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ABSTRACT: Detecting cancer at the early stage of the disease is crucial to keep the best chance for successful treatment. The 
recent development of genomic screening, a methodology that is addressed to asymptomatic patients presumably at risk of 
carcinogenesis, has stimulated the quest for new tools able to signal the level of risk. Carcinogenesis has been associated to 
chronic oxidative stress exceeding the antioxidant defenses and leading to critical genome alteration levels. The telomeric regions 
are presumably the most exposed to oxidative stress due to their high concentration of guanine (i.e. the easiest oxidizable nucleic 
base). Accumulation of 8-oxoguanine in telomeres, thus oxidative lesions, was reportedly associated with telomeric crisis and 
carcinogenesis. In this study, we report on the capacity of Ru(II) polyazaaromatic complexes to photoprobe 8-oxoguanine into 
the human telomeric sequence with the view of developing new tools for cancer risk screening.

Introduction
Diagnosis of cancer currently focuses on detecting early 
carcinogenesis stage in patients to give them the best chance for 
successful treatment.1 Unfortunately, in the case of aggressive 
tumours, the cancer has already reached an advanced stage when 
the first symptoms are detected. This has stimulated the 
development of screening methods based on different strategies 
than early diagnosis. Screening is more specifically addressed to 
apparently healthy and asymptomatic patients that are 
presumably having a high risk of carcinogenesis.2 Efficient 
screening requires the development of new tests or examinations 
that can be used rapidly and easily. In this context, the detection 
of cellular oxidative stress signals is of major interest. 3 Indeed, 
chronic acute oxidative stress is a great contributor to the 
development of numerous diseases including cancer. It consists 
in the presence of a too high level of reactive oxygen species 
(ROS) exceeding the antioxidant defences of the organism. This 
can be attributed to diverse environmental and intrinsic factors.4-7 
Excess of ROS can cause irreversible oxidative damages to 
DNA, which is particularly critical at the level of telomeres as 
they play a pivotal role for genome stability and integrity. Studies 
in mouse models, human tissues and cell culture provided 
evidence that oxidative stress promote and accelerate telomere 
dysfunction.8-10 The loss of telomeres maintenance was reported 
to contribute to ageing-related diseases, telomere crisis and 
carcinogenesis.11, 12 This can be explained by the high sensitivity 
of telomeres to ROS resulting from their high concentration in 
guanine, the easiest oxidizable nucleic base (EG

.
/G = + 1.29 V vs 

NHE).13 The guanine oxidation mainly leads to the formation of 
8-oxoguanine (8-oxoG), the most studied DNA damage by far, 
which once persistent in telomeres promotes the above 
mentioned telomere loss and crisis.14 The detection of telomeric 
8-oxoG may lead to the development of new screening tools able 
to sense a risk of carcinogenesis at the earliest stage.15-18 
The human telomeric DNA sequence (hTel) varies from 2-50 
kilobases of approximately 300-8,000 repeats of the sequence (-
TTAGGG-). As a result of their high concentration in guanines, 
telomeres can adopt a quadruple helix structure, namely G-
quadruplex (G4) consisting in the assembly of four guanines 
forming a guanine quartet through Hoogsteen bonds.19, 20 Studies 
reporting on the impact of oxidative lesions on the human 
telomeric G4 DNA structure stability were recently reported.21-23 
The destabilizing effect on the G4 structure due to reduced 
hydrogen-bonding ability caused by the replacement of a guanine 

