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Abstract. We investigate Gaussian Mixture Models (GMM) with un-
certain parameters to evaluate whether this model can help in interpret-
ing acoustic emission data used in non-destructive testing. This model,
called VBGMM (variational Bayesian GMM) allows the end-user to au-
tomatically determine the number of clusters which makes it relevant
for this type of application where clusters are related to damages. In
this work, we modify the training procedure to include prior knowledge
about clusters. Experiments are made on a recently published bench-
mark, ORION-AE, that aims at estimating the tightening levels in a
bolted structure under vibrations. Preliminary results of the VBGMM
with soft priors (VBGMM-SOFT) show good improvement over the stan-
dard VBGMM.
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1 Introduction

The idea of using soft labels in clustering introduced in [21, 20, 4] for the Gaus-
sian Mixture Model (GMM) and more general models [7] was motivated by the
possibility to introduce the available knowledge on the components of a mix-
ture model used to generate each observation. By using belief functions, the
end-user can encode imprecision and uncertainty on the labels used in training
and inference. Several studies demonstrated that the use of soft labels (using
belief functions and probability theories) in various clustering and classification
methods improves not only the global performance [6], but also the interpreta-
tion of clusters by providing insights about the decision frontiers [12], and the
robustness against mislabelling [4, 15].

The present study aims at investigating how the Variational Bayesian GMM
[2] (VBGMM) behaves when soft labels are introduced. This work is motivated
by an application related to Structural Health Monitoring (SHM) based on the
Acoustic Emission (AE) non-destructive technique.
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The AE technique relies on permanently attached piezoelectric sensors glued
on the surface of a material. Under loading, damage occurring within the material
releases energy, and a part of it takes the form a high frequency (possibly between
20 kHz and 2 MHz) transient elastic wave propagating on the surface, converted
into a voltage signal by the sensors. The technique is widely used in industry to
detect anomalies, such as in civil infrastructures and aeronautics [19, 10, 9]. The
advantage of this technique is the high sensivity of the available sensors which
allows to get a lot of details about the damages. With a sampling frequency
generally around 5 MHz on multiple sensors, the AE technique provides from
thousands to millions of signals during mechanical tests.

There is no physics-based model able to interpret all the collected transient
signals due to the several difficulties, in particular the unknowns about the in-
fluence of damages on the content of transient elastic waves. Therefore, the main
methodologies to interpret AE data are mainly based on clustering, where the
clusters are analyzed a posteriori to assess their relevance for a given applica-
tion. The most widely used algorithms are the K-means [3], the fuzzy C-means
(FCM) [11], the Gustafson-Kessel (GK) algorithm [13] and Gaussian Mixture
Models (GMM) [18].

In previous studies, authors made use of clustering validity indices to estimate
the number of clusters [22, 23], which is of paramount interest in Material Science
and for AE users because it indicates the number of AE sources which are related
to damages. One of the advantage of the VBGMM is its ability to automatically
estimate the number of clusters and can thus be of interest for interpreting AE
data. By allowing the introduction of soft labels in this model, we expect to
improve the results even with small amount of prior.

Section 2 presents how to introduce soft priors in a VBGMM. Our first re-
sults are illustrated in Section 3 on a benchmark recently proposed for AE data
clustering and classification.

2 Use of soft labels in a variational Bayesian GMM

2.1 Directed acyclic graph

A Bayesian Gaussian Mixture Model (GMM) is represented by the directed
graph in Figure 1 where yn is the value taken by an observed variable Y, made
of D-dimensional features in <D and n = 1 . . . N the number of feature vectors,
xn is the value taken by a latent variable X. Like in a standard GMM, π, µ and
Λ are the mixing proportions, means and precision (inverse of covariance).

In a Bayesian GMM, the three last parameters are uncertain and are con-
sidered as random variables to which the end-user assigns a prior distribution:
A Dirichlet prior over π, and an independent Gaussian-Wishart prior [2, Chap.
2] on (µ | Λ) (mean and precision) of each Gaussian component [2, Chap. 10].
These particular priors are said conjugate because the posterior distributions
have the same functional form as the priors through Bayes rule. The learning
process consists in estimating the distribution over the uncertain parameters
using a Bayesian Expectation-Maximization algorithm [1].
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Fig. 1: Directed graph of a VBGMM-SOFT with prior on the latent variables x.

