
Optimal design for vibration energy harvesters

based on quasi-periodic structures

Shakiba Dowlati, Najib Kacem & Noureddine Bouhaddi

Univ. Bourgogne Franche-Comté, FEMTO-ST Institute,
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Abstract.

In this paper, the design of large-scale quasi-periodic Vibration Energy Harvesters

(VEH) is optimized to enhance the harvested power of an electromagnetic mode

localized structure. This work aims to optimize the output power by employing the

energy localization phenomenon in a large-scale periodic configuration by introducing

the minimum number of perturbations. The harvested power, number and location of

perturbations are among the objectives that need to be optimized. A genetic-based

mixed-integer optimization algorithm is used to meet the objective functions within

a constraint on the system kinetic energy. Numerical simulations for quasi-periodic

systems with 20 and 100 Degrees of Freedom (DOF) are performed. It is shown that

the ratio of harvested power increases as the number of perturbations rises and it

exceeds 80% of the total output power by perturbing almost one-third of the total

DOFs. The proposed methodology is a decision-making aid to provide an optimal

design in a generalized quasi-periodic VEH in order to reduce the number of harvesting

transducers while providing a significantly high amount of harvested power.

Keywords: Electromagnetic Energy Harvesting, Large-Scale Quasi-Periodic Structure,

Vibration Energy Localization, Mixed-Integer Optimization

1. Introduction

Further developments of self-power sensing systems in many applications such as

the internet of things, environmental monitoring and healthcare monitoring face a

considerable obstacle in the energy supply [1, 2]. Replacing or recharging batteries

is costly and complex. Energy harvesting can address this issue by generating electrical

power from different ambient energy sources such as light, mechanical vibrations,

thermal gradients, radio-frequency waves, and acoustic energy [3]. Among these sources,

energy harvesting from vibrations, with the advantages of high abundance in the

surrounding environments, sustainability, and stability, is an active area of research.
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Vibrations sources are fluid flows, ambient noise, human activities and machine and

structure vibrations [4, 5].

The vibration energy must be processed in the mechanical domain and then

converted into electrical energy using, e.g., electromagnetic [6], piezoelectric [7] and

electrostatic [8] transduction. Among these transduction mechanisms, Electromagnetic

Energy Harvesters (EMEH) offer advantages such as no need for external voltage input

and significant output power from weak vibration [9]. Electromagnetic transducers

work based on generating an electromotive force in a conductive coil by magnetic flux

variation, as explained by Faraday’s law of induction [10].

Vibration energy harvesting devices deal with a narrow harvesting bandwidth which

leads to inefficiencies where energy prevails over a larger bandwidth. Several techniques

are proposed to broaden the bandwidth and increase the output power density of these

devices. One technique is the hybridization of energy harvesters [11] to simultaneously

harvest energy from multi-sources and single-source using two or more transduction

mechanisms such as piezoelectric–electromagnetic [12], triboelectric-electromagnetic [13]

etc. Therefore, their complementary characteristic of high voltage and high current

result in improvement in energy conversion at both high and low frequencies and

amplitudes of excitation [13]. This also helps to increase the operating frequency

bandwidth, the output power density and their applications in different domains [11].

Another efficient technique is the use of harvesters with self-adaptive architecture where

the system continuously adapts its resonance frequency to the excitation frequency to

increase the output power and widen the operational frequency bandwidth. [14, 15].

Nonlinearity enhanced mechanism is also used to overcome the issue of a narrow

frequency bandwidth in the conventional linear-type energy harvesters [16, 17] to

modify the resonance behavior [18] and to have multi-resonances [19]. Moreover,

numerical and experimental studies have shown that a multimodal configuration covers

a range of frequencies and thus broadens the effective frequency bandwidth [20, 21].