residue by 8-oxoG was evaluated. It appeared that the 8-oxoG 
position into the G4 structure has a major impact on its stability.24 
During the last decades, many studies demonstrated the abilities 
of ruthenium (II) complexes as “DNA light switch” or as DNA 
specific sites photoprobes in vitro or in cellulo.25-37 In the present 
study, we aim at investigating the potential of Ru(II) 
polyazaaromatic complexes as 8-oxoG photoprobes in telomeric 
DNA and in duplex DNA. Complexes [Ru(bpy)2napp]2+ 1, 
[Ru(phen)2cpip]2+ 2 and [Ru(phen)2salphen]2+ 3 (Figure 1) that 
are present as a mixture of Λ and ∆ isomers were chosen for their 
reported ability to discriminate DNA topologies (such as G4 
DNA and DNA mismatches) thanks to their high luminescence 
sensitivity.38-40 We report on a brief description of the synthesis 
and the photophysical properties of compounds 1-3 along with a 
more detailed study of their 8-oxoG photoprobing capacities. 
This was achieved thanks to luminescence titrations using five 
different oligodeoxynucleotides (ODN’s) that incorporate (or 
not) an 8-oxoG residue. Three selected ODN’s hTel, hTel-
oxoG21 and hTel-oxoG10 are based on the human telomeric 
sequence. They fold into G4 architectures as reported by 
Podbevšek and co-workers,24 with hTel-oxoG21 and hTel-
oxoG10 including an 8-oxoG at the outer or at the central quartet 
of the G4, respectively (Figure 2). The two others selected 
ODN’s HP and HP-oxoG are G-rich sequences that fold into a 
duplex hairpin shape with HP-oxoG including an oxo-G residue 
in the middle of the helix (see the structures in the supporting 
information).
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Figure 1. Structures of [Ru(bpy)2napp]2+ 1, [Ru(phen)2cpip]2+ 2 and 
[Ru(phen)2salphen]2+ 3.
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Figure 2. Schematic representation of the hTel, hTel-oxoG21 and hTel-oxoG10 
oligonucleotides used in this study. The sequences are: hTel (3’A 
(GGGATT)3GGGTT5’), hTel-oxoG21 (3’A GG/oxoG/ATT(GGGATT)2GGGTT5’), 
hTel-oxoG10 (3’A(GGGATT)2G/oxoG/GATTGGGTT5’).

Results and Discussion
Synthesis
Complexes 1-3 were prepared by the chelation of napp, cpip or 
salphen ligands onto [Ru(bpy)2Cl2] or [Ru(phen)2Cl2] using 
previously published methods.38-40 Complexes 1-3 were isolated 
as orange powders after purification on silica and were 
characterized by 1H-NMR spectroscopy and HRMS. Compound 
1 was also characterised by X-ray crystallography.40 The 
[Ru(bpy)3]2+

 and [Ru(phen)3]2+ references were synthesized and 
purified according to reported synthetic routes from the hydrated 
RuCl3 salt (see the synthesis and characterization  of the 
complexes in the supporting information).

Electrochemistry
In terms of electrochemical properties, compounds 1-3 display 
oxidation potentials that are very close to those of the reference 
compounds [Ru(bpy)3]2+ and [Ru(phen)3]2+ (1.34 V and 1.32V 
vs Ag/AgCl). This corresponds to the Ru2+/Ru3+ oxidation, which 
suggests that the HOMO of the compounds is metal centred 
(Table 1). Conversely, the potentials of first oxidation appear to 
be very different ranging from -0.77 V for complex 2 to -1.24 V 
for complex 1. The strong influence of the extended ligand 
structure on the potential of first reduction of compounds 1-3 
indicates that their LUMO orbitals lay on their extended ligands. 
It appears that the cpip ligand in complex 2 is responsible for a 
strong stabilization of the LUMO orbital compared to napp and 
salphen ligands in compounds 1 and 3, which can be attributed 
to the strong electron stabilizing effect induced by the conjugated 

imidazole moiety. The next two reduction waves of compounds 
1-3 all occur at very similar potentials to those of the reference 
complexes [Ru(bpy)3]2+ and [Ru(phen)3]2+ and correspond to the 
subsequent reductions of each bipyridine/phenanthroline 
ancillary ligands (-1.47 V and -1.71 V vs Ag/AgCl, for 
[Ru(bpy)3]2+).

Light absorption
The light absorption data of compounds 1-3 were measured 
at room temperature in acetonitrile (Figure 3 and Table 2). 
The recorded spectra are typical of polyazaaromatic Ru(II) 
complexes and are very close to the one of [Ru(bpy)3]2+.41 
Analysis of the data obtained for 1-3 allows to ascribe the 
UV absorption bands (ε ≈ 105 M-1cm-1) to ligand centred 
transitions. Particularly, the band arising at ca. 285 nm in 
compound 1 and [Ru(bpy)3]2+ is attributed to the absorption 
of the bpy ligands while the band at ca. 265 nm in 
compounds 2 and 3 and in [Ru(phen)3]2+ is attributed to the 
phen ligands. The observed strong absorption bands in the 
visible region at ca. 450 nm (ε ≈ 104 M-1cm-1) arise from 
metal-to-ligand charge-transfer (MLCT). Complex 1 
displays the strongest visible light absorptivity (ε = 2.48 x 
104 M-1cm-1 at 456 nm) among the reported compounds.