In this graphical model, the prior (expert judgments) is represented by vari-
able I. In this “data-driven Bayesian network with expert judgments” [5], the
values In taken by this variable are dependent on the values of xn and may
be dependent on yn, for example when the end-user tunes In according to the
observed values and what he expects on xn.

2.2 Learning problem under pl

Solving the learning problem relies on a process detailed in [1] and [2, Chap.
10] and consists in maximizing the lower bound of the log-marginal probability
of the data p(X) subject to a factorization constraint. Indeed, a solution to
this learning problem, called Variational Bayesian Expectation-Maximization,
assumes a factorization between, on one side, a first factor that is the distribution
over the parameters (π, µ and Λ) and, on the other side, a second factor which is
the distribution over the latent variables xn, n = 1 . . . N . Then, for one of those
factors, we compute the expectation of the logarithm of the joint distribution over
all hidden and visible variables and then take the expectation with respect to the
other factor. The process is general can be applied to any mixture model.

The expectations are not trivial, the reader can refer to [2, Chap. 10] for
more details. We here remind some of the results helpful to understand how to
introduce the prior on xn. The other equations remain the same.

The first step is to compute the joint distribution on all variables in this
model. Following Figure 1, it is given by:

p(X,Y,π,µ,Λ, I) = p(X | π)p(Y | X,µ,Λ)p(π)p(µ | Λ)p(Λ)p(l|X) (1)

where

p(ln|xnk = 1) = plnk (2)

represents the prior on the latent variable for the n-th feature vector and the k-
th component in the mixture. This prior is represented by a plausibility contour
function for each feature vector, generated from a belief mass over the set of K
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components. The way of introducing the prior using an auxiliary variable (here
I) was proposed in [8].

Using the cognitive independence assumption [7], we can write

p(l|X) =

N∏
n=1

K∏
k=1

[plnk]
xnk (3)

Introducing the prior on the latent variables modifies the expression of the expec-
tation of xnk, and does not change the Maximization step. Only the expectation
on the latent variable (the values taken by xnk) are modified by the plausibilities
as follows:

E[xnk] ∝ plnkπ̃k|Λ̃k|1/2 exp

[
− D

2βk
− νk

2
(yn −mk)

t
Wk (yn −mk)

]
(4)

with

log π̃k = ψ (αk)− ψ

(
K∑
k=1

αk

)
(5a)

log |Λ̃k| =
D∑
i=1

ψ

(
νk + 1− i

2

)
+D log 2 + log |Wk| (5b)

and ψ(a) =
d

da
Γ (a) is the digamma function, (αk, βk, νkWk,mk) are the pa-

rameters of the Dirichlet and Gaussian-Wishart distributions [2, Chap. 2,10].
The interesting point with this result is that Eq. 6 boils down to the expression
found for non Bayesian GMM in [4] when uncertainty on parameters tends to 0.

2.3 Algorithm and Automatic Relevance Determination

The algorithm starts with random initial values and updates the parameters
iteratively until the maximum number of iterations is reached (2000) or the
evolution of the likelihood becomes less than 10−8. The general algorithm is
provided in Alg. 1.

One of the interests of this algorithm lies in the way some of the components
vanish during learning. And this is possible without numerical instabilities as ob-
served in standard GMM when K, for example, is too large. This phenomenon
qualified as ”Automatic Relevance Determination” allows the end-user to actu-
ally set the number of clusters to a large value, and, after convergence, some of
the clusters can be removed due to the fact that several parameters tend to their
prior. In particular, the expected values of the mixing coefficients E[π] in the pos-
terior distribution tend to α0/(Kα0 +N) for K clusters and N data points. In
this expression, α0 (the same for all components, set to 1 in experiments) is the
parameter of the Dirichlet distribution over the mixing coefficients π, which is
the effective prior number of observations associated with each component of
the mixture. Therefore, a cluster made of E[πk] elements can be removed.
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Algorithm 1 General algorithm of VBGMM-SOFT.

