datasets is complex, and it
is essential to understand how physicians encode the medical
phrases and the different writing styles available.

This study aims to improve the ICD-10 prediction perfor-
mance by improving the data quality. In particular, we provide
a preprocessing data approach for clinical textual data that
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| Code Description

International Classification of Diseases (10" edition, Australian Modification)

Bilateral inguinal hernia, with obstruction, without gangrene, not specified as recurrent

Bilateral inguinal hernia, without obstruction or gangrene, not specified as recurrent

ICD-10-AM
Chapter XI Diseases Of the digestive system (K00-K93)
| K40-K46 Hernia
L K40 Inguinal hernia
| K40.0 Bilateral inguinal hernia, with obstruction, without gangrene
| K40.00
L K40.01 Bilateral inguinal hernia, with obstruction, without gangrene, recurrent
| K40.1 Bilateral inguinal hernia, with gangrene
| K40.10 Bilateral inguinal hernia, with gangrene, not specified as recurrent
L K40.11 Bilateral inguinal hernia, with gangrene, recurrent
L K40.2 Bilateral inguinal hernia, without obstruction or gangrene
| K40.20
L K40.21 Bilateral inguinal hernia, without obstruction or gangrene, recurrent

Table 1. The hierarchical presentation of the "K40" category in the ICD-10 codes with their description.

131 year old female since one month ago has complained of epigastric

pain , increased after meals, associated with SOB , no nausea , no boweli
i habits changes. no rectal bleeding,no weight loss,good appetite '
no family history of CRC cancer.

Figure 1: An example of unprocessed chief complaint that
contains abbreviations like "SOB", "CRC" and negations like

"no weight loss", "no nausea" and terms like "epigastric pain".

enhances the quality of data fed to state-of-art NLP models,
while preserving the maximum information possible. Our
approach employs the power of Part of Speech (POS) tagging
[4] and the pattern-matching rules (PMRs) to extract valuable
data and eliminate irrelevant data. With the help of a medical
team, we built the pattern-matching rules to extract phrases
(negations with their different writing styles, abbreviations,
and medical terms). In this work, the clinical textual data
consists of chief complaints (CC) and History of Presence
Illness (HPI) written by physicians as depicted in Figure 1.
The main contributions of this study can be summarized as
follows:

o Provide a cleansing approach for clinical textual data

using dictionary based pattern-matching rules. Our ap-

proach extracts phrases (negations and medical terms)
from clinical textual data and combines the detected
words as one medical phrase.

Replace the short-term abbreviations with their full-term

forms, considering the specialties as an additional fea-

ture to reduce abbreviation ambiguity.

o Improve negation detection covering different writing
styles.

o Provide a comparative study that uses a large industrial
dataset with 2.21M samples and 1,050 ICD-10 codes and
shows that our cleansing approach has a better impact
on the performance of various NLP models for solving
the multi-label ICD-10 classification problem than three
different existing cleansing techniques.

The rest of this paper is organized as follows: Section
3 presents some of the state-of-the-art text cleansing tech-
niques and feature extraction along with their shortcomings.
Our cleansing approach is detailed in Section 4. The results
of the comparative study between our approach and other
cleansing methods are exposed in Section 5. Section 6 de-

tails our findings and recommendations to efficiently cleanse
medical text data. This article ends with a summary of the
contributions, and some future works are outlined.

2 Background

This section presents a brief background about Natural Lan-
guage Processing (NLP) and the significant challenges to
overcome when cleansing clinical textual data.

2.1 POS tagging

Part of Speech tagging is a Natural Language Processing
(NLP) process in which every token in the text is assigned a
grammatical tag based on its definition and context. A token
in a text might be a word, punctuation or space. "POS" tags
contain several labels like "ADJ" which stands for "Adjective"
and "PRON" stands for "Pronoun" [5]. In addition, Depen-
dency Parsing (DEP) [4] is another NLP process that builds
relations between the words in the text, based on the POS
tags [6]. Many available tools, like CoreNLP [7], Spacy [8],
Gensim [9], and NLTK [10], use Machine Learning algorithms
to offer many NLP functionalities like tokenization, POS tag-
ging, sentence segmentation, dependency parsing [38], [7],
and entity recognition.

As an example, Table 2 shows a part of the linguistic
features output of the chief complaint show in Figure 1,
generated by the tool "Spacy" [8]. It shows the tokenization
TEXT, the lemmatization of the token LEMMA, POS, TAG, and
DEP for every token (word, punctuation, space) in the chief
complaint. This text tagging can be used to build pattern-
matching rules to discover negations, multi-words phrases,
etc.