Subsequently, some studies have recently investigated the favorable effects of using the

energy localization phenomenon in a multimodal configuration on the harvested power

density of VEH [22,23]. The energy localization phenomenon indicates that introducing

a very small asymmetry to a periodic structure results in the confinement of energy

in the perturbed zones [24]. This phenomenon in disordered weakly-coupled periodic

structures, discovered by Anderson [25], is used to increase the amplitude of vibration

and thus the harvested power.

Furthermore, performing optimizations of the mechanical and electrical charac-

teristics of VEHs has recently drawn much attention. These optimizations have been

performed on the harvested power [26], effective bandwidth [27], structures [28,29], ge-

ometries [30, 31], and the electrical circuit [32]. For electromagnetic multi-DOFs VEH,

optimization of the exploitation of the geometric nonlinearity and the nonlinear magnetic

coupling has been done to increase the harvested power and bandwidth [33]. In addition,

for a quasi-periodic system of 5-DOFs, an optimization procedure has been conducted

to search for the optimal position for introducing perturbations to the system [34]. In a
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generalized large-scale periodic structure consisting of any number of DOFs, an optimal

configuration design for perturbing the system increases the harvested output power.

This architecture helps to reduce the number of harvesting transducers in terms of coils,

and electrical circuits and to avoid the phase problem since they are implemented in

the identified perturbed zones rather than all oscillators. Therefore, obtaining an op-

timal amount of harvested energy with the minimum number of perturbations can be

the main idea for utilizing energy localization in the multimodal VEHs. However, to

the authors’ knowledge, optimization of the required number of perturbed DOFs and

the appropriate location for introducing perturbations to a periodic system with any

number of DOFs has not been done to improve the power output.

In this paper, the design and performance of a large-scale quasi-periodic

electromagnetic VEH of any number of DOFs are optimized in the presence of the

energy localization phenomenon. The purpose is to maximize the harvested energy

considering the minimum number and appropriate location of perturbed DOFs. A

genetic-based mixed-integer optimization algorithm is developed to meet the objectives

within a constraint on the kinetic energy criterion. This criterion is introduced to

quantify the ratio between the confined kinetic energy in the perturbed zones and the

total kinetic energy of the system. The result of the study helps to reduce the cost and

size of the device, to overcome technological constraints and to enhance the harvested

power density.

2. Design and System Modeling

Figure 1 illustrates a VEH consists of N cantilever beams coupled by magnets at the

free end. Magnets are arranged so that there is a repulsive magnetic force between each

two adjacent magnets. The oscillators are coupled to a simple electrical circuit via an

electromechanical coupling mechanism. With a harmonic base excitation, the relative

motion of the magnet masses and coils causes a magnetic flux variation through the coil

turns and a current induces in each coil. The generated electrical energy is transferred

and dissipated into load resistances [21].

Figure 2 shows N-DOFs discrete system of the harvester. This N-DOF system is an

equivalent model of the real VEH that is based on coupled cantilever beam-mass system,

depicted in figure 1, in which each cantilever beam with proof mass is represented by

one DOF. In this model, m is the equivalent mass of the magnet, k is the mechanical

stiffness, x is the relative displacement of each mass, and Ẍg = Xgcos(ωt)) is the basis-

imposed acceleration of the total system whereXg is the imposed acceleration amplitude.

Moreover, cm = 2ξmmω0 is the mechanical damping of the system in which ξm is the

mechanical damping coefficient and ω0 is the eigenfrequency of the decoupled 1-DOF

oscillators.
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Figure 1: Schematic diagram of the real periodic electromagnetic VEH under harmonic basis excitation

consisting of weak-coupled cantilever-beams with moving magnets on the tip where the electromagnetic

transduction components are localized on the perturbed DOFs. Equivalent corresponding circuit of the

perturbed DOF: the mechanical component is composed of a spring stiffness k, a proof mass m, and a

mechanical damping cm. The electrical component is composed of coil inductance Lcoil, coil resistance

Rcoil, the load resistance Rload , and the induced current in the coils corresponded to the perturbed

magnetic mass i(t).

k k k kkkcm

Rint

Rload

xj xj+1xj-1xi+1xixi-1

mj-1 mj+1mjmi+1

kc

mimi-1

cm cm cm cm cm

kc kc kckckckckc

Rint

Figure 2: Equivalent N-DOF spring-mass system of the whole electromagnetic VEH where k is the

spring stiffness, cm is the mechanical damping, kc is the weak coupling stiffness between each two

adjacent magnets, Rint is the coil internal resistance and Rload is the electrical load resistance.