1: Generate plausibilities with ρ provided by end-user
2: while max iterations not reached and evolution of likelihood above threshold do
3: E-Step: Compute log q?(X) = Eπ,µ,Λ[log p(X,Y,π,µ,Λ, I)]+c (c is a constant)
4: For this step, use the same equations as in [2] except for E[xnk] where Equation

5 should be used instead.
5: M-Step: Compute log q?(π), log q?(µ) and log q?(Λ) by taking the expectation

of Eq. 1 on, respectively, π, µ and Λ, with respect to X (using the results of the
E-Step).

6: Compute the likelihood (expression given in [2, p. 481] and using Equation 5).
7: end while

3 First results and first conclusion

This section presents preliminary results on the capacity of the VBGMM with
soft labels to provide relevant clusters. For that we used a benchmark, called
ORION-AE, obtained from a real system, and described in [17].

3.1 Data set description

The system is composed of a two metallic plates jointed by three bolts and was
designed to reproduce the loosening phenomenon observed on structures made
of assemblies, in particular when submitted to vibrations. One of the bolts was
untightened manually to simulate the loosening. The lower plate was submitted
to a 120 Hz harmonic force by means of a shaker. Seven levels of tightening
were considered, and for each level, an acoustic emission sensor recorded the
transients liberated during the test. Each tightening level was maintained during
10 seconds. The test was repeated 5 times, leading to 5 datatsets, each made of
7 seven classes with 70 seconds of data for different sensors (in this paper only
the second sensor was used).

The seven tightening levels can be used as a ground truth when designing
learning methods. This makes this dataset useful for developing and testing
clustering and classification methods for interpreting acoustic emission data.

The ORION-AE data are raw time-series. To be used in a VBGMM, we need
a preprocessing stage. We used a similar preprocessing to [16] with a first step
consisting in detecting the transients in the data stream and followed by a step of
feature extraction. Conversely to [16], the Principal Components Analysis (PCA)
was not used. Thirteen features were kept, and all combinations of four features
were considered (four were used to decrease the amount of time of tests since all
combinations were considered). The VBGMM was applied for each combination
while also varying the amount of prior.

3.2 The priors

The priors (pl) were generated as proposed by Côme et al. [4, Section 5.2.1]
using the true labels. For each training sample i, a number pi was drawn from
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a specific Beta distribution with expected value equal to ρ ∈ {0, 0.3, 0.6, 0.9, 1}
and variance 0.1, used to define the doubt expressed by a hypothetical expert on
the class of that sample. With probability pi, the label of sample i was changed
(to any other class with equal probabilities). Therefore ρ controls the amount
of prior introduced: When ρ = 0, all the labels are used as priors corresponding
to supervised learning, whereas ρ = 1 corresponds to the unsupervised learning
situation1.

3.3 Sorting the partitions

The partitions obtained for all combinations for a given ρ were then sorted
according to a criterion proposed in [14]. The criterion works as follows. For
each partition, the onset time (first occurrence) of each cluster was determined.
Then, each cluster was re-labelled according to their order of occurrence: the
first cluster to occur was labelled “1”, the second cluster labelled “2”, and so
on. This co-association allows the fusion of partitions since all clusters with the
same label are assumed to correspond to the same source [13].

After re-labelling, each partition was ranked by :

C(S) =

κ−1∑
k=1

∆onset(k, k + 1) log∆onset(k, k + 1) (6a)

∆onset(k, k + 1) = tonset,k+1 − tonset,k (6b)

where κ is the number of cluster, S is a subset of features used to compute
the partition, tonset,κ+1 is equal to the timestamp of the last AE signal. This
criterion assumes that the onsets of all clusters in a given partition should be
spread onto the time (or load) axis as uniformly as possible.

Once the partitions have been sorted according to this criterion, the best
partition is taken for evaluating the quality of the clusters. In order to evaluate
the performances, we used the Adjusted Rand Index [24], which provides a value
between 0 and 1, where a “1” is obtained for perfect correspondence between
the clusters estimated and the true labels.

3.4 Results

Several tests were performed, using various ρ, considering uncertain and noisy
priors, on the five datasets available in ORION-AE, with a comparison to clus-
tering algorithms used in the literature. In this communication, results are only
shown for the first dataset.