2.2 Abbreviations in Healthcare

Abbreviations are frequently used in healthcare to reduce
time and typos. However, they create a significant challenge
for the machine learning techniques due to their ambiguity.
Indeed, the same abbreviation could have different meanings
depending on the context and the specialty. When analyzing
clinical text, three types of abbreviations can be found:
i) General abbreviations that have a common meaning,
such as "dx" which stands for "diagnosis" or "c/o" which
stands for "complaining of".



ii) Specialty-specific abbreviations, where the meaning dif-
fers from one specialty to another, such as "CLD" which
stands for "Chronic Liver Disease" in the Gastroenterol-
ogy department and "Chronic Lung Disease" in the Pul-
monary unit. Similarly, "MS" is the abbreviation of "Mul-
tiple Sclerosis" in the Neurology department and "Mitral
Stenosis" in the Cardiology and Radiology departments.

iii) An Ambiguous abbreviation that has a contextual related
meaning, such as "LFT", which either stands for "Lung
Function Test" or "Liver Function Test".

Many studies have tackled the abbreviation ambiguity
using supervised [11]1, [12], [13], [14] and unsupervised [15],
[16] machine learning approaches. However, most of these
studies have limitations. They were only trained on clinical
textual data without taking other essential parameters like
the specialty into consideration. Therefore, these approaches
perform poorly on multi-specialty large datasets [17] because
they miss many abbreviations or suggest a wrong expanded
form of the abbreviated term.

2.3 Negation detection

In clinical documents, the terms "no", "nil", "absence of",
"negative”, "n’t","-ve" are often used for negation. Hence,
removing negations drastically changes the semantics and
the interpretation of clinical notes. For instance, removing
the word "no" from "patient has no cancer" will completely
change its meaning. Also, removing the punctuation "—" or
"+" from ("-ve" or "+ve") changes the meaning from ("nega-
tive" or "positive") into "ve" which refers to "vaginal exami-
nation" in the "Obstetrics and Gynecology" department and
"ventricular extrasystoles" in the Cardiology department. It is
important to examine the negation indicators beside a word
entity and merge data with semantic spaces to appropriately
detect a negation. Moreover, physicians could write the nega-
tions in different forms such as: Non smoker, doesn’t smoke,
smoker: no, or smoker: nil which increases the complexity of
detecting the negations. Most of the existing solutions rely
on the Dependency Relation (DEP) like in [18], [19]. Unfortu-
nately, most of the existing negation detectors fail to detect all
the potential negations since the DEP process cannot handle
all the negations writing styles in clinical textual data [20].

3 Related work
3.1 Existing Cleansing techniques

Many research studies analyzed clinical textual data using
machine learning techniques. In some of these studies [21],
[22], [23], researchers trained the models directly on the
raw data without any preprocessing. They only relied on the
power of the machine learning techniques, like deep neural
networks (DNN), to discover the relationship among the data.
The main limitations of such approaches are increasing the
training complexity and the dimensional space, potentially
leading to over-fitting problems and low testing accuracy [24].

On the other hand, other studies [25], [26], [27], [28] have
applied standard cleansing (SC) techniques like stemming,
lemmatization, stop-words removal, and punctuation removal.
Unfortunately, these preprocessing steps reduce the data
quality instead of improving it. For example, removing stop-
words like "no", "has", "none", "not" change the meaning of
the input data. As an example, both complaints "a patient

3

has a colon cancer for six months complaining from severe
abdominal pain" and "a patient with severe abdominal pain,
no colon cancer in family history" would have the same
meaning if has and no were removed. Moreover, removing
punctuations from clinical textual data increases the chal-
lenge of detecting the proper abbreviations and distinguish-
ing between dates and numbers.

3.2 Feature Extraction

Feature Extraction (FE) and Named Entity Recognition (NER)
using machine learning are two tasks in Natural Language
Processing (NLP) that were widely used in the last few years.
The former is a process of identifying and extracting impor-
tant characteristics from data, while the latter identifies and
classifies named entities in text. In healthcare, extracting all
essential features from data requires enormous resources and
is time-consuming due to the high dimensionality of the data.
FE and NER came into play to help identify the relevant data
such as diseases, treatments, abbreviations, and symptoms;
this helps reduce the vocabulary size and hyperspace dimen-
sion of the data. However, these approaches require massive
labeled data for training using the supervised approaches
[29]. Moreover, the diversity of data makes these approaches
inefficient for both supervised and unsupervised approaches
[30], [1]. In addition, the generated pre-trained models from
these approaches require large efforts to maintain and up-
date them to capture the new terms and to fix wrongly
predicted entities, which is time-consuming. Unfortunately,
with all these limitations, many of the existing FE and NER
approaches are not ready for healthcare industrial use where
the data are massive and complex.

On the other hand, other feature extraction approaches
use pattern-matching rules (PMR). PMRs are a set of rules
manually written to identify patterns using lexico-syntactic
patterns to identify the occurrence of similar entities in NLP.
PMRs are widely used for financial topics [31]. Unfortu-
nately, rare research topics investigated these approaches
in healthcare because since 2018 they mainly concentrated
their work on machine learning techniques [32]. Unlike the
feature extraction tools using machine learning techniques,
PMRs are easy and faster to develop; they do not require
labeled datasets or downstream tasks.