Figure 3. Absorption spectra of complexes 1-3 and [Ru(bpy)3]2+ in acetonitrile 
under air.

Table 2. Light absorption bands and absorption coefficients in 
acetonitrile for complexes 1-3 and references.

Complex
Absorption λmax[nm] 
(ε [104 L.mol−1.cm−1])[a]

[Ru(bpy)3]2+ 250, 285 (8.71), 345 (sh), 452 (1.45)

[Ru(phen)3]2+ 265, 287 (sh), 418 (sh), 447 (1.84)

[Ru(bpy)2napp]2+ 1 246, 289 (13.6), 343 (sh), 456 (2.48)

[Ru(phen)2cpip]2+ 2 265, 287 (sh), 335 (sh), 460 (1.61)

[Ru(phen)2salphen]2+ 3 265, 288 (sh), 338 (sh), 458 (1.04)
[a] Measurements were carried out at room temperature. sh = shouldering 
peaks. The absorption data for [Ru(bpy)3]2+ are from references. 32, 41, 42

Table 1. Oxidation (E1/2 ox) and reduction (E1/2 red) potentials of 
complexes 1-3 and reference complexes.

Complex E1/2ox
[a][V][b] E1/2 red 

[a] [V][b]

[Ru(bpy)3]2+ + 1.34 -1.28 -1.47 -1.71

[Ru(phen)3]2+ + 1.32 -1.30 -1.47 -1.68

[Ru(bpy)2napp]2+ 1 + 1.35 -1.24 -1.38 -1.65

[Ru(phen)2cpip]2+ 2 + 1.37 -0.77 - 1.43 -1.63

[Ru(phen)2salphen]2+ 3 +1.36 -0.91 -1.45 -1.64

a Measured in dry acetonitrile. The electrochemical data for complexes 
[Ru(bpy)3]2+ and [Ru(phen)3]2+ are from references.32, 41, 42
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Light emission
The light emission properties of complexes 1-3 including 
their luminescence wavelengths, quantum yields, and 
lifetimes were recorded in water and in acetonitrile and are 
gathered in Table 3 along with those of [Ru(bpy)3]2+ and  
[Ru(phen)3]2+. Complexes 1-3 exhibit luminescence 
properties that are very close to those of the reference 
complexes [Ru(bpy)3]2+ and  [Ru(phen)3]2+ with a broad 
unstructured emission at about 600 nm. The emission is also 
strongly dependent on the solvent polarity and relatively 
long (≈ microsecond) lifetimes of the excited states typical 
of 3MLCT-emissive transition were measured. In addition, 
the bathochromic shift of the compounds’ luminescence on 
going from acetonitrile to the more polar water and their 
large kr values (> 104 s-1) confirm the charge-separated 
excited states as reported for [Ru(bpy)3]2+ and  
[Ru(phen)3]2+.
Luminescence titrations

As mentioned in the introduction, ruthenium (II) 
complexes 1-3 were mainly selected for their reported 
abilities to photoprobe specific DNA topologies. While 
compound 1 has been previously reported to photodetect 
DNA mismatches, compounds 2 and 3 have been shown to 
act as G4 DNA photoprobes. This originates from the 
combination of (i) the high sensitivity of the 
polyazaaromatic Ru(II) complexes luminescence to the 
microenvironment with (ii) an appropriate structural design 
of the napp, cpip and salphen interacting ligands. In the 
present work, the ability of compounds 1-3 to photoprobe 8-
oxoG lesions in G-quadruplex and in duplex DNA was 
assessed using five short ODN’s. The hTel-oxoG21 and 
hTel-oxoG10 sequences were recently exploited by 
Podbevšek and co-workers and allowed to highlight the 
major impact of the 8-oxoG lesion localization on the 
conformation and stability of the resulting G4 structures. 24 

