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Abstract: Prolonged exposure to strong hand-arm vibrations can lead to vascular disorders such as
Vibration White Finger (VWF). We modeled the onset of this peripheral vascular disease in two steps.
The first consists in assessing the reduction in shearing forces exerted by the blood on the walls of the
arteries (Wall Shear Stress—WSS) during exposure to vibrations. An acute but repeated reduction
in WSS can lead to arterial stenosis characteristic of VWF. The second step is devoted to using a
numerical mechano-biological model to predict this stenosis as a function of WSS. WSS is reduced by
a factor of 3 during exposure to vibration of 40 m·s−2. This reduction is independent of the frequency
of excitation between 31 Hz and 400 Hz. WSS decreases logarithmically when the amplitude of the
vibration increases. The mechano-biological model simulated arterial stenosis of 30% for an employee
exposed for 4 h a day for 10 years. This model also highlighted the chronic accumulation of matrix
metalloproteinase 2. By considering daily exposure and the vibratory level, we can calculate the
degree of stenosis, thus that of the disease for chronic exposure to vibrations.

Keywords: Vibration White Finger; Wall Shear Stress; ultrasound; proper volar artery; pulsatile
flow; fluid–structure interaction; Womersley; finite element modeling; mechano-biological modeling;
hyperplasia

1. Introduction
1.1. Problem of Vibrations Transmitted to the Upper Limb

In France, 11.3% of employees in the private sector are exposed to vibrations transmit-
ted to the upper limb [1,2]. Most professional sectors are concerned, such as construction
and public works, forestry, foundries, mechanical workshops, agriculture, and the wood
industry. Certain trades have a very high number of employees exposed to vibrations. For
example, more than 85% of masons and automobile mechanics are exposed to the risk of
hand–arm vibrations [2].

About 17% [2] of employees subjected to hand-transmitted vibrations have an exposure
time of more than 10 h a week, and nearly 8% are exposed for more than 20 h a week.
However, prolonged exposure to high levels of vibration can lead to several vascular,
neurological, osteoarticular, and muscle–tendon disorders [3–5], designated by the generic
term “vibration syndrome” [6]. In 2018 in France, 119 diseases were recognized by the
social security system, representing a cost of EUR 7.8 million, i.e., about EUR 66 thousand
per employee.

In order to create a minimum basis of protection for all European workers, the Euro-
pean Union introduced, through the directive 2002/44/CE of 25 June 2002 [7], regulatory
obligations aimed at reducing the risk of vibrations to health and safety. This directive
defines, in particular, the daily exposure standardized to an eight-hour reference period as
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an indicator to assess the risk and establish threshold values that should not be exceeded.
This vibratory exposure is measured in conformity with standard ISO 5349 (parts 1 [8]
and 2 [9]). For example, for a handheld vibrating machine, exposure can be quantified by
measuring the acceleration on the handle of the machine. Exposure can also be assessed
without direct measurement in the field using measurement databases or vibration emis-
sion values declared by the machine manufacturers [10]. Whatever type of assessment is
carried out, the estimation of vibration exposure is calculated, directly or indirectly, from
the root mean squared (rms) values of accelerations weighted by frequency, by the filtering
defined in standard ISO 5349-1 [8].

1.2. Shortcomings in the Standardized Estimation of Vibration Exposure and Their Impact on Some
Prevention Strategies

The estimation of vibration exposure using frequency-weighted accelerations is jus-
tified if the amplitude of the weighting filter mirrors the importance of each frequency
in terms of pathological impact. However, several physiological, histological, and epi-
demiological studies [11–13] have highlighted that this filter underestimates the effect on
the health caused by vibrations with a frequency higher than 50 Hz. Such vibrations are
liable to cause angioneuronal disorders. In particular, they can lead to the development of
vibration-induced Raynaud’s syndrome [14,15], i.e., Vibration White Finger (VWF) [16]. In
French companies, more than three-quarters of employees exposed to hand–arm vibrations
use handheld or hand-guided machines [2], generating vibrations of frequencies higher
than 50 Hz. Thus, the probably excessive weighting of the ISO 5349 filter of frequencies
higher than 50 Hz means that for most French workers exposed to hand–arm vibrations,
the estimation of the vibration dose could underestimate the risk of occurrence of VWF
due to vibration. Finally, the estimation of vibration exposure can conform to regulatory
thresholds without, however, guaranteeing the protection desired for workers against this
peripheral vascular disease.

Furthermore, the current standard ISO 5349 may have negative effects on the market-
ing of practical solutions for preventing vibration risk. Indeed, some antivibration devices
are based on the use of damping materials that are efficient at high frequencies (>150 Hz).
However, the considerable weighting of acceleration by the ISO 5349 filter at high frequen-
cies often leads to almost the same regulatory weighted accelerations without, and with,
antivibration systems, even when the latter are very efficient. Therefore, the interest for the
manufacturers to develop this type of protection is very limited since they cannot propose
a technical contribution demonstrated according to the terms of the regulations. Finally,
all these protection devices are rarely found on the market, although they are susceptible
to reducing the transmission of vibration energy between the vibrating machine and the
upper limb in the spectral range of the vibrations responsible for vascular disorders.

1.3. Objectives

Many research studies have attempted to improve the standardized weighting filter
in order to better take into account the vascular physiopathological effects caused by vi-
brations, but few studies have focused on how to calculate the daily vibration dose. These
works are mainly based on epidemiological, histological, physiological, psychophysical,
and biomechanical approaches [12,17–24]. Technical report ISO/TR 18570 [25] provides a
synthesis of these different studies and defines an improved (but nonregulatory) methodol-
ogy for estimating the risk of vascular vibration. More precisely, in this technical report,
frequency weightings and exposure–response relationships were mainly carried out from
biodynamic models and epidemiological studies, while physiological responses of humans
or animals remain poorly used for this purpose. Therefore, we would like, in the long
term, to define new frequency weightings based on physiological responses of humans
and the exposure–response relationship stemming from biological modeling of the chronic
mechanisms responsible for VWF. To the best of our knowledge, our current strategy is
probably among the first approaches trying to link mechanical vibration, acute physiologi-
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cal induced responses, and chronic pathological effect for defining a potential, down the
road, dose–effect relationship.