3.3 Word embeddings

Word Embedding is a technique used in natural language pro-
cessing (NLP) that represents words in a vector form. Many
techniques are available for word embeddings such as Bag-
of-Words [33], Word2Vec "W2V" [34], Glove [35], Text Vec-
torization using Padding sequences "PS" [36], Sentence2Vec
"S2V" [37], BERT [38], ELMo [39]. Word Embedding is an
essential step for converting the textual data into numerical
representation for proceeding with the downstream tasks.
This paper aims to provide an approach for improving
the data quality from the data preparation phase without
losing vital information and considering crucial industrial
requirements such as flexibility and maintainability.

4 Materials and Methods

EMTE (Enhanced Medical Terms Extractor) is an approach
that extracts phrases and eliminates irrelevant data from



TEXT LEMMA POS TAG | DEP TEXT LEMMA | POS TAG DEP

31 31 NUM CD nummod , , PUNCT | , punct
year year NOUN | NN npadvmod | no no DET DT neg

old old AD]J I amod bowel bowel NOUN NN compound
female female NOUN | NN nsubj SPACE _SP dep

since since SCON]J | IN prep habits habit NOUN NNS | compound
one one NUM CD nummod changes | change NOUN NNS | conj
month month NOUN | NN npadvmod | . . PUNCT | . punct

ago ago ADV RB pcomp no no DET DT neg

has have AUX VBZ | aux rectal rectal ADJ JI amod
complained | complain VERB VBN | ROOT bleeding | bleeding | NOUN NN ROOT

of of ADP IN prep , , PUNCT | , punct
epigastric epigastric | AD]J JJ amod no no DET DT neg

pain pain NOUN | NN pobj weight weight NOUN NN compound

Table 2. Tokenization, Lemmatization, POS tagging, and dependency parsing result of the chief complaint in Figure 1 using

Spacy.

the clinical textual data. A phrase is a set of one or more
tokens that could be abbreviations, negations, medical terms,
other conditions, signs, and symptoms. A token is a word,
punctuation, or number. For example, "no rectal bleeding" is
a phrase while "no", "rectal”, and "bleeding" are tokens.

EMTE depends on PMRs encoded using a combination
of the linguistic features (POS, TAG, LEMMA, and DEP) to
detect phrases from clinical textual data. In addition, it relies
on JSON dictionaries to store the phrases’ PMRs. Unlike the
pre-trained models, JSON dictionaries are simple, flexible,
and maintainable, which are desirable solutions for industrial
use. EMTE has four main phases: (1) extraction of tokens
from every chief complaint, (2) load dictionary rules, (3)
extract relevant phrases, (4) generate new processed chief
complaints. The dictionaries and algorithms used by EMTE
are presented in the next subsections.

4.1 Dictionaries and rules

The main objective of this paper is to detect the medical
terms, abbreviations and negations in chief complaints during
the cleansing phase using pattern matching rules. It should
improve the performance of the machine learning models
applied on the cleansed data. For example, detecting the
abbreviations and replacing them with their full-terms should
reduce the vocabulary size and the hyperspace dimension.

The PMRs were developed as follows: First, with the help
of a medical team and after analyzing many chief complaints
and discharge summaries, the different structures of clini-
cal terms (length and syntactical orders) were enumerated.
Second, the discovered structures were translated into lin-
guistic keywords (VERB, ADV, NOUN, PRONOUN, NEG, and
LEMMA). Finally, the patter-matching rules to detect these
structures were developed using the Spacy syntax for the
sake of experiments. The resulting PMRs and the abbrevia-
tions were stored in two JSON dictionaries denoted, R and A
respectively.

4.1.1 Abbreviation rules

As mentioned in Section 2.2, the existing solutions have
limitations and do not clarify the ambiguity of abbreviations.
To reduce the abbreviations ambiguity, the physician’s spe-
cialty was considered while processing the clinical textual
data. Furthermore, to ensure flexibility and maintainability,
the abbreviation dictionary stores both general and specific
abbreviations with their corresponding set of specialties.

[{
"short": ["dx","diag"],
"full": "diagnosis",
"specialties": []
ol
"short": "pmh",
"full": "past medical history",
"specialties": []
bip i
"short": ["cs","c/s","c/sec", "c.s."],
"full" :"caesarean section",
"specialties":["Obstetrics and Gynecology"]
Yo o
"short": ["cs","c/s"],
"full" :"compartment syndrome",
"specialties":["orthopedics"]
bip i
"short": ["hvs"],
"full" :"hyperventilation syndrome",
"specialties":["emergency", "pulmonary"]
Yo o
"short": ["hvs"1],
"full" :"high vaginal swab",
"specialties":["Obstetrics and Gynecology"
i3l

Listing 1: A sample of the abbreviations dictionary in JSON.