They showed that the hTel-oxoG10 G4 containing the 
8-oxoG in the central G-quartet leads to structural 
rearrangement while the hTel-oxoG21 G4 containing the 8-
oxoG in the outer G-quartet retains the parent G4 fold. This 
may lead to differences in terms of interaction and 
luminescence properties in the presence of photoprobes 1-3. 
The steady state luminescence titration curves of compound 
1 in the presence of the five DNA models are displayed in 
Figure 4A and 4B (see the supporting information for 
compounds 2 and 3). The great increases of luminescence 
intensity in the presence of hTel, hTel-oxoG21 and hTel-
oxoG10 are reported in Figure 5A and allow to assess the 
photoprobing ability of compounds 1-3 for the different G4 
folding sequences. As displayed in Figure 5B, complexes 
1-3 show very close increases of luminescence intensity in 

the presence of hTel and hTel-oxoG21, with complex 3 

showing the strongest luminescence increase when 
interacting with G4 DNA (+224 and +247% in the presence 
of hTel and hTel-oxoG21, respectively). Conversely, the 
increase of luminescence intensity of complexes 1-3 
appeared to be drastically reduced in the presence of the 
central 8-oxoG containing G4 structure hTel-oxoG10. 
Complex 2 revealed to be the best candidate to discriminate 
the central 8-oxoG containing G4 from the two other 
sequences (+72% vs +152-166%). A similar behaviour was 
observed for the duplex hairpin ODN’s, as the increases of 
luminescence intensities of the three complexes 1-3 
revealed to be significantly attenuated in the presence of the 
HP-oxoG against HP. Complex 1 revealed to be the most 
discriminant compound showing a fall of the luminescence 
increase from +494% vs HP to a weaker +177% vs HP-
oxoG.

Table 3.Emission data in CH3CN and H2O at 298 K for complexes 1-3 and reference complexes.

Emission λmax
a,b[nm] Φ em

c,d τ em [ns]c k r [103 s−1]
Complex

CH3CN H2O CH3CN H2O CH3CN H2O CH3CN H2O

[Ru(bpy)3]2+ 604 604 0.094 0.063 855 630 77 69

[Ru(phen)3]2+ 604 606 0.028 0.072 460 920 61 75

[Ru(bpy)2napp]2+ 1 601 606 0.072 0.12 812 841 89 143

[Ru(phen)2cpip]2+ 2 597 603 0.058 0.14 380 1315 152 106

[Ru(phen)2salphen]2+ 3 599 600 0.018 0.075 688 1222 26 61

Measurements were done on air equilibrated solutions. b λ exc = 450 nm. c Measurements made with a 5 µmol L−1 concentration in complex under argon. d Measurements 
relative to [Ru(bpy)3]2+ in argon purged solution (Φem = 0.063) or in nitrogen purged acetonitrile (Φem = 0.094).43  The photophysical data for [Ru(bpy)3]2+ and 
[Ru(phen)3]2+ are from reference.20

Figure 4. Relative luminescence intensity (I/I0) of complex 1 as a function of the 
relative (A) G-quartet or (B) base pair concentration. I0 is the luminescence of 
the complex without DNA. Measurements were carried out in solutions of 2.5 
μM of complex in 10 mM HEPES buffer, with 100 mM NaCl and 50 mM KCl 
at pH 7.4. Excitation at 450 nm. The McGhee–von Hippel equation was 
implemented to fit the curves. 

 equation.
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The dissociation equilibrium constants (KD) values of the 

interaction between complexes 1-3 for the five DNA models 
were estimated using a modified McGhee-von Hippel model 
that fits the titration curves (Table 4).44 The KD values of 
the interaction of the compounds with the G4 DNA models 
hTel, hTel-oxoG21 and hTel-oxoG10 appear to be in the 
tenth of micromolar range. Each of the three complexes 
displays very close KD values for the different studied 
sequences, ranging from 11 µM for compound 1 vs hTel to 
43 µM for compound 3 vs hTel-oxoG10. The three 
compounds also display the same trend in terms of affinity 
for the three sequences with the affinity decreasing in this 
order: hTel; hTel-oxoG21; hTel-oxoG10 (complex 1: 11; 
19; 22 µM, complex 2: 14; 17; 31 µM and complex 3 23, 
28, 43 µM). The KD values of the interaction of the 

complexes with the duplex DNA models HP and HP-oxoG 
are in the micromolar range for compound 1 and is one to 
two orders of magnitude higher for compounds 2 and 3 as 
previously reported. Complex 1 appears to be more affine 
for HP vs HP-oxoG (12 vs 47 µM) while compounds 2 (205 
vs 62 µM) and 3 (176 vs 44 µM) are more affine for the 8-
oxoG containing hairpin. The luminescence titration data 
demonstrate the very low impact of the presence of the 8-
oxoG lesion on the interaction strength both for G4 and 
duplex HP type DNA. They also highlight the high 
sensitivity of the compounds to their local environment, 
especially when interacting with DNA. The ability of 
compounds 1-3 to photoprobe 8-oxo-G containing ODN’s 
in hTel-oxoG10 and HP-oxoG over their parent ODN’s 
hTel and HP presumably arises from a poorer protection of 
the excited complexes in the 8-oxo-G containing ODN’s 
towards non-radiative