Hence, our objective is to propose an alternative method to the existing ones that relies
on a multiscale mechano-biological approach in time and space [26]. This new approach
consists in (i) identifying an acute physiological effect caused by vibrations, pertinent
because these vibrations can cause, through chronic accumulation, the development of
VWF, (ii) finding the relation between the vibration and this acute physiological effect,
which would allow defining a weighting filter that better couples the physical and the
physiological dimensions, and (iii) modeling a law of chronic accumulation of these re-
peated acute physiological effects. The ultimate aim is to define an exposure dose based on
this law.

2. Materials and Methods
2.1. The Original Strategy Implemented

The physiopathology of vibration-induced Raynaud’s syndrome is very complex,
highly multifactorial, and still remains poorly understood [15,16,27–30]. In a highly
schematic and simplified way, we have modeled the development of Raynaud’s vibration
syndrome in several stages, from which emerge two steps in time and space (Figure 1).
Firstly, the vibrations transmitted to the upper limb by a vibrating machine propagate
inside the soft tissue of the fingers and hand, generating thermomechanical effects such as
the modification of the stress/deformation field, mechanical power dissipation, and local
temperature [31–33]. These thermomechanical changes can then disturb the equilibrium
of digital vasoregulation. This imbalance can result in the direct action of the vibrations
on the arteries and the digital nervous network. It can also be indirect and involve certain
mechanoreceptors and the central and peripheral nervous systems. These acute and re-
peated disturbances of different physiological parameters controlling vasoregulation can
then accumulate chronically and lead to the occurrence of VWF. The exact mechanisms
leading to permanent vascular changes still remain poorly understood [22,34].
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Figure 1. Simplified overall view of the development of vibration-induced Raynaud’s syndrome: from
working conditions to pathological consequences, passing via mechanical and physiological effects.

In our study, we consider only the indirect neuronal mechanisms of the imbalance
of vasoregulation. More specifically, since the 1980s [35–38] up to more recently [22,39],
many studies have shown that the vibrations transmitted to the hand–arm system trigger
a nervous response via certain mechanoreceptors (Pacinian corpuscle, Merkel, etc.). The
sensitive neural impulses trigger, via the sympathetic nervous system, a neural response
leading to the vasoconstriction of the vibrated and nonvibrated fingers. The consequence
of this vasoconstriction is the reduction in the blood flow in the digital extremities [40].

We hypothesize that this reduction in blood flow modifies the shear stress exerted
by the blood on the endothelium of the artery—the Wall Shear Stress (WSS). However,
a chronic modification of hemodynamic factors leads to a vascular adaptation regulated
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by homeostatic mechanisms [41,42]. In particular, the reduction in shearing efforts, in
the long term, results in the reduction in the arterial lumen and the thickness of the
different layers of the arteries, in turn leading to arterial stenosis [43]. Angiographies [14,44]
and histological analyses of biopsies [45,46] performed on patients suffering from VWF,
moreover, revealed considerable arterial stenoses with a reduction in the arterial lumen
sometimes exceeding 50%.

Thus, our model of the development of Raynaud’s vibration syndrome is based on
two hypotheses: (i) vibrations can reduce the short-term blood/endothelium WSS in the
digital arteries [47] and (ii) this chronic imbalance of vascular hemostasis can bring about
arterial stenosis leading to VWF [48]. The final aim in this series of studies is to link the
acceleration measured on the vibrating machine to the arterial stenosis caused by the
vibrations transmitted to the hand–arm system. This research strategy can be viewed con-
ceptually and schematically by two weakly coupled models: A and B (Figure 2a). The input
of Model A is the acceleration emitted by the machine, and its output is the WSS induced
by the vibrations. Model A links acutely mechanical vibration at the macroscopic scale
(hand–arm scale) to physiological effects at the mesoscopic scale (WSS at the artery level).
The vibration-altered WSS stemmed from complex cellular and molecular mechanisms.
However, in Model A, we do not study such mechanisms, but we measure one of their
physiological consequences at the artery level—vibration-altered WSS.
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The input of Model B is the WSS, while its output is the reduction in the arterial
lumen (stenosis) after chronic exposure to vibrations. Model B deals with chronic events of
vascular biology at the cellular and molecular levels.

Regarding model A (Figure 2b), we propose a methodology for estimating the WSS
caused by the vibrations. Thus, we obtain direct access to magnitude Ψ(freq, Ampli), which
links the frequencies and amplitudes of the vibrations to the WSS. Model A can also be
split into several intermediate steps (Figure 2b). In this study, we present the research
studies performed for these two intermediate steps. The first concerns the biodynamic
modeling of a hand gripping (without tightening) a vibrating handle (model A0). The
second is devoted to modeling the mechanotransduction of Pacinian corpuscles (model A1).
A thermomechanical model (model A2) of the temperature increase generated by the
vibrations is also presented.

In the case of model B, we hypothesize that the arterial stenosis caused by the vi-
brations results from a phenomenon of intimal hyperplasia [46]. In this case, the arterial
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stenosis stems from the growth of the arterial walls caused by the proliferation and migra-
tion of the smooth muscle cells of the media to the intima (Figure 2c). Model B consists in
modeling certain mechanisms of cell and molecular dynamics responsible for this intimal
hyperplasia. This mechanobiological model couples the complex biomechanical behavior
of the artery with vascular biological phenomena partially responsible for arterial growth.

2.2. Model A: Thermomechanics and Physiology
2.2.1. Model A0: Finite Element Model of a Hand Gripping a Handle

Two finite element models of the hand were developed (Table 1). Hand Model 1
is composed of 20 bones (the 14 bones of the phalanges, the 5 metacarpals, and 1 bone
modeling the 8 carpal bones), the cartilage between the bones, and soft tissue representing
the flesh [31]. Hand Model 2 contains the following anatomical elements: the skin, sub-
cutaneous tissue (flesh), the 8 carpal bones, the 5 metacarpal bones, the 14 bones of the
phalanges, the flexor and extensor tendons, the ligaments, the ligament tunnels, the carti-
lage, the joint capsules, the thenar and hypothenar eminences of the palm, the lumbrical
and intraosseous muscles, and the fingernails [49]. The boundary conditions and loading
of the models are described in Appendix A.