2.1. Equations of Motion

The generalized equation of motions governing the linear behavior of the introduced

harvester in figure 2 is expressed based on Newton’s 2nd law as

αiẍi + 2αiξmω0ẋi + ω2
0 [(1 + 2β)xi − βxi−1 − βxi+1] = −αiẌg (1)

where αi is the mistuning parameter and β is the coupling coefficient, defined as follows

αi =
mi

m
, β =

kc
k

(2)

wheremi is the mass of ith DOF andKc is the linear magnetic stiffness. It is noteworthy

that αi = 1 indicates that there is no perturbation in the relevant DOF and αi ̸= 1

indicates that the corresponding DOF is perturbed. The electromagnetic transduction
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is introduced through a mechanical-magnetic coupling equation as follows

αjẍj + 2αjξω0ẋj + ω2
0 [(1 + 2β)xj − βxj−1 − βxj+1] = −αjẌg

Vj + (Rint +Rload)i(t)j = 0

Vj = δeẋj

i(t)j =
δ

(Rload +Rint)
ẋj (3)

where Vj is the induced voltage in the coil, i(t)j is the induced current in the coil, δe is

the electromagnetic coupling coefficient, Rint and Rload are coil internal resistance and

load resistance, respectively. Coil inductance Lcoil is very small and therefore is ignored.

In Eq.2, ξ = ξm+ξe stands for total damping coefficient in which ξe and ξm are electrical

and mechanical damping coefficients, respectively. Electrical damping comes from coils

to the system for electromagnetic transduction.

The steady-state response is xj = Xj(ω) exp
iωt and the instantaneous power absorbed

by the electrical damper is P j (t) = 1
2
ceẋjẋ

∗
j in which ẋ∗

j is the conjugate of ẋj and and

ce = δe
2/(Rload+Rint) is the electrical damping. The average harvested power from the

jth DOF, in a cycle of vibration, is

P j
avr =

ceω
2 |Xj|2

2
= ξemjω0ω

2 |Xj|2 (4)

The total average power, from all perturbed DOFs can be defined as:

Pavr =
∑
j

P j
avr =

∑
j

ξemjω0ω
2|Xj|2 (5)

Several methods have been proposed to enhance the performance of VEHs. Among these

methods, many numerical and experimental studies have shown that in weakly-coupled

quasi-periodic VEH, the amplitude of vibration and thus the output harvested power

increases in the perturbed zones. This allows to harvest energy only from perturbed

DOFs rather than all of them, and leads to the reduction in the number of transduction

circuits.

2.2. Energy Localization

In weakly-coupled periodic systems, introducing any structural mistuning in terms of

geometry, added mass, and coupling stiffness breaks the symmetry and results in the

confinement of energy and thus strong vibration localization in the perturbed zones [25].

The forced response amplitude of mistuned system is related to the mistuning and

coupling coefficients [21]. A 20-DOFs periodic system including an array of weakly-

coupled cantilever beams with proof masses on hlthe tip, shown in figure 3a is employed

to illustrate the energy localization phenomenon. This system is analyzed by a finite

element method. The coupling between two successive cantilever beams is achieved by
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a 1D mechanical spring. These couplings are weak (≃ 1 to 5% of the beam stiffness).

Figure 3b shows the first bending mode shape where the kinetic energy of the periodic

system is uniformly distributed.