Bio-Layer interferometry studies
Bio-layer interferometry analysis (BLI) was performed to 
further determine the parameters of the interaction of 
compounds 1-3 with the five ODN’s. The association and 
dissociation constants between the complexes and the 
targets were measured, which give access to the dissociation 
equilibrium constant (KD). BLI was first implemented to 
study interactions between large biomolecules, such as 
protein–membrane interactions and more recently for the 
interaction of small compounds with G4 DNA.38, 45, 46 The 
studies were done in the same saline conditions than 
luminescence titrations (10 mM HEPES pH 7.4, 100 mM 
NaCl, 50 mM KCl). BLI sensorgrams recorded for the 
interaction of complex 1 with the hTel and hTel-oxoG10 
are displayed in Figure 6A and in Figure 6B, respectively 
(see the supporting information for the other sensorgrams). 
As revealed by the fitting of the luminescence titration 
curves, compounds 1-3 exhibit KD values in the tenth of 
micromolar range for their interaction with the different G4 

Table 4.  Dissociation equilibrium constants (KD) estimated for 1-3 
with the five DNA models.

ODN Constan
ts

1 2 3

I/I0 max 3.0 2.5 3.2hTel

KD (µM) 11 14 23

I/I0 max 2.9 2.6 3.4hTel-oxoG21

KD (µM) 19 17 28

I/I0 max 1.95 1.6 1.7hTel-oxoG10

KD (µM) 22 31 43

I/I0 max 5.9 3.4 3.5HP

KD (µM) 17 247 192

I/I0 max 2.7 2.6 2.0HP-oxoG

KD (µM) 52 72 55

A McGhee-von Hippel type equation was used to assess the KD values; the 
binding site was fixed to three base pairs or to one G4 per complex (best fit). 
Errors are estimated to 5%.

Figure 5. Increase of luminescence intensities (in %) for complexes 1-3 in the 
presence of (A) hTel, hTel-oxoG21 and hTel-oxoG10 and (B) HP and HP-oxoG. 
The results are reported as increase percentage compared to the luminescence of 
the compound without DNA. Measurements were done on 2.5 μM solutions of 
complex in 10 mM HEPES buffer, with 100 mM NaCl and 50 mM KCl at pH 7.4.

Figure 6. BLI response curves for the interaction of complex 1 with hTel (A) and 
hTel-oxoG10 (B). Measurements are performed using 0.15 to 150 µM of complex 
in 10 mM HEPES pH 7.4, 100 mM NaCl, 50 mM KCl.
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folding ODN’s hTel, hTel-oxoG21 and hTel-oxoG10 
(Table 5). 

Conclusions
A series of three Ru(II) polyazaaromatic complexes were 
prepared. The compounds were selected as they were reported 
for their ability to photoprobe DNA specific sites thanks to their 
highly sensitive luminescence properties. A series of five ODN’s 
that contain (or not) an 8-oxoG moiety were chosen and tested. 
This includes three G4 folding oligomers based on the human 
telomeric sequence, namely hTel, hTel-oxoG21 and hTel-
oxoG10 and two duplex hairpin folding oligomers, namely HP 
and HP-oxoG. Steady state luminescence titrations revealed the 
ability of the three compounds to discriminate the hTel-oxoG10 
sequence that imbedded an 8-oxoG lesion into the G4’s central 
quartet over the sequences hTel and hTel-oxoG21 with 
respective luminescence increase of +72% vs +224-247% for the 
most discriminating complex. A similar trend was observed for 
the duplex hairpin HP that gave higher luminescence increases 
than for HP-oxoG (+494% vs HP to a weaker +177% vs HP-
oxoG). The ability of the compounds 1-3 to photoprobe 8-oxo-G 
containing ODN’s in hTel-oxoG10 and HP-oxoG over their 
parent ODN’s presumably arises from their lower ability to 
protect the compounds against non-radiative deexcitation 
sources (e.g. solvent collisions and oxygen sensitization). This 
probably results from the lower stability and consequent looser 
structure of hTel-oxoG10 and HP-oxoG. Fitting of the 
luminescence titrations curves using a modified McGhee–von 
Hippel equation associated with results obtained from bio-layer 
interferometry studies allowed to make an in-depth study of the 
interaction between the complexes and the five ODN’s. The 
results obtained showed that the compounds interact with the 
different ODN’s within the tenth micromolar range for KD 
values. They also highlighted that the presence of 8-oxoG had 
non-significant impact on the parameters of the interaction (kon, 
koff or KD) of the complexes with both duplex hairpin and G4 
folding sequences. Altogether, the results from luminescence 
titrations presented herein show promises for the development of 
sensitive photoprobes for the rapid detection and quantification 
of 8-oxoG in human telomeric DNA.