Table 1. The two finite element models developed.

Hand Model 1 Hand Model 2

Model
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Anatomical detail Coarse Fine 
Number of nodes  10,325 262,226 

Number of elements  47,446 1,455,357 
Design Literature data [33] Segmentation of MRI images  

2.2.2. Model A1: Modeling the Mechanotransduction of Pacinian Corpuscles 
Pacinian corpuscles are mechanoreceptors sensitive to vibrations at frequencies be-

tween 5 Hz and 1000 Hz, with a peak of sensitivity around 250 Hz [50,51] highly depend-
ent on temperature [52,53]. They are composed (Figure 3a) of a lamellar capsule, a neurite 
(a dendrite), and an axon covered with myelin except at the Ranvier nodes [54,55]. Filo-
podia are arranged on the dendrite (cytoplasmic outgrowths). These filopodia are me-
chanical receptors where mechanotransduction takes place, that is to say, the conversion 
of mechanical stimuli into electrochemical activity. Mechanical vibration propagates from 
the external lamellae to the filopodia. The capsule, therefore, plays a role of a mechanical 
filter. The mechanical deformations at the base of the filopodia then generate electrochem-
ical potentials called receptors that form a generating potential at the first Ranvier node. 
If this reaches a certain threshold, an action potential is generated. This nerve impulse 
then propagates from the Ranvier nodes along the axon to transmit information to the 
central nervous system. 
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2.2.2. Model A1: Modeling the Mechanotransduction of Pacinian Corpuscles

Pacinian corpuscles are mechanoreceptors sensitive to vibrations at frequencies be-
tween 5 Hz and 1000 Hz, with a peak of sensitivity around 250 Hz [50,51] highly dependent
on temperature [52,53]. They are composed (Figure 3a) of a lamellar capsule, a neurite
(a dendrite), and an axon covered with myelin except at the Ranvier nodes [54,55]. Filopo-
dia are arranged on the dendrite (cytoplasmic outgrowths). These filopodia are mechanical
receptors where mechanotransduction takes place, that is to say, the conversion of me-
chanical stimuli into electrochemical activity. Mechanical vibration propagates from the
external lamellae to the filopodia. The capsule, therefore, plays a role of a mechanical filter.
The mechanical deformations at the base of the filopodia then generate electrochemical
potentials called receptors that form a generating potential at the first Ranvier node. If
this reaches a certain threshold, an action potential is generated. This nerve impulse then
propagates from the Ranvier nodes along the axon to transmit information to the central
nervous system.

We modeled these mechano-electrochemical couplings in four steps (Figure 3b): (i) The
field of dynamic deformations calculated with model A0 is used to define a dynamic load
on the external lamella of the Pacinian corpuscle. We used the theory of homogenization
(multilevel finite element method FE2) to couple the dynamic response at the macroscopic
scale of the hand to the more mesoscopic scale of the Pacinian corpuscles; (ii) A thermome-
chanical model of the Pacinian corpuscle is built. It links the movements of the external
lamella of the Pacinian corpuscle to deformations on the filopodia; (iii) the mechanotrans-
duction model of Bell & Holmes [56] is used to simulate a generating potential at the first
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Ranvier node from the deformations present; (iv) the simulation is completed by a model
of nerve impulse conduction along the axiom.
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Figure 3. (a) Structure of a Pacinian corpuscle; (b) model of mechano-electrochemical couplings.

2.2.3. Model A2: Temperature Induced by the Vibrations

Transfers of heat in biological tissues can be modeled by generalizing the heat equation
by adding supplementary terms linked to the heat generated by blood perfusion qper f and
by the metabolism qmet [57]. The viscous dissipation of vibration energy can also be taken
into account in this generalized heat equation by including the quantity of external heat
qext corresponding to the volume density of the power dissipated mechanically by the
vibrations [58]. A heat model (Figure 4a) was built. The fall of the flow induced by the
vibrations leads to a reduction in blood perfusion and of qper f . Our model can take this
phenomenon into account. Furthermore, it can also simulate the influence of wearing
a glove on the temperature field. This model reproduces the following experimental
conditions (Figure 4b): a finger enters into contact with steel support, it is then compressed
by a cylindrical indenter, and finally subjected to a vibration of 100 Hz at an amplitude
of 40 m·s−2 rms (the vibration frequency and magnitude match one common vibration
level (nonweighted) emitted by handheld machines in the field) for 20 min. An exposure
time of 20 min was chosen to ensure that the finger surface temperature reached thermal
equilibrium. The temperature measurements were performed on a volunteer in a climatic
room at a constant temperature (23 ± 0.5 ◦C) following an adaptation time of 20 min. The
subject was seated, their forearm resting on a support (Figure 4b), and the temperature was
measured with a thermal camera, Fluke Ti400.
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2.3. Model A: Effect of Vibrations on Blood/Endothelium Shearing Stress
2.3.1. Protocol

The experimental setup (Figure 5a) used to estimate the WSS comprised an ultrahigh-
resolution ultrasound probe (UHF70®, Fujifilm VisualSonics, Toronto, ON, Canada) (central
frequency 50 MHz) connected to an ultrasonic imager (Vevo MD®, Fujifilm VisualSonics,
Toronto, ON, Canada). A finger and probe support were designed to precisely position the
ultrasound probe (Figure 5b). Thus, the probe was oriented in order to image the proper
volar digital artery around the inter-phalange joint of the left index finger (Figure 5c). The
B-mode images and pulsed Doppler were recorded in DICOM® format [59]. The right hand
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lightly gripped a handle with a diameter of 40 mm fixed to a shaker whose acceleration
was controlled by Matlab® (version R2021a, MathWorks, Natick, MA, USA)
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Figure 5. Experimental setup: (a) overall view; (b) positioning support of the ultrasound probe;
(c) measurement area corresponding to the proper volar digital artery of the left index finger.