(a) (b)

Figure 3: (a) A periodic system including an array of 20 weakly-coupled cantilever beams with proof

masses. The coupling between two successive cantilever beams is achieved by 1D mechanical spring.

(b) First bending mode shape of this system

Figure 4 depicts the first bending mode shape of the coupled beam-mass system

subjected to the variations in mass density. The perturbation is introduced to the

system through variations in mass density by 3% in the 4th, 11th and 17th masses

(counting from the bottom). The beams with a perturbed mass on the tip noticeably

have larger displacements.

It has been discussed that having perturbation in a periodic VEH with many weakly-

coupled DOFs causes energy localization in those zones. This phenomenon can be

employed in the design of VEHs to decrease the complexity of the device. Therefore,
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optimizing the number and the location of perturbations for obtaining the maximum

possible harvested power allows for further development in performance of VEHs.

Figure 4: First bending mode shape of a coupled beam-mass system subjected to variations in mass

density by 3% in the 4th, 11th, and 17th mass (counting from the bottom)

3. Optimization procedure

The optimization of the quasi-periodic VEH with many DOFs, shown in figure 2,

involves investigating the power output by perturbing certain DOFs in terms of their

number and location in a predetermined criterion of kinetic energy. Accordingly, the

objective functions are maximizing the harvested power and minimizing the number of

perturbed DOFs with specific amount of perturbation. It is also necessary to identify

the best DOFs for perturbating the system. A constraint on the criterion of kinetic

energy with a predefined amount can also be considered to ensure having a minimum

amount of the total kinetic energy in the system. The optimization problem is expressed

as
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min
y

(f1, f2)

g (y) = −CKE + Emin ≤ 0 (6)

where f1 and f2 are conflicting objective functions, y = Y (ω, ξe, α), ξe =

[ξe1, . . . , ξej, . . . , ξeN ], α = [α1, . . . , αj, . . . , αN ], CKE is the the criterion of kinetic energy

and Emin is the value predefined by decision maker. For consistency, the maximization

problem max (−f1) is transformed into an equivalent minimization problem min (f1).

The objective function for maximizing the output harvested power is

f1 = −
∑
j

ξemjω0ω
2|Xj|2 (7)

For the second objective function, a binary variable Zi is assigned to each DOF

that reflects perturbation with 1 and lack of perturbation with 0. Therefore, Z =

[Z1, . . . , Zi, . . . , ZN ] is the vector created using the assigned binary values for the whole

system. To minimize the number of perturbations, the objective function is expressed

as

f2 =
N∑
i=1

Zi (8)

This objective function not only can determine the number of perturbed DOFs but also

identify the best location for perturbing the system. Design variables are continuous for

one objective function and discrete for the other, which turns the optimization problem

into a mixed-integer problem [35]. Since the optimization problem involves more than

one objective function, using multi-objective approach does not seem feasible.Therefore

the weighted sum method is used to treat a multi-objective optimization problem as a

single-objective one [36]. This single-objective function is a sum of objective functions

fl multiplied by weighting coefficients wl, formulated as

min
2∑

l=1

wlfl (9)

in which wl ≥ 0 and
∑

wl = 1. Weights of each objective function are assigned by the

decision-maker based on the intrinsic knowledge of the problem.

Since the objective functions have different magnitudes, their normalization is required

for having a consistent solution. Thus, the weights are computed as wl = ulθl in which

ul is the weights assigned by the decision-maker and θl are the normalization factors.

Among different normalization methods, the objective functions are normalized by the

maximum value of the objective functions [37]. Therefore, the objective function is
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min

(
w

f1
max (f1)

+ (1− w)
f2
N

)
(10)

in which the maximum value for the f1 is obtained through the optimization procedure

and the maximum amount for f2 is the total number of DOFs (N), as all the DOFs are

perturbed.

