
Online Testing of Dynamic Reconfigurations
w.r.t. Adaptation Policies

Frédéric Dadeau, Jean-Philippe Gros, and Olga Kouchnarenko

Univ. Bourgogne Franche-Comté, CNRS, FEMTO-ST Institute,
15B avenue des Montboucons, 25030 Besançon, Cedex, France

firstname.lastname@femto-st.fr

Abstract. Self-adaptation of complex systems is a very active domain
of research with numerous application domains. Component systems are
designed as sets of components that may reconfigure themselves accord-
ing to adaptation policies, which describe needs for reconfiguration. In
this context, an adaptation policy is designed as a set of rules that indi-
cate, for a given set of configurations, which reconfiguration operations
can be triggered, with fuzzy values representing their utility. The adap-
tation policy has to be faithfully implemented by the system, especially
w.r.t. the utility occurring in the rules, which are generally specified for
optimizing some extra-functional properties (e.g. minimizing resource
consumption).
In order to validate adaptive systems’ behaviour, this paper presents a
model-based testing approach, which aims to generate large test suites in
order to measure the occurrences of reconfigurations and compare them
to their utility values specified in the adaptation rules. This process is
based on a usage model of the system used to stimulate the system and
provoke reconfigurations. As the system may reconfigure dynamically,
this online test generator observes the system responses and evolution in
order to decide the next appropriate test step to perform. As a result,
the relative frequencies of the reconfigurations can be measured in order
to determine whether the adaptation policy is faithfully implemented.
To illustrate the approach the paper reports on experiments on the case
study of platoons of autonomous vehicles.
Keywords: Component system, Adaptation policy, Online testing, Usage
model

1 Introduction

Context and motivations Adaptive systems can be driven by adaptation
policies which describe when reconfiguration operations can be triggered. In this
paper, a policy is formally defined by a set of rules that indicate, for a given set of
states of the system, also called configurations, which reconfiguration operations
can be triggered. Thus, adaptation rules are used to specify the correct behavior
of the system, where for a reconfiguration each rule specifies a scope, a guard,
and a utility. The guard and the scope may integrate temporal patterns [9], and
the scope limits the reconfiguration application (e.g., to a set of configurations, or
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depending on events’ occurrence). To indicate the utility of the reconfiguration,
i.e., the interest for the system to activate a reconfiguration operation, a fuzzy
value (e.g., high, medium, low) is used, as put up in fuzzy logic. For example, it
is possible to indicate that after entering a tunnel, if the available power of an
autonomous vehicle is limited, its GPS component should be removed.

As a consequence, different implementations of a given adaptation policy are
possible, provided that the resulting executions of the system do not violate
any temporal properties. Verification and validation (V&V) of such systems is
a difficult task, due to these multiple, but correct, implementations of a system
under adaptation policies with temporal properties. These additional artifacts–
temporal properties and adaptation policies–provide means to ensure that the
executions of the system are correct. For example, supervising temporal proper-
ties at runtime allows ensuring that no violation of the properties is detected [19].
However, the question of establishing whether an adaptation policy is faithfully
implemented (its validation), has been very little targeted. This is mainly due
to the non-prescriptive nature of adaptation policies.

In general model-based approaches to validate systems’ implementations rely
on their behavioral models, used as a reference for testing activities. For a system
under not mandatory adaptation policies, looking for a model would imply to
make implementation choices w.r.t. the adaptation policies, and would require
the system to make the same choices to respect the policies, which is too re-
strictive. This paper describes an approach to validate implementations of the
adaptation policies using only themselves as a reference. In addition, as the adap-
tation policies describe the reconfiguration needs depending on the environment
in which the system is executed, we suggest to use a model of the environment
instead of a system’s behavior model. It allows taking into account occurrences of
the events together with the subsequent reconfigurations. In a previous work [6],
we have addressed the issue of validating the system implementation w.r.t. the
adaptation policy, by checking that the reconfigurations that are triggered during
the execution correspond to those authorized in the adaptation policy.

Contributions In this work, we propose to go further by addressing the issue of
validating that the system execution respects the utilities of the reconfiguration
rules of the adaptation policy. To achieve this, we propose a statistical analysis of
the frequencies of the reconfigurations. In order to have a significant number of
executions that perform reconfigurations, we perform an automatic generation of
large test suites. They are obtained by randomly exploring a model of the system
environment, describing how the adaptive system can be stimulated, namely by
external events. As reconfigurations may occur without control from the tester,
the test generation process is performed online: the test generator observes the
reconfigurations in response to events in the system environment, in order to
compute the next test step to be executed.