The WSS was calculated using a Womersley mechanical model of pulsatile flows [60,61].
This model requires information on the radius of the artery and the maximum blood
velocity. This velocity stems directly from the pulsed Doppler signal, whereas the radius
is estimated from image processing developed specially by us for B-mode images of our
ultrasound scanner (Supplementary Materials).

Twenty-four volunteers in good health and nonsmokers, aged from 19 to 39 years
old (average age 25.1), participated in a WSS measurement campaign in a room at con-
stant temperature (23 ± 0.5 ◦C). The protocol consisted of estimating the WSS for three
consecutive phases of 10 s or 1 min each: (i) rest, (ii) exposure to vibrations, (iii) return
to calm. The vibrations were pure harmonic for eight frequencies: 31, 63, 125, 160, 200,
250, 315, and 400 Hz at an amplitude of 40 m·s−2 rms (these vibration frequencies and this
magnitude may match raw vibration levels (nonweighted) emitted by handheld machines
in the field such as, for instance, sander, grinder, or chisel). For the frequency of 125 Hz (it
typically matches the frequency emitted by rotary machines likely to be responsible for the
onset of VWF), six amplitudes were tested: 1, 2, 5, 10, 20, and 40 m·s−2 rms. The data were
processed by repeated measures ANOVA (10 s measure) and by Morlet wavelet analyses
(1 min measure) [62–64].

2.3.2. Validation of the Womersley Model

A numerical phantom of a cylindrical artery (Figure 6a) was implemented in Matlab®

(version R2021a, MathWorks, Natick, MA, USA) using Field II, and Focus routines [65–67]
were adapted to simulate the ultrasonic response of our ultrasound measurement probe [68,69].
The parameters of our diameter estimation algorithm were optimized on B-mode cineloops
simulated using the acoustic propagation of diffusers mimicking a cylindrical artery (Figure 6a)
with known diameter. This algorithm was then tested on phantoms of real arteries
(Figure 6b) for two different cross sections corresponding to two slices imaged by the probe
(these two representative slices were computed from the intersection of selected probe
planes and the 3D geometry of the artery described below). The geometry of the artery and
the surrounding tissues were obtained by segmentation of the MRI images obtained with a
high spatial resolution 7-Tesla scanner (Magnetom Terra®, Siemens Healthineers, Siemens
Healthcare GmbH, Erlangen, Germany) (Figure 7a).
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Figure 7. (a) Workflow for the mesh construction showing the RMI images, segmentation, meshing,
and cutting stages; (b) pressure inlet and velocity outlet physiological boundary conditions, and
clamped bone, from [68].

The reference WSS was calculated from a model of fluid–structure interaction of the
proper volar digital artery taking into account the surrounding tissue (Figure 7a). The
physiological boundary conditions (Figure 7b) are: (i) at the artery inlet, a uniform pressure
obtained from a database [70], and (ii) at the outlet, a pulsed blood velocity with a Poiseuille
spatial profile. This velocity was measured with our ultrasound probe on a volunteer. The
details of this model are available in our previous works [68]. The WSS calculated from
the Womersley hypotheses was then compared to the reference WSS obtained from the
fluid–structure interaction model.

2.4. Model B: Model of Arterial Stenosis Induced by Vibrations

The WSS plays an important role in arterial growth and remodeling (modification of
the anisotropy of mechanical behavior) [71,72]. Indeed, these stresses partially regulate the
vascular biology of the endothelial cells. More precisely, low shear stress can favor secretion
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by the endothelial cells (EC) of several mitogenic and chemotactic agents [73,74] such as
Platelet-Derived Growth Factors—PDGF (PDGF is a growth factor that regulates cells
growth and division). These agents can diffuse in the artery and regulate the proliferation
and migration of smooth muscle cells (SMCs) and the dynamics of the extracellular matrix
(ECM) composed of collagen and elastin in our model. A process of intimal hyperplasia
can occur, leading to geometrical and structural changes of the intima and the media of the
artery. The mechanical stresses inside the layers of the artery are then liable to undergo
modification. These variations of stresses can, in turn, potentially influence the cellular and
molecular dynamics of the artery’s components [75,76].

To simulate this process, we have built a mechano-biological model. It couples a
model of vascular biology describing intimal hyperplasia with an anisotropic hyper-elastic
mechanical model of the artery (Figure 8).
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Figure 8. Synthesis of the mechano-biological model developed to simulate harmful arterial stenosis.

The input data are the WSS identified in Section 2.3. The WSS disturbs the basal pro-
ductions by the EC of PDGF-BB (a type of PDGF), Transforming Growth Factor ((TGF-β),
another growth factor), and nitric oxide (NO). The diffusion equation is then implemented
to know the quantity of material of these three factors in the artery. This quantity of
material and that of MMP-2 (Matrix MetalloProteinase 2) then affect the proliferation,
apoptosis, and migration ofSMCs, and the degradation and synthesis of the ECM. MMP-2
is an enzyme involved in the breakdown of the ECM by catalyzing the cleavage of ECM
proteins. The dynamics of the SMCs and ECM are modeled using a network agent method.
These methods are particularly well-adapted tools for simulating the biological behaviors
of vascular diseases [77–79]. A finite element calculation is performed on the new geom-
etry of the artery by possibly taking into account its new components (number of SMCs,
and quantity of ECM). The artery obeys an anisotropic hyperelastic behavior law HGO
(Holzapfel–Gasser–Ogden) [80]. The mechanical stresses are calculated and reintroduced in
the biological model since they regulate the PDGF-BB, TGF-β, and matrix metalloproteinase
(MMP-2 and MMP-9). More details will be available soon in ongoing publications [81,82].
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3. Results
3.1. Hand Vibration

The Driving Point Mechanical Impedance (DPMI) in direction zh, calculated for the
two models, Hand Model 1 and Hand Model 2 (Figure 9), is close to the normalized DPMI
of the hand–arm system [83]. The normalized DPMI characterizes the vibratory response
of an average subject. Model 2, which is more detailed anatomically, shows three local
maxima in the mechanical impedance at frequencies 28, 194, and 265 Hz.
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parison of Hand Models 1 and 2 with standard ISO 10068 [83]. The acceleration fields in the hands
shown at the bottom of the figure correspond to the frequencies A, B, and C shown in the top half of
the figure.