Figure 5: The Flowchart of GA-based algorithm

A constraint (CKE) has been introduced as the criterion of kinetic energy, that is

CKE =

∑
j mjx

2
j∑N

i=1mix2
i

(11)

in which i refers to all of the DOFs and j stands for DOFs with perturbation. m and x

are the mass and the relative displacement, respectively. Quantitatively, this criterion

is the ratio between the sum of the maximum kinetic energy in the perturbed DOFs

and the total maximum kinetic energy of the system.

Genetic algorithms (GAs) are general-purpose population-based stochastic search

techniques that mimic the principles of natural selection and genetics laid down by
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Sivanandam and Deepa [38]. Since continuous and binary values are part of the

optimization problem, a genetic-based mixed-integer optimization is used in which

the algorithm automatically ensures a gradual shift towards the feasibility of newly

generated points. It is also necessary to define a stopping criterion to analyze where

the final solutions are obtained and further computation is not required. This criterion

ensures the solution is the best acceptable answer, and the results do not change in

further iterations. The procedure involved in the GA-based optimization is summarized

in figure 5.

4. Results and Discussion

4.1. Numerical simulations

Optimizing the configuration design for quasi-periodic VEH systems with 20 and 100-

DOFs is discussed in this section. This study uses the design parameters listed in Table

1, and the objective functions and constraint listed in Table 2. The criterion of kinetic

energy is considered more than 0.5 determining the kinetic energy of all of the perturbed

DOFs must be at least half of the total kinetic energy of the system. The results that

are presented using the Pareto front figures help to find a compromising space between

two objective functions (f1, f2).

Table 1: Design parameters and functions to be optimized for the corresponding quasi-periodic structure

Constant design parametersConstant design parametersConstant design parameters Design variablesDesign variablesDesign variables Functions to be optimizedFunctions to be optimizedFunctions to be optimized

m = 0.05 kg α = [α1, . . . , αj, . . . , αN ] Harvested power

k = 100 N.m ξe = [ξe1, . . . , ξej, . . . , ξeN ] The total number of perturbed DOF (
∑N

i=1 Zi)

β = 0.014 The location of perturbed DOFs

ξm = 0.006

Table 2: Objective function and constraints applied in the optimization procedure

Objective function and constraintsObjective function and constraintsObjective function and constraints

min( wf1
max(f1)

+ (1−w)f2
N

)

0.5 ≤ CKE

1 ≤ αi ≤ 1.1

0 ≤ w ≤ 1

Figure 6 shows the ratio of harvested power versus the number of perturbed DOFs for

a structure with 20-DOFs. Each point in the figure corresponds to a certain amount

of weight (w). w = 1 indicates that the optimization procedure is performed only on

the harvested power ratio and for the case w = 0, only the number of perturbed DOFs

is under the optimization procedure. Sweeping w from 1 to 0 considerably changes

the optimized value for both harvested power and the number of perturbations. A

compromise zone between the two objectives can be selected for extracting the design

variables in order to improve the system design and performance. Table 3 lists the output
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Figure 6: Pareto front of the 20-DOFs system: harvested power versus the number of perturbations

power ratio subjected for the different numbers of perturbations in the structure. For

w = 0, the value for output power ratio is 0.12 with 5 perturbed DOF for a system

of 20-DOFs. As the weight on the (f1) increases, the number of perturbed DOFs (f2)

increases, and thus both the number of required perturbations and the harvested output

power increase. It is shown that perturbing 8 DOFs provides 81% of the total energy

of the periodic system. The amounts of harvested power increases as the number of

perturbations rises and by perturbing only half of the DOFs, the total output power

ratio reaches to more that 90%.