Listing 1 shows a few entries in the JSON abbreviation
dictionary. Every entry represents an abbreviation with three
attributes: ("short", "specialties"”, and "full"). The key "short"
stores the list of possible short-terms of the abbreviation, like
"dx" and "pmh". The key "full" corresponds to the full expan-
sion of the abbreviated term. For example, "hyperventilation
syndrome" is the full-term of "hvs".

Finally, the key "specialties" stores the list of specialties
where the abbreviated term can be used without ambiguity.
For example, the abbreviation "hvs" in Listing 1 has the same
meaning in the "Emergency and Pulmonary" departments
and can be used with no ambiguity. On the other hand, it
has a different meaning when used in the "Obstetrics and
Gynecology" department. For this reason, a second entry
for this abbreviation was added to the dictionary with the
"Obstetrics and Gynecology" specialties. It must be noted
that key "specialties" could be empty if the abbreviation
is a general non-ambiguous term. For instance, it is empty
for the abbreviation "dx" because it has the same meaning,
"diagnosis", in all specialties.



[{

"type": "negation"

"rule": {"label": "negation", "pattern":[[{’P0S’
:'NOUN’}, {"IS_PUNCT': True},{'DEP’':'neg’}],

[{"POS’':"NOUN"},{"IS_SPACE’: True},{'DEP’':'neg’}
11}

bt

"type": "negation"

"rule": {"label": "negation", "pattern":[[{'DEP’
:'neg’},{'P0OS’: "NOUN’},{'POS’:'NOUN"},{’
POS’:"NOUN"}11}

A

"type": "term",

"rule": {"label": "gender", "pattern":[{’LEMMA’:
{"IN':["girl", "boy","man", "woman", "lady","
guy","female","male"]}}1}

A

"type": "term",

"rule": {"label": "entity", "pattern":[{'POS’:’
ADJ'},{'POS’:'NOUN’"},{"POS’:'NOUN"}1}

A

"type": "term",

"rule": {"label": "entity", "pattern":[{'P0S’:’
ADJ’},{'POS’:"ADJ’"},{"POS’:"NOUN"}]}

1

Listing 2: A sample of the PMRs dictionary.

4.1.2 Negations and medical terms rules

Physicians use medical terms and negations in different ways.
For example, they may use the full-terms (e.g., past medical
history), or the short-terms (e.g., pmh). They may also put
the negations on the left side (e.g., no pmh), or the right
side (e.g. pmh: no). Fortunately, these different writing styles
follow some patterns, which can be captured using PMRs. For
example, the medical term, "epigastric pain", was detected
using a rule that catches the pattern: "Adj" followed by a
"Noun". If for the same phrase more than one rule can be
applied, the one with the most tokens is applied. For example,
the rule that detects the negation, "no epigastric pain" con-
sisting of three tokens, is applied instead of the one that just
detects the medical term, "epigastric pain" consisting of just
two tokens. If two rules concern the same number of tokens,
the priority is given to the negation rule, otherwise the first
rule is selected. Figure 2 shows the detected phrases from
the raw chief complaint, presented in Figure 1, using EMTE.

Listing 2 shows a part of the rules dictionary. These rules
were built with the help of a medical team after analyzing
the different writing styles of physicians working in a multi-
national Saudi private hospital. Every entry in the JSON rep-
resents a rule definition that contains two attributes ("type"
and '"rule"). The first key represents the type of the rule,
which is either a "negation" or a "medical term". The second
attribute stores the pattern-matching rule. For example, the
second entry in Listing 2 detects a negation phrase formed of
a negation determiner followed by three nouns, such as "no
bowel habits changes". EMTE can also detect the words that
start with the "non" prefix, such as "nonsmoker", "non-stick"
and "nonfat". These words are replaced by the following form:
"non smoker" " non stick" and "non fat". Splitting these words
helps in unifying the terms and reducing the vocabulary size.

4.2 Preliminary definitions and notations

This subsection defines the notations used in the presentation
of the EMTE approach.

Let ¥ = {o,};-1 be the set of the z available special-
ties. Let C = {S;}j-, be a raw data corpus consisting of n
samples, S;. Every S; € C is a tuple with three attributes,
Si = (13,04, A:). S; contains the chief complaint text 7;, the
specialty o; € X, and the set of true labels \; (i.e. "ICD-10
codes"). Also, let I" be the annotation function that splits the
chief complaint 7; into tokens (word, punctuation, space) and
applies POS tagging on the resulting tokens. Finally, let ¥ be
the parser function that applies a set of rules on a given set
of tokens.

Token: A chief complaint 7; contains a set of tokens
{ti;}5—1 where k is the number of tokens. Every token ¢;; con-
tains five attributes (text,;, lemmaij;, posij, tag:;, dep;;) where
text;; is the splitted token, lemma;; is the lemmetization of ¢;;
and pos;j, tag;; and dep;;) represent the linguistic features of
ti]'.