Experimental section
Materials and instrumentation
 [Ru(bpy)2Cl2] and [Ru(phen)2Cl2] precursors, napp, cpip and 
salphen ligands were prepared based on methods reported in the 
literature. 38-40 Reagents and solvents used for synthesis were of 
reagent grade and were used without any further purification. 
The solvents for electrochemical and spectroscopic studies were 
of spectroscopic grade. Water was purified with a Millipore 
Milli-Q system. Hairpin ODNs 29-mer HP 
(3’CCGT(C)3TACCG(T)5CGGTA(G)3ACGG5’) and HP-oxoG 
(3’CCGT(C)3TACCG(T)5CGGTA/oxoG/GGACGG5’) were 
purchased from Eurogentec. G4 ODNs 24-mer hTel (3’A 
(GGGATT)3GGGTT5’), hTel-oxoG21 (3’A 
GG/oxoG/ATT(GGGATT)2GGGTT5’), hTel-oxoG10 
(3’A(GGGATT)2G/oxoG/GATTGGGTT5’) were synthesied by 
standard automated solid phase ODN synthesis on a 3400 DNA 
synthesizer. After purification by RP-HPLC, they were 
thoroughly desalted by size-exclusion chromatography (SEC). 
DNA and ODN concentrations were determined 
spectroscopically. Biotinylated ODN’s were prepared on a 
Controlled Pore Glass solid support by using the 
phosphoramidite approach with an Applied Biosystems 3400 
DNA/RNA Synthesizer (1 µmol scale). Before each experiment 
the oligonucleotides were annealed by heating at 90 °C for 5 
minutes prior to a slow cooling to room temperature over one 
hour to ensure their folding into G-quadruplex or hairpin duplex 
structure. NMR experiments were done in d6-DMSO, CD3OD or 
CD3CN on a Bruker AC-300 Avance II (300 MHz) or on a 
Bruker AM-500 (500 MHz) at 20 °C. The NMR shifts were 
measured vs the residual peak of the solvent as the internal 
standard. High-resolution mass spectrometry (HRMS) spectra 
were recorded on a Q-Exactive orbitrap from ThermoFisher 
using reserpine as the internal standard. Samples were ionized by 
electrospray ionization (ESI; capillary temperature = 320 °C, 
vaporizer temperature = 320 °C, sheath gas flow rate = 5 mL 
min−1 ). 

Cyclic voltammetry was performed using a platinum wire 
counter electrode, a glassy carbon disk working electrode with 
an area of ca. 0.03 cm2 and a reference electrode of Ag/AgCl. 
The working electrode potential was monitored thanks to an 
Autolab PGSTAT 100 potentiostat and via a computer interface. 
The cyclic voltammograms were measured in dried acetonitrile 
using a sweep rate of 300 mV s−1. The complex’s concentration 
was 0.8 mmol L−1, and tetrabutylammonium 
hexafluorophosphate was used as the supporting electrolyte (C 
=0.1 mol L−1). The samples were purged by nitrogen before each 
use. 

Light absorption data were recorded on a Shimadzu UV-1700 
spectrophotometer. Luminescence data were recorded on a 
Varian Cary Eclipse instrument. Quantum yields were obtained 
using [Ru(bpy)3]2+ as a reference.43 The luminescence lifetime 
measurements were performed at the second harmonic of a 
titanium crystal at λ=450 nm with a sapphire laser (picosecond 
Tsunami laser Spectra at a repetition rate of 80 kHz). A Fluotime 
200 instrument from AMS Technologies was used for the decay 
acquisition. It consists of a GaAs microchannel plate 
photomultiplier tube (Hamamatsu model R3809U-50) followed 
by a time-correlated single-photon counting system from 
Picoquant (PicoHarp300). Luminescence decays were analyzed 
with FLUOFIT software. The time resolution of the system is of 
ca.4 ps. Luminescence titrations were done in the following 
buffer:  10 mM HEPES pH 7.4, 50 mM NaCl and 100 mM KCl. 
The complex concentration was kept at 5 µM. 