Table 3: Optimized output power ratio for different number of perturbed DOFs

Optimal number and positionsOptimal number and positionsOptimal number and positions

of perturbed DOFs among 20of perturbed DOFs among 20of perturbed DOFs among 20
20 13 12 10 8 7 6

Optimized output power in %Optimized output power in %Optimized output power in %

compared to the total powercompared to the total powercompared to the total power
100 98 92 91 81 70 52

The Pareto front of the 100-DOFs system is depicted in figure 7 which shows harvested

power ratio versus the number of perturbations. As discussed for the 20-DOFs system,

different values of weight (w) result in different points in the figure. Similarly, w = 0

indicates the situation where the total emphasis is on minimizing the number of

perturbed DOFs irrespective of the value for harvested power. As w increases from

0 to 1, the optimal value for each function began to change. This helps to find an

optimal zone for extracting the optimal design values. For w = 1, the value for output

power is 1 which indicates the maximum output power is harvested with expenses of

harvesting from all of the DOFs. These numbers for the case w = 0 fall into 0.14

for output power and 25 for the number of perturbations. As illustrated, perturbing

one-third of DOFs contributes to harvesting more that 80% of the total power.
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Figure 7: Pareto front of the 100-DOFs system: harvested power versus the number of perturbations

Perturbing any arbitrary combination of DOFs does not necessarily provide the

maximum available kinetic energy and thus output power. Table 4 illustrates the

criterion of kinetic energy for the case with 5 perturbed DOFs among 20. These

DOFs are chosen both randomly and through the optimization procedure and then

the criterion of kinetic energy is calculated. It is shown that where the location of

perturbation is chosen randomly, the value for the kinetic energy criterion is lower than

the constraint defined earlier (0.5 ≤ CKE). However, locations based on the optimization

procedure ensure meeting the defined constraint. It is worth mentioning that there is

not one specific optimal set of locations for perturbations and different combinations for

perturbations can meet the desired conditions.

Table 4: The criterion of kinetic energy considering different locations of perturbations

Selected method Perturbation in DOFs number The criterion of kinetic energy

Randomly chosen

3 6 8 11 15

1 3 8 11 18

4 5 12 15 19

2 6 8 12 16

0.24

0.43

0.32

0.29

Optimization procedure
2 8 12 17 20

2 8 12 16 19

0.52

0.51

Potential distribution functions can be adapted to approximate the harvested power

ratio regarding the number of perturbed DOFs. This helps to evaluate the goodness

of design variables without undergoing an optimization procedure. The harvested

power ratio for the case of 8 perturbed DOFs in the 20-DOFs structure is fitted to

the distribution function including Normal, Uniform and Exponential. The goodness

of fit of the data is listed in Table 5. Results indicate that Normal distribution fits



13

the data best, as the amount of Kolmogorov-Smirnov and Cramer-von Mises are lower

(with mean = 0.8 and standarddeviation = 0.005). Regarding the test values, the

exponential distribution function is not a suitable distribution for this data set at all,

and the assumption of following this distribution is rejected.

Figure 8: Histogram and distribution functions

Table 5: The goodness of fit of output power with 8 perturbed DOF in 20-DOF structure

Goodness-of-fit statistics Normal Uniform Exponential

Kolmogorov-Smirnov 0.2148220 0.2159016 0.6255302

Cramer-von Mises 0.7890177 1.9175701 9.9499349

Using the optimization procedure, 8 appropriate DOFs among 20 can provide almost

80% of the total power output. To illustrate how the distribution function ensures

the goodness of selected variables, 8 random DOF (DOFs number 1,2,4,6,7,8, 16 and

19) are selected to be perturbed and the harvested power ratio is calculated to be

49%. However, the harvested power ratio with perturbing 8 DOFs chosen through the

optimization procedure is almost 80%.