3.2. Pacinian Corpuscles

Our mechano-electrochemical model of Pacinian corpuscles is compared (Figure 10a)
to experimental data [53].
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Figure 10. (a) Mechano-electrochemical response of Pacinian corpuscles; (b) main maximum defor-
mations on the three filopodia after coupling the macroscopic and microscopic scales.

For each frequency of vibration excitation, we seek the minimum amplitude of har-
monic displacement of the external layer of the Pacinian corpuscle that leads to a single
nerve impulse during a time equal to the period of the vibration. The harmonic deforma-
tions of Hand Model 2 around a Pacinian corpuscle are injected into the finite element
model of this Pacinian corpuscle by using the macroscopic and microscopic scale coupling
methodology based on the FE2 method. The first main deformation (Figure 10b) is greater
for the filopodium of the axon than for the bulb. These deformations reach a maximum
around 40 Hz and a local maximum at 250 Hz.
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3.3. Heat

The temperature fields were measured on the surface of the finger and simulated
with and without vibration (Figure 11a). A measurement point (pink ellipse in Figure 11a)
was selected to plot the temperatures as a function of time (Figure 11b). The increase in
temperature generated by the vibrations was about 0.5 ◦C for both the simulation and the
measure on the surface of the skin at this point.

Vibration 2022, 5 FOR PEER REVIEW  11 
 

 

For each frequency of vibration excitation, we seek the minimum amplitude of har-
monic displacement of the external layer of the Pacinian corpuscle that leads to a single 
nerve impulse during a time equal to the period of the vibration. The harmonic defor-
mations of Hand Model 2 around a Pacinian corpuscle are injected into the finite element 
model of this Pacinian corpuscle by using the macroscopic and microscopic scale coupling 
methodology based on the FE2 method. The first main deformation (Figure 10b) is greater 
for the filopodium of the axon than for the bulb. These deformations reach a maximum 
around 40 Hz and a local maximum at 250 Hz. 

3.3. Heat 
The temperature fields were measured on the surface of the finger and simulated 

with and without vibration (Figure 11a). A measurement point (pink ellipse in Figure 11a) 
was selected to plot the temperatures as a function of time (Figure 11b). The increase in 
temperature generated by the vibrations was about 0.5 °C for both the simulation and the 
measure on the surface of the skin at this point. 

(a) (b) 

 

 

Figure 11. Comparison between simulation/measure of the increase in temperature induced by the 
vibrations. The calculation performed with the basal rate of blood perfusion; (a) temperature field; 
(b) temperature simulated with and without vibration and vibration-induced increase in tempera-
ture simulated and measured for a given position (pink ellipse). 

3.4. Short-Term Physiological Effect 
The reduction in WSS caused by the vibrations occurred a few seconds (2 s on aver-

age on the cohort) after starting the vibratory excitation (Figure 12a). After stopping the 
vibration, the WSS immediately began to increase but without reaching its basal level at 
the end of 10 s of measurement (Figure 12a). 

From the statistical standpoint, the data were analyzed on the WSS averaged in each 
of the analysis time windows of 10 s. This magnitude is called Time-Averaged WSS and 
denoted TAWSS. The vibrations (at an amplitude set at 40 m·s−2) led to a statistically sig-
nificant reduction in the TAWSS, whatever the frequency of the vibratory excitation (Fig-
ure 12b). The TAWSS fell from about 3 Pa to 1.2 Pa. This decrease was the same for the 
eight frequencies tested. The TAWSS normalized in relation to the basal state depended 
on the amplitude of the vibration (frequency set at 125 Hz) in a statistically significant way 

Figure 11. Comparison between simulation/measure of the increase in temperature induced by the
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3.4. Short-Term Physiological Effect

The reduction in WSS caused by the vibrations occurred a few seconds (2 s on average
on the cohort) after starting the vibratory excitation (Figure 12a). After stopping the
vibration, the WSS immediately began to increase but without reaching its basal level at
the end of 10 s of measurement (Figure 12a).

From the statistical standpoint, the data were analyzed on the WSS averaged in each
of the analysis time windows of 10 s. This magnitude is called Time-Averaged WSS and
denoted TAWSS. The vibrations (at an amplitude set at 40 m·s−2) led to a statistically
significant reduction in the TAWSS, whatever the frequency of the vibratory excitation
(Figure 12b). The TAWSS fell from about 3 Pa to 1.2 Pa. This decrease was the same for the
eight frequencies tested. The TAWSS normalized in relation to the basal state depended
on the amplitude of the vibration (frequency set at 125 Hz) in a statistically significant
way (p-value < 0.05). This normalized TAWSS obeyed a log2 linear regression law of the
amplitude of the vibration possibly corrected by the age and mass of the forearm of the
vibrated subject. The effect of the vibrations for exposures longer than one minute will be
analyzed in an ongoing publication.
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Figure 12. (a) Example of reduction in WSS caused by vibrations on a volunteer; (b) statistical syn-
thesis of the influence of vibration (>*** means p-value < 0.0001); (c) statistical synthesis of the influ-
ence of the amplitude of vibration. 

Our diameter calculation algorithm was used on the numerical cineloops of the cy-
lindrical artery (Figure 13a). The error between the calculated diameter and the target di-
ameter was 2% for Focus and 4% for Field II (Figure 13b). In the case of the real artery, the 
diameter estimation errors varied between 4% and 2% (Figure 13b–d). 

Figure 12. (a) Example of reduction in WSS caused by vibrations on a volunteer; (b) statistical
synthesis of the influence of vibration (>*** means p-value < 0.0001); (c) statistical synthesis of the
influence of the amplitude of vibration.

Our diameter calculation algorithm was used on the numerical cineloops of the
cylindrical artery (Figure 13a). The error between the calculated diameter and the target
diameter was 2% for Focus and 4% for Field II (Figure 13b). In the case of the real artery,
the diameter estimation errors varied between 4% and 2% (Figure 13b–d).
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The WSS computed with the Womersley hypothesis tended to underestimate the
reference WSS, except in cutting path P9 (Figure 14). The mean error between the Womersley
WSS and that of the fluid–structure model was 12%.
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Womersley models for nine Womersley cutting paths defined from slice 2.