Abbreviation: Every abbreviation d; is a tuple containing
three attributes, d; = («a;, 05, €;), where a; contains the short-
terms of the abbreviation, ¢; corresponds to the full-term (i.e
the expanded form) of the abbreviation, and ¢; stores the list
of specialties where the abbreviation «; can be used without
ambiguity. €; is empty if «; is a general abbreviation. Thus,
¢; C {¢}U{op | 0p € },_, where [ is the number of allowed
specialties for the given abbreviation «;.

Rule: A rule can be applied to detect negations or medical
terms. Thus, every rule r has two attributes, i.e. » = (e,p),
where e is the type of the rule and p is the pattern-matching
rule.

Dictionaries: The PMRs and abbreviations are stored
in two JSON dictionaries denoted, A and R respectively.
A = {d;};=: is a dictionary of s abbreviations d;. While,
R = {rj}j— is the list of all negations and medical terms
rules, r;. It is worth mentioning that the PMRs are indepen-
dent from the specialties.

Phrase: Every phrase m; has two attributes, the ”label”
from the available set of labels ("gender", "negation"”, "term",
"period", and "abbreviation") and the ”phrase”, which is a set
of detected tokens {t;,}5—1 of size ¢ < k. The labels are used
for reporting and tracing purposes.

Let ¥ : (v,w) — {m;}5_, be the parser function that
parses linguistically annotated set of tokens v based on the
set of rules w. The ¥ function generates b phrases.

For instance, ¢; = ¥(vi,w;) = {ms;}}—, are the set of
detected phrases from sample S;.

4.3 Steps of EMTE approach

Our aim is to apply the PMRs on the corpus in order to extract
the relevant phrases from every chief complaint 7;. Algorithm
1 shows the pseudo-code of EMTE which takes the abbrevia-
tions dictionary .4, the negations and terms dictionary R, and
the corpus C as inputs. The algorithm returns the processed
corpus C’. EMTE loops on all S; € C and performs several
steps as follows:

- Extract all the tokens from every chief complaint: First,
EMTE splits every 7; into tokens. It uses the linguistic an-
notator method I' : 7 +— ~, which is available in many
NLP tools [8], [7], [10]. The method returns a set of tokens
and generates their linguistic features. Thus, for every chief



31 year PERIOD old female GENDER since one month PERIOD ago has complained of

epigastric pain  ENTITY increased ENTITY after meals ENTITY associated with ENTITY

Sob ABBREVIATION no nausea NEGATION no bowel habits NEGATION changes ENTITY

. no rectal bleeding NEGATION no weight loss NEGATION good appetite  ENTITY no

family history NEGATION of crc ABBREVIATION cancer. ENTITY
Figure 2: The detected phrases of chief complaint sample in
Figure 1 using our approach EMTE.

complaint 7, v; = I'(1:) = {t;;};~, is the set of w; tokens in
Ti.

- Generate and load the dictionary rules: Since some ab-
breviations might depend of the specialties, the abbreviation
PMRs are built for every sample S; according to the specialty
o;. Therefore, EMTE first finds all the abbreviations’ short-
terms p; that satisfy the specialty o; in sample S;. Then, it
auto-generates the PMRs p; that are specific to this specialty:

pi = {tij | lemmai; € i}

where,
pi=|JHayles =0 Vaieelia

- Extract relevant phrases: The previously generated rules
are used to extract phrases from each clinical text. Let w; =
R U{p;} be the set of PMRs to be applied on the tokens ; for
each sample S;. The parser ¥(v;,w;) is called to generate v,
the list of all detected phrases.

Figure 3 shows the result of all pattern matching rules
in action. For example, shortness of breath is the result of
the abbreviation pattern matching rule that detected the
abbreviation SOB, and replaced it with its full term while
replacing the spaces with underscores. Also, no nausea is a
result of a negation rule that detects the left side negations.

Algorithm 1 EMTE algorithm

Input: 4, R, C

Output: C’ (the processed version of corpus C)

1: Initialize C' + ¢

2: for each sample S; € C do

3: Annotate S; to build the POS tagging: v; < I'i(S;)

4: From A, load into p; all the abbreviation rules having an
empty specialties attribute or containing o;

5: Apply the abbreviation and medical terms detection
rules w; = R U {p;} on the annotated document ~;

6: Replace the detected abbreviations with their full-term

7: Convert the detected phrases to words by merging their
tokens with underscores

8 C' +CUS;

9: end for

10: return C’

- Generate the new corpus: EMTE converts every detected
phrase m;; that has a label "abbreviation" from its short-
term into its full-term representation and obtains the updated
sample S;. Then, it merges the tokens of every detected
phrase using underscores to form one word as shown in
Figure 3. Finally, it reconstructs the sample S; using the
detected phrases and adds the processed sample S, to C’, the
new processed corpus.

Chief Complaint (CC)

31 year old female since one month ago has complained of epigastric pain, increased after
meals, associated with SOB , no nausea , no bowel habits changes. no rectal bleeding,no weight
loss,good appetite, no family history of CRC cancer.