Bio-layer interferometry experiments were performed using 
sensors coated with streptavidin (SA sensors) purchased from 
Forte Bio (SARTORIUS). Prior to use, they were immersed for 
10 minutes in a buffer before functionalization to dissolve the 
sucrose layer. Then the sensors were dipped for 15 minutes in 
DNA containing solutions (biotinylated hairpin ODN’s) at 100 

Table 5. BLI analysis data for the interactions of complexes 1-3 
with the studied ODN’s.
ODN Constant 1 2 3

kon (103 M-1 s-1) 2.4 ± 0.7 1.1 ± 0.3 3.6 ± 1.1
koff (s-1) 50 ± 10 40 ± 20 47 ± 15

hTel

KD (µM) 19 ± 3 10 ± 5 15 ± 8
kon (103 M-1 s-1) 2.9 ± 1.2 1.1 ± 0.2 4.4 ± 1.3
koff (s-1) 70 ± 20 6 ± 3 64 ± 20

hTel-
oxoG21

KD (µM) 34 ± 8 7 ± 3 24 ± 11
kon (103 M-1 s-1) 2.5 ± 0.9 0.8 ± 0.2 2.8 ± 1.2
koff (s-1) 80 ± 20 6 ± 2 78 ± 12

hTel-
oxoG10

KD (µM) 33 ± 7 7 ± 2 35 ± 16
HP kon (103 M-1 s-1) 1.3 ± 0.3 n.d.a 2.0 ± 0.9

koff (s-1) 90 ± 10 n.d.a 100 ± 30
KD (µM) 82 ± 28 n.d.a 76 ± 16

HP-oxoG kon (103 M-1 s-1) 2.7 ± 0.9 n.d.a 1.4 ± 0.4
koff (s-1) 110 ± 40 n.d.a 148 ± 4
KD (µM) 73 ± 29 n.d.a 116 ± 34

Equilibrium dissociation constants were deduced from the kinetic rate 
constants. a The weak binding of the complex the oligonucleotides did not 
allow to determine the kinetic parameters of the interactions (n.d.) in the 
studied concentration range. Running buffer: 10 mM HEPES pH 7.4, 100 
mM NaCl, 50 mM KCl. Measurements are performed using 0.15 to 150 
µM of complex in 10 mM HEPES pH 7.4, 100 mM NaCl, 50 mM KCl.
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nM and rinsed in the buffer solution (10 mM HEPES, 50 mM 
NaCl, 100 mM KCl (pH 7.4), 0.5% v/v surfactant P20) for 10 
minutes. The functionalized sensors were next dipped in the 
ruthenium complex containing solution at different 
concentrations (see supporting information) for 4 minutes 
interspersed by a rinsing step in the buffer solution for 4 minutes. 
Reference sensors without DNA immobilization were used to 
subtract the non-specific adsorption on the SA layer. The 
sensorgrams were fit using a 1:1 interaction model. The reported 
values are the means of representative independent experiments, 
and the errors provided are standard deviations from the mean. 
Each experiment was repeated at least two times using a 
concentration range from 0.5 μM to 150 μM.

Synthetic procedures and characterization
[Ru(bpy)2napp]2+ 1. [Ru(bpy)2Cl2] (20 mg, 0.041 mmol, 1.0 

eq.) and the napp ligand (20 mg, 0.061 mmol, 1.5 eq) were 
dissolved in an EtOH/H2O mixture (5/5 - v/v, 5 mL). The 
reaction medium was heated at 80 °C under stirring to the entire 
consumption of the ligand while monitored by TLC (3 h). EtOH 
was then removed under vacuum and NH4PF6 was added 
yielding precipitation of the complex. The so-formed orange 
solid was washed with water, EtOH and dried in vacuo. The 
crude product was finally purified by chromatography on silica 
(10:1:0.5 CH3CN/H2O/ KNO3sat) which gave [Ru(bpy)2napp]2+ 1 