3.5. Long-Term Arterial Stenosis

The mechano-biological model was applied for an exposure of 4 h a day for 10 years
to vibrations of an amplitude of 40 m·s−2. Thus, the arterial growth model was supplied
by a WSS of 1.2 Pa (cf. previous section). All the magnitudes presented are normalized in
comparison to the basal state. They are therefore equal to unity at the starting time.

The number of Smooth Muscle Cells (SMCs) almost doubled at the end of 10 years
(Figure 15). The total quantity (in the media and intima) of collagen decreased until five
years of exposure then increased without reaching the basal value. The surface of the
arterial lumen, which describes the degree of stenosis, continually decreased with exposure
time. The reduction in this surface was 12% at 5 years and 30% at 10 years exposure. The
surface of the media followed the same behavior as that of the quantity of collagen.

The mass of MMP-2 (Figure 16) accumulates continuously and considerably with
exposure time, changing from the absence of MMP-2 initially to 500 femtograms (fg) at the
end of 10 years. A change in the accumulation kinetics was observed at the end of 5 years’
exposure when the mass of MMP-2 increased more rapidly. TGF-β also accumulated as a
function of exposure time, along with a change of kinetics at 5 years, but the increase in
mass was more moderate (15 fg at initial state and about 22 fg at 10 years).
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exposure.
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Figure 16. Accumulation of MMP-2 and TGF-β as a function of time of exposure to vibrations.

4. Discussion

The goal of this study was to define and deploy a research strategy aimed at identi-
fying a more realistic vibration dose regarding its pathological consequences, especially
against VWF. The strategy implemented for this purpose was split into two steps: (i) quan-
tifying the short-term effect of vibrations on the reduction in blood/endothelium WSS and
(ii) predicting chronic stenosis caused by these modifications of arterial hemodynamics
since this stenosis is typical of VWF. The first step was itself split into two synergetic
items: a finite element model of the thermomechanical response of a vibrated hand, and a
model of the mechano-electrochemical response of Pacinian corpuscles. In the first step,
we also directly quantified the relationship between the frequencies/amplitudes of the
vibrations and the resulting reduction in WSS. We developed a mechano-biological model
to predict the chronic arterial stenosis caused by these acute but repeated changes in arterial
hemodynamics. This model coupled the anisotropic hyperelastic behavior of the artery
with certain intimal hyperplasia mechanisms responsible for arterial growth.

4.1. Thermomechanical Modeling
4.1.1. Hand Modeling

Two finite element models were developed for the response of a vibrated hand. They
were compared (Figure 9) with the normalized impedance of the hand–arm system [83] in
module (Figure 9) and phase (Figure A2). The two models were capable of reproducing
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the dynamic behavior (characterized here by the mechanical impedance) of an average
subject. The phase of the simulated impedance also conformed to that of the normalized
impedance. Thus, the viscous dissipation behavior laws of our models are likely well
adapted for simulating the real dissipation of vibration energy. Hand Model 2 provided a
finer analysis than Hand Model 1 since it took into account a larger number of additional
anatomical elements. Hand Model 2 showed a high value of mechanical impedance at
28 Hz (the higher the mechanical impedance, the greater the force required to move the
structure). A modal analysis (Table A1) showed a proper abduction/adduction mode
of the wrist at this frequency. Abduction of the wrist means a radial deviation of the
wrist, i.e., a movement towards the thumb. Whereas adduction of the wrist means an
ulnar deviation of the wrist, i.e., a movement towards the little finger. Furthermore, the
mechanical impedance showed a change of phase of 180◦ at this frequency (Figure A2),
which therefore corroborates the presence of this mode in the harmonic response. The
eigenmode (vibratory mode characterizing an oscillating system) of the wrist around 28 Hz
was also measured or simulated in other studies [84,85]. Our modal analysis of Hand
Model 2 highlighted the presence of solid poly-articulated modes of the torso, shoulder,
and elbow between 1 Hz and 14 Hz. These frequencies of eigenmodes are consistent with
those found in the literature [86,87]. Furthermore, in line with other works [88–90], we
found eigenmodes of the fingers starting from 82 Hz for the thumb and 105 Hz for the other
fingers. The anatomical details of our model permitted extracting information hitherto
difficult to obtain. For example, an abduction/adduction mode of the metacarpals was
observed for the first time around 54 Hz. Regarding the proper modes of the fingers, they
ranged from 82 Hz to 259 Hz with, first of all, the modes of the proximal phalanges, then
the medial ones, and, lastly, the coupled modes of the distal phalanges and the thenar
and hypothenar eminence muscles. The modes of muscles without bony modes appeared
preferentially above 259 Hz. The mode of the thenar eminence at 320 Hz is a characteristic
example. We found the influence of this type of mode at frequencies 194 Hz and 265 Hz in
the mechanical impedance (Figure 9) of Hand Model 2, for which the acceleration fields
showed high levels of vibration for the distal phalanges and for the muscles. The muscles
of the hand and particularly those of the thenar and hypothenar eminences, seemed to
play an important role in the dynamic response of the hand to high frequencies. This
is undoubtedly a new observation that, to our knowledge, has not been reported in the
literature.

Although our model provides original information, there are paths of improvement.
Indeed, this model does not take into account certain parameters such as gripping efforts or
the active behavior of the muscles. These parameters may influence the dynamic behavior
of the hand [91,92] and will be the subject of a new study.