Standard Cleansing (SC)

year old female since one month agao complained epigastric pain increased after meals
associated with SOB nausea bowel habits changes rectal bleeding weight loss good appetite
family history cancer

Default Sci-Spacy (DSS)

year female month epigastric_pain increased meals associated_with sob_no_nausea
no_bowel_habits changes rectal_bleeding weight_loss family_history crc_cancer

Enhanced Medical Term Extractor (EMTE)

31_year female one_month epigastric_pain increased meals associated_with
shortness_of_breath no_nausea no_bowel_habits_changes no_rectal_bleeding no_weight_loss
good_appetite no_family_history colorectal_cancer cancer

Figure 3: A chief complaint sample before and after using the
cleansing methods SC, DSS, and EMTE

5 Experiments and Results

To evaluate the performance of our approach, a large clinical
textual dataset (Chief Complaints and History of Presence
Illness) was cleansed using four cleansing methods including
our approach. The resulting datasets were fed to different
machine learning models to solve the ICD multi-label classifi-
cation problem.

Besides "EMTE", the following cleansing methods were
considered:

« RAW: no cleansing techniques were applied to the origi-
nal data.

« SC: the standard cleansing steps, such as lemmatization,
stemming, stop-words removal and punctuation removal
were applied on the RAW data.

o "DSS": it is based on the "SciSpacy" NER pre-trained
model that extracts medical terms from the RAW data.

Each one of the four cleansed datasets was fed to the
following word embedding techniques: Padding Sequence
("PS" [36]), Sentence2Vec ("S2V" [37]), and BERT-based
word embeddings ("Clinical BERT" [40], "BERT base" [38])
as shown in Figure 4.

5.1

The experiments were applied to medical data retrieved from
the outpatient departments of a private Saudi hospital. The
data covers three years and consists of anonymous records.
Each record corresponds to a patient’s visit and contains
the chief complaints CCs (textual data), the list of diagnoses
(represented by ICD-10 codes), and the physician’s specialty.
The imbalanced dataset included samples from 24 special-
ties such as Pediatrics, Internal Medicine, Gastroenterology,
Cardiology, and Oncology. The data consisted of over 2.21M
records with 1,050 different ICD-10 codes.

Industrial Medical data

5.2 Tools and Technical Challenges

To implement these experiments, the "SciSpacy” NER tool
[41] which is an extension from "Spacy" [8], was used. It
contains a NER pre-trained model "en core sci Ig", consist-
ing of around 785k vocabulary and trained on biomedical
data. This model generated the "DSS" corpus. Moreover, the
"EntityRuler" and "PatternMatcher" components of "Spacy"



were used in the EMTE approach to implement our PMRs
and execute them. In addition, the Deep Learning training
tasks were based on the Keras [42] and Tensorflow [43]
libraries. Table 3 shows the hyper parameters used in these

experiments.

Hyper parameters

Optimizer Adam

Loss function Binary Cross Entropy
Batch Size 64

Learning Rate 3e~4 or 5e—®
Threshold 0.5

Monitor val_micro_F1
Epsilon le—8

Neurons 2/3 Input + Output
Patience 10

Minimum Delta le—3

Maximum Epochs 200

Dropout 0.3

Standard Cleansing
(SC)

)€

(RAW)

5 Removing follow up Removing Grouping Data
® and medication refill Noisy Data ICD10 Split
3

o

o

% Training 80% Validation 10% Testing 10%

[a}

Raw Data

efault Sci-Spach {Enhanced Medical Term:

(DSS)

Extractor (EMTE)

)

Data
Processing

|

Input

o Embedding
£ PS
3
4 GRU
o
Q
a
Dropout

Input

Embedding Clinical
s2v BERT

Classifier

Table 3. The hyper parameters settings used with the Keras
deep learning training tasks.

Since the "BERT Tokenizer" splits words into chunks and
subwords if they do not belong to the size limited BERT
vocabulary, it was modified to let the BERT embeddings work
with the medical phrases detected by EMTE.

5.3 Results

In this section, we show how EMTE outperforms both cleans-
ing methods, DSS and SC, in terms of features extraction. In
addition, we compare the impact of our cleansing approach
to the other considered cleansing methods in improving the
ICD-10 multi-label classification using four machine learning
models.

Method Abbreviations Negations Medical Terms
Total Samples Total Samples Total Samples
Gold 2,540 575 1,329 359 4,891 1,000
Truth
DSS 1,493 411 915 312 3,561 904
(58.79%) | (71.48%) | (68.85%) | (86.91%) | (72.81%) | (90.40%)
EMTE 2,523 566 1,314 359 4,843 1,000
(99.33%) | (98.43%) | (98.87%) | (100%) (99.02%) | (100%)

Table 4. A qualitative comparison between the outputs of
EMTE and DSS when applied on a small dataset of 1,000
samples. EMTE detected 99.33% of the abbreviations and
98.87% of the negations.