(31 mg, 0.030 mmol, 73%). The exchange from of counter anion 
from PF6

- to Cl- was done by the addition of NBu4Cl to an 
acetone solution of the complex. Rf 0.35 (CH3CN/H2O/ KNO3sat 
10:1:0.5); 1H NMR (CD3CN, 500 MHz) δ (ppm), 10.47 (1H, s, 
Hd), 9.81 (1H, d, Ja-b = 8.2, Ja-c = 1.2 Hz, Ha), 9.59 (1H, dd, Jc-b 
= 8.2, Jc-a = 1.2 Hz, Hc), 9.24 (1H, d, Jm-l = 8.2 Hz, Hm), 8.53 (4H, 
m, H5, H5’, H6, H6’), 8.34 (1H, d, Ji-j = 9.1 Hz, Hi), 8.25 (1H, d, 
Jj-i = 9.1 Hz, Hj), 8.16 (2H, m, H4, H4’), 8.12 (3H, m, He, Hf, Hg), 
8.01 (2H, m, H7, H7’), 7.95 (1H, m, Hl), 7.91-7.84 (5H, m, Hb, 
H2, H2’, Hm, Hh), 7.73 (1H, d, J9-8 = 5.4 Hz, H9), 7.69 (1H, d, J9’-

8’ = 5.6 Hz, H9’), 7.49-7.44 (2H, m, H3, H3’), 7.28-7.21 (m, 2H, 
H8, H8’); HRMS-ESI calculated for [C43H29N7F6PRu]+: m/z 
890.11728, found: m/z 890.11700 and for [C43H29N7Ru]2+: m/z 
372.57617, found: m/z 372.57640. 

[Ru(phen)2cpip]2+ 2. The same method used for complex 1 with 
the precursor [Ru(phen)2Cl2] (20 mg, 0.038 mmol) and the cpip 
ligand (15 mg, 0.045 mmol) gave the crude product that was 
purified by chromatography on silica (CH3CN/H2O/ KNO3sat 
10:1:0.25) to provide the title compound 2 as an orange powder 
(30 mg, 0.025 mmol, 68%). Rf 0.30 (CH3CN/H2O/ KNO3sat 
10:1:0.25); 1H NMR (CD3CN, 500 MHz) δ 9.05 (d, 1H, J = 8.2 
Hz, Ha /Ha’), 8.89 (d, 1H, J = 8.4 Hz, Ha /Ha’), 8.59 (dd, 4H, J = 
8.3 Hz, J = 1.2 Hz, H2 /H2’ and H9 /H9’), 8.28 (d, 2H, J = 8.7 Hz, 
He and He’), 8.25 (s, 4H, H5 and H5 

,; H6 and H6’), 8.07 (dd, 2H, J 
= 10.5 Hz, J = 4.8 Hz, H8 and H8’), 8.01 (d, 2H, J = 5.4 Hz, H7  
and H7’), 7.96 (d, 2H, J = 5.2 Hz, H4 and H4’,), 7.67-7.59 (m, 8H, 
H3 H3’, Hb, Hb’, Hc, Hc’, Hd and  Hd’). HRMS Calcd for 
[C43H27N8ClF6PRu]+: m/z 931.07595, found: m/z 931.07688 Da.

[Ru(phen)2salphen]2+ 3. The same method used for complex 1 
with the precursor [Ru(phen)2Cl2] (20 mg, 0.038 mmol) and the 
salphen ligand (16 mg, 0.038 mmol) and gave the crude product 
that was purified by chromatography on silica (CH3CN/H2O/ 
KNO3sat 10:1:0.25) to provide the title compound 3 as an orange 
powder (33 mg, 0.028 mmol, 75%). Rf 0.31 (CH3CN/H2O/ 
KNO3sat 10:1:0.25); 1H NMR (CD3CN, 500 MHz) δ 9.03 (broad 
m, 4H, Hd and Hc), 8.62 – 8.60 (m, 2H, H2 or H9), 8.60 – 8.58 (m, 
2H, H2 or H9), 8.25 (s, 4H, H5 and H6), 8.12 – 8.06 (m, 4H, H7 
and He), 8.02 (dd, J = 5.2, 1.2 Hz, 2H, H4), 7.99 (dd, J = 5.3, 1.2 
Hz, 2H, Ha), 7.68 (dd, J = 8.3, 5.3 Hz, 2H, Hb), 7.63 (d, J = 5.2 
Hz, 2H, H3 or H8), 7.61 (d, J = 5.2 Hz, 2H, H3 or H8), 7.51 – 7.44 
(m, 2H, Hg), 7.17 – 7.06 (m, 4H, Hf and Hh). HRMS-ESI 
calculated for [C43H28N8O96Ru]2+ : m/z 384.07255, found: m/z 
384.07322.
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