4.1.2. Pacinian Modeling

The mechano-electrochemical model of the response of the Pacinian corpuscles is
today validated with respect to the experiments reported in the literature [53]. These
measurements consisted in measuring the nerve impulses of a Pacinian corpuscle when
a movement was imposed on its external lamella. In this validation, the mechanical
component was a simplified model of transfer function type between the displacement on
the external surface of the Pacinian corpuscle and the deformation on the filopodia. The
finite element model of the Pacinian corpuscle was validated in comparison to another
semi-analytical model [93,94]. The localization method for changing from the macroscopic
to the mesoscopic scale was verified on test cases [95]. To date, our model has not been
fully validated due to a lack of data in the literature. Such validation would require
defining a specific experimental protocol and measuring the nerve impulses directly on a
subject [37,96–98] and no longer on a Pacinian corpuscle ex vivo. Furthermore, Bell and
Holmes’ electrochemical model of nerve impulse generation could be improved by other
approaches implementing complex neuronal behaviors [99].
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4.1.3. Temperature Modeling

Our simulations of the temperature field generated by vibrations showed a moderate
increase (0.5 ◦C) on the skin of the finger; it was higher inside the finger. For example,
this increase was about 2 ◦C at the position of the maximum dissipated mechanical en-
ergy. These temperature variations could have an influence on the physiopathological
mechanisms caused by the vibrations. Indeed, as all cells and organisms, the cells and
different factors involved in the intimal hyperplasia process respond to supraoptimal
(positive variance in comparison to the optimal physiological functioning temperature)
or suboptimal (negative variance in comparison to the optimal physiological functioning
temperature) temperatures via specific pathways as a function of the severity of the thermal
stress imposed [100]. Thus, the local temperature generated by mechanical dissipation
could potentially act on the physiopathological factors already mobilized by the vibrations.
For example, at the cellular level, (even slight) changes of temperature influence cell activity,
cell growth rate, macromolecular synthesis, cellular cycle (mitosis, apoptosis), etc. [101,102].
Temperature also has a considerable impact on enzymatic activity (MMP are enzymes) [103]
and Pacinian corpuscles [52].

4.2. Acute Exposure

Regarding the digital arteries, the Womersley method underestimated the WSS by
about 12% in comparison with that calculated from the hemodynamic model of an artery
taking into account fluid–structure interactions. The gap between the Womersley method
and the full fluid–structure interaction model was about 30% for the carotid artery [104],
whereas it was only 12% and even 3% for the ulnar and radial arteries, respectively [66].

The WSS measured for the basal conditions without vibration was, on average, 3 Pa
for the cohort. To our knowledge, there are no similar data in the literature specific to
fingers. Nonetheless, this value is of the same magnitude as that measured on other sites
of the arterial tree (brachial and femoral arteries, for example) [105–107]. Furthermore,
this value of 3 Pa corresponds to that predicted by the WSS/diameter calculation chart
established in [106], which predicted a value close to 3 Pa for an artery with a diameter
of 1 mm (the average of our cohort was 0.8 mm). Regarding the vibration-altered WSS,
to our knowledge, no other data are available in the literature with which our results can
be compared. However, other studies have focused on a similar quantity, the blood flow
reduction caused by the vibrations. This blood flow was measured by plethysmography.
For example, one study [108] reported a 50% decrease in blood flow during acute exposure
to vibrations of an amplitude of 40 m·s−2 at 125 Hz. Our study concludes a 60% reduction
in WSS due to vibrations. What is more, we showed that the reduction in WSS was the
same whatever the excitation frequency of the vibrations. This behavior was also observed
for blood flow [40].

Regarding the effect of vibratory level, we showed that the relative reduction in WSS
was proportional to the base-2 logarithm of the amplitude of the vibration at a given
frequency of 125 Hz. We were able to plot the magenta curve in Figure 12c based on
data on the subjective rating of vibration sensation as a function of vibration amplitude at
125 Hz [109] and by assuming that the decrease in WSS is proportional to this vibration
sensation. This curve corresponds to the following hypothesis: the reduction in WSS is
directly proportional to the vibration felt. Our measures showed that this hypothesis was
not verified. Indeed, the law of vibration sensation is Steven’s type law (the sensation is the
power of the vibration level), whereas our results highlighted a logarithmic relationship
between the reduction in WSS and the amplitude.

Our WSS measures were performed for short vibration periods (10 s or 1 min). An
additional study could be carried out to quantify the effect of vibrations for longer periods.
However, such a campaign would be very complicated to perform in practice because of the
difficulty for subjects to maintain a stable position for long periods. Furthermore, it should
be noted that the WSS was measured only on the hand not exposed to vibrations; therefore,
the variations of WSS on the exposed hand were not taken into account. In the field, when
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a worker is using a machine, the vibration-altered WSS might arise from both the direct
disturbance of vibration on the digital arteries (we did not measure yet) and the indirect
response of the central nervous system (we measured it). We scheduled other studies for
measuring and modeling the alteration of the hemodynamic in the digital arteries when
directly exited by vibrations. In this case, we would still be able to take into account in our
chronic biological model both the direct disturbance of vibration on the digital arteries and
the indirect response of the central nervous system. Indeed, our chronic stenosis model
may be fed by any WSS values, whether they stem from direct, indirect, or both responses
to vibrations.

4.3. Long-Term Exposure

The mechano-biological model was implemented for a specific case corresponding
to chronic exposure to vibrations of an amplitude of 40 m·s−2 (WSS of 1.2 Pa) for 10 years
(Figures 15 and 16). The degree of arterial stenosis can be defined as the reduction in the
arterial lumen. Thus, in the case presented, the degree of stenosis ranged from 12% at
5 years and 30% at 10 years exposure. The clinical diagnostic of VWF can be established
either in a basic way (questionnaire, cold test, neurological examination, etc.) or by utilizing
more specialized examinations such as angiography [110]. Honma et al. [111] proposed
a classification of vascular injury by angiography: (i) type 0: healthy; (ii) disease type I:
stenosis < 50%; (iii) disease type II: stenosis > 50%; (iv) disease type III: obstruction of the
proper digital artery; (v) disease type IV: obstruction of the common artery or upstream.
Thus, according to this classification, our model would lead to stenosis of type I for exposure
to vibrations of 4 h a day for 10 years.

The reduction in collagen and the surface of the media up to five years of exposure can
be explained by the action of MMP-2 that destroys the extracellular matrix to permit the
migration of smooth muscle cells. From five years onwards, the collagen increases in the
intima due to the considerable presence of smooth muscle cells that have migrated from
the media to the intima; these cells produce more collagen when they are in the intima. The
surface of the media increases after five years since the proliferation of smooth muscle cells
exceeds those that migrate, so more cells remain in the media. These simulation results
faithfully reproduce the mechanisms expected of intimal hyperplasia [112].