5.3.1 Qualitative Analysis

Figure 3 shows the outputs of EMTE, DSS and SC when ap-
plied to a given chief complaint. SC approach removed the de-
terminer "no", which is a negation, thus, it changed the mean-
ing of the input data. Moreover, this method fails to detect
the medical terms (phrases). DSS extracted many medical
terms, but some were inaccurate. For example, DSS detected
"no bowel habits" instead of "no bowel habits changes". It
also combined the medical abbreviation "SOB" that stands for
"shortness of breath", with the "no nausea" term. Moreover,
it inaccurately identified "weight loss" instead of detecting its
negation.

On the other hand, with the help of the pattern-matching
rules, our approach could identify most medical terms, nega-
tions, and abbreviations. For example, the medical abbrevi-
ations "SOB" and "CRC" were correctly replaced with their
correct full-terms.

(Multi-Labels Classification problem)

Classifier

Figure 4: The experiments structure were the dataset was
processed by three different cleansing methods "SC", "DSS",
"EMTE" and four different training tasks using different word
embeddings and classifiers were applied.

Furthermore, to qualitatively evaluate the performance of
"EMTE" and compare it to "DSS", a dataset of 1,000 random
samples was constructed. First, the medical team manually
counted the total number of abbreviations, negations, and
medical terms found in the 1,000 samples. They found 2, 540
abbreviations in 575 samples, 1,329 negations in 359 sam-
ples, and 4,891 medical terms out of the 1,000 randomly se-
lected samples. This "Gold Truth" is compared to the results
of "EMTE" and "DSS" in Table 4. Our approach improved
the abbreviations detection by 68.99%, the negations detec-
tion by 43.61%, and medical terms detection by 36% when
compared to DSS. Moreover, our approach detected abbrevi-
ations, negations, and medical terms in more samples than
DSS by 37.71%, 15.06%, and 10.62%, respectively. The major
limitations in DSS is that it does not detect abbreviations with
punctuations such as "u/a","-ve", "+ve". Moreover, DSS failed
to detect negations with "nil" value and the negations that
were located on the right side like "pmh: no". In addition,
DSS failed to detect medical terms like "vaginal discharge"
and "right sided breast pain" as one phrase.

It is worth mentioning that even our approach failed to
detect some negations that contained typos. For example, it
did not detect the term "noone" as negation since it contained
typos. In addition, our approach did not catch ambiguous
abbreviations like "CLD" (Chronic Lung Disease or Chronic
Liver Disease) since these abbreviations are ambiguous and
used in same specialty (Category iii 2.2).

5.3.2

In this section, the impact of EMTE on the ICD-10 multi-
label classification results are presented and compared to
the use of other cleansing techniques (SC and DSS) and the
RAW dataset. Table 5 presents the results of the experiments
with four different word embedding and DNN techniques.
The columns present the results of the evaluation metrics

ICD-10 multi-label classification results



Training (%) Evaluation (%)
Data

DNN Set Accuracy | Recall F1-Score Accuracy | Recall F1-Score
Macro | Micro | Weighted Macro | Micro | Weighted
SC 70.07 54.93 67.03 68.31 67.20 59.55 46.85 57.11 58.58 57.27
PS DSS 70.35 55.00 67.06 68.38 67.27 61.41 48.38 58.41 60.17 58.83
RAW 71.89 55.13 67.88 69.23 68.51 62.37 48.98 59.42 60.78 59.07
EMTE 74.14 57.93 69.86 71.25 70.15 66.19 51.03 61.31 62.90 61.64
SC 71.13 54.81 70.76 70.66 69.99 59.78 49.98 60.13 61.20 59.71
Sov DSS 72.12 55.47 70.29 70.77 69.93 61.35 50.19 62.10 62.85 61.75
RAW 72.51 55.84 70.76 71.05 70.20 61.48 50.80 62.81 63.27 62.13
EMTE 75.60 | 59.08 | 72.90 | 73.97 72.03 65.35 | 52.36 | 64.93 | 65.54 64.31
SC 78.10 64.42 76.70 77.17 76.49 64.63 53.60 63.83 64.60 63.77
BERT DSS 78.27 64.63 76.94 77.36 76.65 64.88 53.55 63.37 64.47 63.49
Base RAW 78.64 65.02 77.28 78.01 76.99 65.40 54.09 64.13 65.08 64.04
EMTE 79.76 | 65.72 | 77.93 | 78.46 77.74 67.46 | 55.93 | 66.05 | 67.98 66.19
SC 78.18 60.19 73.99 76.29 74.17 66.83 55.63 63.20 64.69 64.79
Clinical | DSS 78.42 60.57 74.51 77.56 75.51 66.69 56.12 64.62 64.76 65.84
BERT RAW 79.83 61.89 74.10 78.00 75.68 66.99 56.59 65.18 65.36 66.18
EMTE 81.52 | 63.47 | 77.49 | 79.51 78.44 69.33 | 58.08 | 67.62 | 69.68 68.59

Table 5. The results of ICD-10 multi-label classification experiments using different cleansing techniques and training models.