Both the amount of output power and the number of perturbations and thus

transduction circuits are of great importance in improving the design and performance

of the VEH system. It, therefore, is necessary to search for a compromise point where

both objectives are recognized to an optimal extent. The optimization procedure is done

for a quasi-periodic system of 1000-DOF and the results have shown that perturbing

561 DOFs leads to harvesting almost 94% of the total power.

4.2. Discussion

The Figure of Merit (FoM) is illustrated in figure 9 to study the efficiency of the proposed

VEH in comparison with the state of the art of vibration energy harvester. Among

different performance metrics, the FoM is calculated by (FoM = P/V ol.g2 ) where P

is the harvested power, V ol is the harvester volume and g is the imposed acceleration
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amplitude [45]. The results are calculated theoretically and shown in figure 9. The

proposed design provides competitive performance in term of power density and low

useful frequency compared to the harvesters based on electromagnetic transduction.

Figure 9: Performance comparison of the proposed optimized VEH FoM with the state-of-the-art

The proposed method is applicable where the building block of VEH is the weakly-

coupled identical subsystems such as cantilever beams, clamped-clamped beams, and

spiral-shaped springs. This is also feasible in architectures such as levitation-based [21],

and free moving ball-based harvesters but their main drawback is the dry friction

between moving magnets and the contact area of the guide.

The mistuning can be achieved in periodic systems by perturbing the geometry,

mass, and (or) coupling stiffness. For example, magnetic coupling stiffness can be

adjusted by tuning the gap between two successive moving magnets [22, 23]. In the

proposed study, the mistuning is achieved by the perturbations of some moving magnets.

In terms of energy efficiency, a compromise between the harvested energy and the

perturbation level of the localized DOFs is found. As shown in figure 6, 80% of the

total energy of the periodic system is harvested while only one-third of the DOFs are

perturbed. Currently, the proposed methodology is implemented in the linear VEH

where the geometric and magnetic nonlinearities are negligible (low response amplitude

and weak coupling). The reason behind this choice is to validate the proof-of-concept in

future work. It is recently shown that there is no conflict between the localization

phenomenon and nonlinear behavior [23]. Consequently, this methodology can be

generalized to the nonlinear VEH in order to both improve the harvested power and the

bandwidth.

Experimental investigations will be performed to achieve the proof-of-concept of

the proposed methodology. To do so, a periodic 10-DOFs system composed of moving

magnets guided by cantilever beams will be fabricated. The device composed of
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mechanical structure and electromagnetic transduction will be mounted on a shaker

that provides harmonic base acceleration Xg = 0.1ms−2. The first eigenfrequency

of the periodic structure will be measured by frequency sweep tests. Then, based

on the optimization results, three selected DOFs will be perturbed by added masses

(less than 10%) on the moving magnets. Vibration energy will be harvested from the

three perturbed DOFs with optimal load resistances (Rload). Once the model validation

step is achieved, it is expected to scavenge almost 80% of the total power for several

optimal configurations. To illustrate the performance of the proposed methodology, the

experimental results will be compared to random configurations without optimization

in terms of positions of perturbed DOFs and mistuning amplitudes.

Conclusion

This paper proposed design optimization for quasi-periodic electromagnetic VEH with

many DOFs. The energy localization phenomenon is employed to improve the output

power level considering the number of perturbations in DOFs. The energy localization

phenomenon is introduced through a finite element method for a 20-DOF quasi-periodic

mass-beam system to show how introducing perturbations leads to the confinement

of energy and therefore increases the magnitude of vibration in those zones. The

optimization procedure is developed to provide the optimal number and location of

perturbations for improving the harvested power. It is shown that optimal perturbations

in almost one-third of DOFs provide 80% of the total harvested power for VEH of both

20-DOFs and 100-DOFs. Also, perturbing approximately half of DOFs contributes

to harvesting more that 90% of the total power. Furthermore, for several arbitrary

locations of perturbations, the kinetic energy criterion has been calculated to be less

than the defined value, highlighting the importance of location for perturbing the system.

Numerical results show how optimizing the number and locations of perturbations in a

multi-DOFs system can improve the efficiency of the system in term of output harvested

power and technological constraints. Reducing the number of transduction circuits

allows for considerable development in the size and manufacturing cost of these devices.
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Appendix A.