Furthermore, MMP-2 accumulates substantially in the artery (Figure 16). This enzyme
could be a particularly interesting candidate biomarker for warning about and moni-
toring the evolution of VWF. Several studies have shown its interest in other vascular
diseases [113,114] and its possible dosing in the blood [115].

Each of the biological mechanisms of our mechano-biological model has been validated
by experiments at the cellular or molecular level taken from the literature or specifically
implemented in the case of missing data. This model must now be validated experimentally
on arteries ex vivo. Works in this direction have begun (CHARL test-bench: Hemodynamic
characterization of arteries by laser now available at INRS). Furthermore, in our model, the
mathematical relationships linking the WSS and the different factors involved in arterial
growth remain identical during the living cycle of the artery. In reality, the release of the
different factors involved in the intimal hyperplasia should be altered when arterial stenosis
occurs. This is a serious limitation of our model.

5. Conclusions

To sum up, this study showed that:

• Vibrations significantly decrease blood/endothelium shearing stresses. This WSS is
reduced by a factor of three for vibration of 40 m·s−2;

• The frequency of the vibrations does not influence this reduction. Thus, we propose to
enlarge the current vascular filter [25] to the range [31–400 Hz]. This filter would have
a weighting of 1 in this spectral range;
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• The decrease in WSS is proportional to the logarithm of the amplitude of the vibra-
tion. It is possible to calculate the WSS caused by the vibrations by measuring the
acceleration on the machine;

• Knowledge of the daily exposure (the model can take into account all types of exposure
cycles) and the WSS (or similarly, the acceleration on the machine), the mechano-
biological model permits calculating the degree of stenosis and therefore that of the
disease for chronic exposure to vibrations. It is a new definition of vibratory dose;

• A candidate early biomarker acting as a precursor of VWF is proposed—MMP-2.

Calculation charts of the degree of stenosis will be established as a function of the
duration of daily and chronic exposure. Thus, we will be able to deduce the daily du-
ration/chronic duration pairs that lead to a given level of stenosis and thus prevent the
development of VWF.
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Abbreviations
The following abbreviations are used in this manuscript:

VWF Vibration White Finger
WSS Wall Shear Stress
SMCs Smooth Muscle Cells
EC Endothelial Cells
ECM Extra Cellular Matrix
PDGF Platelet-Derived Growth Factor
TGF Transforming Growth Factor
MMP Matrix MetalloProteinase

Appendix A. Construction of Hands Models, Boundary Conditions and Loading

Hand Model 1 was built using anthropomorphic data found in the literature [33]. The
geometry was produced with the Rhinoceros 3D® (version 3, Robert McNeel & Associates,
Seattle, WA, USA) software, and the meshing was applied in Hypermesh® (version 12,
Altair Engineering, Troy, MI, USA). For Hand Model 2, all the components modeled re-
sulted from MRI sequences (Siemens 3T Skyra, Siemens Healthineers, Siemens Healthcare
GmbH, Erlangen, Germany) of the right hand of a volunteer (age: 28 years old, height:
1.78 m, weight: 78 kg) who had not suffered any recent injury to their right hand. Seg-
mentation was performed manually using the 3D slicer® software (http://www.slicer.org,
accessed 21 March 2022) and the meshing in Hypermesh® (version 12, Altair Engineering,
Troy, MI, USA).

The meshes of Hand Model 1 and Hand Model 2 correspond to a neutral position
of the hand, i.e., for which there is almost no muscular activity [126]). Thus, in the initial
configuration, in the absence of load, the stress field was assumed nil in the finite element
models. For the two models, the average size of the tetrahedral meshes was in the region
of 1 mm and fine enough to perform calculations up to 500 Hz [33]. These two meshes
were coupled with a model of solid bodies representing the forearm, arm, and torso. The
different solid body elements of the model were linked together by springs and dampers
in tension/compression and bending [127,128]. The junction between the finite element
meshing of Hand Model 1 and the poly-articulated solid body system was ensured by a
spring and a damper. A rigid link was imposed for Hand Model 2.

The bones, tendons, ligaments, ligament tunnels, cartilage, joint capsules, and finger-
nails obeyed Zener’s viscoelastic law, whose parameters were taken from the literature [129].
The muscles [130] and skin [131] obey a QLV (Quasi Linear Viscoelasticity) type viscoelastic
behavior law. In this law, the hyperelastic part is an Ogden law, and the viscous dissipation
obeys a Prony law. The soft tissues have a more complex visco-hyperelastic behavior
obtained from our previous works [33]. This original law of type QLV makes use of a
hyperfoam hyperelastic law and relaxation spectra called Box Spectrum [132].

Regarding the two models, the three translations and two rotations of the torso base

are fixed. The rotation around axis
→

Ox is free (Figure A1). A set of nodes at the end of each
hand is rigidly linked to the solid body model. The nodes in contact with the handle are
rigidly fixed to it. The hand is in contact with the handle without tightening. The handle is

subjected to a harmonic acceleration in direction
→
Oz (Figure A1) at a constant amplitude

of 40 m·s−2 in the frequency band [1–400 Hz]. The simulations are performed in the
spectral domain by direct calculation (no modal superposition) of the dynamic response by
inverting a matrix system at each frequency. The simulations are performed with the finite
element software Samcef® (version 2020, Siemens Digital Industries Software, Munich,
Germany) and LS-Dyna® (version 11, Ansys/LST, Livermore, CA, USA).

http://www.slicer.org
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Table A1. Eigenfrequencies and eigenmodes of the hand.

Mode at 28 Hz Mode at 54 Hz Mode at 82 Hz Mode at 105 Hz

Abduction/Adduction of
wrist

Abduction/Adduction of
metacarpals Bending/Extension of thumb

Bending/Extension of
proximal phalanges and

metacarpals
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Table A1. Cont.

Mode at 155 Hz Mode at 173 Hz Mode at 259 Hz Mode at 320 Hz

Bending/Extension of medial
phalanges

Abduction/Adduction of
medial phalanges

Bending/Extension of distal
phalanges and mode of thenar

and hypothenar eminences

Mode of the thenar and
hypothenar eminences
without bony modes
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