(Accuracy, Recall, Macro-F1 (Macro), Micro-F1 (Micro), and
Weighted-F1 (Weighted).

The experiments that applied EMTE outperformed all the
others for all the evaluated word embeddings and for all the
considered metrics. The percentage of gain from applying
EMTE instead of any other method and according to any
metric, was computed as follows:

EMTE%)] — [other M ethod%)
[other Method%)

For instance, the Micro-F1, obtained with the testing
data and the BERT base model, was improved by 5.44%
when using EMTE instead of DSS, 5.23% instead of SC, and
4.46% instead of RAW. Moreover, the same metric Micro-
F1, obtained with the testing data and the Clinical BERT
model, showed a 7.61% gain over DSS, 7.71% over SC, and
6.61% over RAW. The gain in performance, when cleansing
the dataset with EMTE, was reflected on all the considered
metrics in both training and evaluation datasets and with the
four considered word embeddings.

Moreover, the gain in performance was not limited to the
evaluation metrics, the use of EMTE reduced the training
time of the four models and the required the number of
epochs to converge. Table 6 shows for each cleansed dataset,
the average execution time for an epoch and the number of
epochs required for each model to coverage.

The experiments that used EMTE, to cleanse the
dataset, converged faster than the others. For instance, the
BERT Base model required 19, 32, 24, and 26 epochs with the
datasets cleansed by EMTE, RAW, DSS, and SC respectively.
Furthermore, the experiments that used EMTE required
43.69% to 53.39% less execution time per epoch than RAW,
8.63% to 12.09% less than DSS and 16.48% to 26.48% less
than SC for the different considered models.

Finally, the vocabulary size generated by EMTE is smaller
than the ones generated by the other methods. For example,
RAW vocabulary size was 286,891 words while SC contained
229,102 words (—20.14%), DSS contained 183,403 words
(=36.07%), and EMTE contained 178,917 words (—37.64%).

1)

[%ogain] = 100 x [

6 Discussion

EMTE outperformed the other approaches for the following
reasons: First, the experiments on RAW data had the biggest

DNN Dataset Time # Epochs
(sec)

SC 1167 23

PS DSS 976 22

RAW 1841 28

EMTE 858 20

SC 1369 31

Clinical | DSS 1164 26

BERT RAW 2005 32

EMTE 1034 26

SC 1347 26

BERT DSS 1256 24

Base RAW 1998 32

EMTE 1125 19

SC 1297 51

DSS 1112 44

S2v RAW 1912 58

EMTE 1016 33

Table 6. The execution time per epoch and the number of
epochs per cleansing method and word embedding technique.

vocabulary since the same medical term might be represented
by many data points. For example, "Blood Pressure" had two
different data points, "BP" and "Blood Pressure". This large
vocabulary required additional resources for training and a
longer execution time. Second, SC is also inefficient since it
leads to data loss and degrades the data quality. For example,
using SC, important information such as the negations and
important punctuations like "-" in the abbreviation "-ve" were
lost. Third, DSS’s performance strictly depends on the used
feature extraction tool’s performance. The "SciSpacy" NER
pre-trained model has some limitations. For example, abbre-
viations could be wrongly identified by DSS when studying
datasets including different specialties. Moreover, as shown
in Figure 3, DSS wrongly combined the abbreviations "SOB"
and "CRC" with the medical terms "no nausea" and "cancer"
respectively. Furthermore, DSS failed to detect "no rectal
bleeding" as a negation and "good appetite” as a medical
term.

In this paper, we studied the medical service specialty
feature along with the textual data of a chief complaint.
More information can be added in the future, like the body
site which refers to the location of the disease in the body
like upper abdomen and lower abdomen, gender and age, to



reduce the abbreviation ambiguity especially for those used
in the same specialty.

One of the main advantages of the EMTE approach is
its flexibility and maintainability. The dictionaries can be
updated at any time without any need to retrain the models
on new medical terms. In addition, EMTE can be used as
a document quality enhancer as it can unify the negations
writing styles and replace the abbreviations with their full-
terms.

7 Conclusion and Future work

This paper presented a cleansing approach that improves the
quality of medical terms extraction from unstructured clinical
data using pattern matching rules based on dictionaries. The
solution was conceived with flexibility and maintainability in
mind for industrial use. The experiments showed that our
approach helps solving the the ICD-10 prediction problem by
improving the quality of the data fed to the DNNs. As a result,
the performance of the trained models was improved accord-
ing to various metrics. The proposed approach also reduced
the required resources to train the models and decreased the
training time by accelerating the convergence of the models.

In future works and in order to improve furthermore the
quality of the medical data, we aim to extend this work
to improve data quality by tackling several challenges like:
medical term synonyms, improve abbreviation detection by
adding more features (e.g. body site, gender, and age), and
medical investigation results (laboratory and radiology) in
chief complaints.
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