Figure 2 illustrates the results for the first dataset and for the second sensor.
The priors were considered uncertain. Each curve represents the decadic loga-
rithm of the cumulated number of acoustic emission transients in each clusters.
For example, consider the left-hand side of the top-left figure (Fig. 2a, corre-
sponding to the unsupervised case so with ρ = 1). The blue curve, for example,

1 The code can be found on T. Denœux’s homepage in software/E2M/add noise.m
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is the cumulated number of the acoustic emission transients assigned to the first
cluster. We can see that the curve reaches a plateau around 10 seconds, knowing
that interval [0, 10] seconds corresponds to the first level of tightening (the sec-
ond interval, [10, 20] is the second level, and so on). Therefore, this first cluster is
relevant and can be assigned to the first tightening level because the blue curve
evolves only in the first period. The yellow, purple, green and light blue clusters
correspond to tightening levels 2, 3, 5 and 6 respectively. We can see that clus-
ter 6 starting at 60 seconds does not stop increasing in [60, 70] (level 7), which
means that cluster 6 gathers data from both intervals. We can also see that the
red cluster starts within [0, 10] which means that the first level of tightening is
split in two clusters. This red cluster stops increasing until 30 s where it grows
again. This cluster is certainly related to the fourth level (the vertical axis is in
logarithmic scale) and shares common features with the first one (according to
the clustering method).

0 10 20 30 40 50 60 70

Time (s)

0

0.5

1

1.5

2

2.5

3

C
u
m

u
la

te
d
 o

c
c
u
rr

e
n
c
e
 o

f 
c
lu

s
te

rs

(a) ρ = 1 (without prior)
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(b) ρ = 0.9
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(c) ρ = 0.6
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(d) ρ = 0.3

Fig. 2: Cumulated number of transient signals assigned to each cluster for ρ =
{1, 0.9, 0.6, 0.3}.

The second figure (top right, Fig. 2b) corresponds to a small amount of prior,
ρ = 0.9 (all labels are true but with large uncertainty). We can see that the red
cluster is now at the good location, while a new cluster was positioned between
50 and 60 seconds. Therefore, there is a mixing between the two last levels. Then
from ρ = 0.6 (Fig. 2c) downwards, the clusters correspond quite precisely to the
tightening levels, with no difference between ρ = 0.6 and ρ = 0.3.
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These results show that the cumulated plots of clusters bring two main infor-
mation: The starting points (called onsets) of the accumulation, and the steady
phase. When an onset is well located, it means that the clustering is able to
assign the first transients of a given tightening level to the correct cluster. Con-
cerning the steady phase, when it starts at the right location, it means that
we are able to locate when a cluster stops increasing, therefore when a possible
damage or functioning condition stops occurring. The height of the steady phase
depends on how active was a damage and this can be useful for monitoring.

Figure 3 illustrates the evolution of the ARI for different values of ρ and
considering all combinations of features (715). The ARI values were sorted by
descending order. Circled-markers represent the 10 best ARI values correspond-
ing to the 10 best partitions (estimated by the VBGMM-SOFT method and
selected by the criterion proposed in [14]). We can see that the markers are
located on the left-hand side of these curves corresponding to quite high ARI
values.
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Fig. 3: Adjusted Rand Index (ARI) sorted for all partitions. The ten best parti-
tions obtained by a VBGMM with different amounts of priors are superimposed
with markers.

4 Conclusion

The first results obtained with a VBGMM on acoustic emission data are encour-
aging. We propose to add some prior which results in a small modification of the
original algorithm.
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With a small amount of prior the performance are greatly improved. The
clusters obtained are interpreted by means of cumulated plots. For the appli-
cation targeted, these plots underline two important pieces of information: the
onsets of clusters and their steady phase. As a future work, we plan to exploit
both of them for Structural Health Monitoring since it informs about the damage
process taking place within the material.

The way to generate the prior remains a key problem. One idea followed by
the acoustic emission community consists in getting prior knowledge from nu-
merical simulations. However, in addition to the computational burden involved
in such simulations, another difficulty holds in the fact that these simulations
also require knowledge about the material properties which evolve during a test.
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