The appendix studies the harvested power in a quasi-periodic system of 3-DOFs. Figure

A1 shows an equivalent discrete model of a 3-DOF quasi-periodic electromagnetic VEH,

subjected to base excitation from ambient vibrations. In order to select the best DOF to

perturbed and then harvest energy from it, the criterion of kinetic energy, introduced in
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eq. 11, has been calculated for the second and third DOFs. The kinetic energy in case

of perturbing the second DOF with an optimal amount of perturbation is almost 60%

of total kinetic energy while this amount for the third DOF is below 40%. Therefore,

it can be inferred that second DOF is the best location to perturbed. To ensure the

consistency of the results, the optimization procedure has also been performed and the

second DOF was obtained as the best location, as well.

k k k

kc kc
kc

RintRint

Rload

x2 x3x1

m m m

kc

� 

�� �� �� 

Figure A1: The designed electromagnetic vibration energy harvester

Equations of motion governing the linear behavior of the harvester are expressed as

ẍ1 + 2ξmω0ẋ1 + ω2
0 [(1 + 2β)x1 − βx2] = −Ẍg

αẍ2 + 2αξω0ẋ2 + ω2
0 [(1 + 2β)x2 − βx1 − βx3] = −αẌg

ẍ3 ++2ξmω0ẋ3 + ω2
0 [(1 + 2β)x3 − βx2] = −Ẍg (A.1)

in which x is the relative displacement of each DOF and Ẍg is the basis-imposed

acceleration. ξ = ξm+ξe is the total damping coefficient of the system in which ξe and ξm
are electrical and mechanical damping coefficients, respectively. Moreover, β = Kc/K

is the coupling coefficient, K is the mechanical stiffness of each DOF and Kc is the

coupling linear magnetic stiffness. As discussed, the second mass has been perturbed to

confine the energy in it and the electromagnetic transduction is introduced to it through

a mechanical-magnetic coupling as follows

i(t) =
δ

(Rload +Rint)
ẋ2 (A.2)

where δ, Rload and Rint are the electromagnetic coupling coefficient, load resistance,

and coil internal resistance, respectively. Considering x = X(ω)eiωt and u = ω/ω0, the

equations in frequency domain are expressed as

ZX = F (A.3)
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in which

Z =

1 + 2β − u2 + 2iuξm −β 0

−β 1 + 2β − αu2 + 2iαuξ −β

0 −β 1 + 2β − u2 + 2iuξm


X =

X1

X2

X3


F =

 −Ẍg/ω0
2

−αẌg/ω0
2

−Ẍg/ω0
2

 (A.4)

The average power, calculated over a cycle of vibration, from the perturbed DOF has

been obtained as

Pavr = ξeαmω0
3u2|X2|2 (A.5)

Figure A2: Power magnitude for variations in frequency ratio u = ω/ω0 and electrical damping

coefficient ξe with α = 1, β = 0.014 and ξm = 0.006

Figures A2 and A3 show the variation in power magnitude with regards to frequency

ratio and electrical damping coefficient in α = 1 and α = 1.05, respectively. It is

observed that introducing perturbation increase the harvested power. It has also been

shown that harvested power is increasing with the increase in the electrical damping

to a specific value. This value of electrical damping is considered as optimal electrical

damping.
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Figure A3: Power magnitude for variations in frequency ratio u = ω/ω0 and electrical damping

coefficient ξe with α = 1.016, β = 0.014 and ξm = 0.006

Figure A4: harvested power variations with frequency ratio u = ω/ω0 and electrical damping coefficient

ξe and mass mistuning coefficient α

Figure A4 displays harvested power variations with frequency ratio u = ω/ω0, electrical

damping coefficient ξe and mass mistuning coefficient α. It shows that the harvested

power maximizes at a certain range of mass mistuning coefficient value between 1.01 to

1.04 and reaches its highest at α=1.016.
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