In model-based testing, an approach using coverage criteria ensures that the
test cases provide a good representation of the possibilities of the system by
covering them. Following this approach, we rely on the previous work [6] which
aimed to define test coverage criteria focusing on two artifacts, namely (a) the
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adaptation policy, and (b) a set of temporal properties that the system has to
fulfill. They can be used to illustrate various execution scenarii. These artifacts
are used to ensure the variety of the execution traces that will be produced,
thus providing a confidence in the results obtained by the frequency analysis of
reconfigurations.

This paper makes the following contributions: (i) an online test generation
process that involves a usage model of the system’s environment, and aims to
produce large sets of test cases that fulfill the coverage criteria defined in [6]; (ii) a
measure of the reconfiguration operations occurrences based on the frequency
analysis, aiming to validate adaptation policies; (iii) the experimental validation
of this process on a case study of vehicles and their platoons on the road.

Outline The paper is organized as follows. Section 2 presents the necessary
background on adaptive component systems and the adaptation policies for
them. Then, Section 3 introduces the test generation process, which relies on
a usage model of the system environment. The evaluation of the utility fuzzy
values based on a frequency analysis is summarized in Sect. 4. Section 5 reports
on the experimentation with platoons of vehicles, performed to evaluate this
paper proposals. Finally, Section 6 describes related works and concludes.

2 Example and Prerequisites

2.1 Adaptive Systems on the VANet Component-based Example

Example 1. We start by describing an example of a component-based system for
the Vehicle Ad-hoc Network (VANet) case study, which is displayed in Fig. 1. The
VANet system is composed of vehicles which are either in solo mode, or organized
in some platoons. Each platoon is led by a leader vehicle. Any vehicle in solo
mode can ask to join a platoon or decide to create a new platoon with another
vehicle in solo mode. Each vehicle in a platoon can ask to quit it either because
of the destination reached, or to refill its battery. The platoon may change its
leader because of another vehicle having more autonomy or a further destination.
Some external events happen in the system environment. For example, a new
vehicle can arrive on the road, or a driver may decide to quit the platoon on his
way to a new destination.

Let us now introduce the notion of component-based systems in relation
with this example. Components are entities that can be assembled to design
complex systems. The component-based systems under consideration are hierar-
chical, with two types of components. Primitive, or basic, components provide
data or services, while composite components contain other components. Re-
quired and provided interfaces are interaction points between components. A
component realizes a service and provides it via a provided interface, whereas a
required interface is needed for the component to run. Composite components
may delegate their interfaces to inner components. We refer to [9,18] for the
definition of components, interfaces, variables, bindings, etc. for their consistent
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assembly. A state of a component system, also called a configuration, is a set of
above-mentioned architectural elements (components, interfaces, and variables)
together with their types and relations to structure and to link them. A recon-
figuration can be considered as a transition from one configuration to another
one. Components are independent and can be implemented independently as
such. A component can be instantiated several times, e.g. Platoon and Vehicle
components.

Example 2. Figure 1 displays a VANet instance corresponding to the situation
on the right-hand side picture. The compound Road component encapsulates
Vehicles, which can be platooned (1.X, 2.X) or be solo (3, 4, 5). Vehicles are
connected together via interfaces allowing them to share information.

Adaptation policies for these systems are seen as artifacts that describe needs
for system’s adaptation, which are, however, not mandatory. For example, a
platoon may change its leader by a relay between the leader and another vehicle
of the platoon either when the leader has not enough autonomy to stay leader,
or when another vehicle has a farther destination and has more autonomy than
the leader.

2.2 Models

Let C = {c, c1, c2, . . .} be a set of configurations. We introduce a set CP of
configuration propositions on the components and the relations between them.

Fig. 1. Component architecture (a) vs. the considered VANet system state (b)
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In particular, configuration propositions are used to define consistent configu-
rations. For example, they specify global invariance properties (on components,
interfaces, bindings, etc.), that component-based architectures must satisfy. An
interpretation function l : C → CP gives the largest conjunction of cp ∈ CP
evaluated to true on c ∈ C, that characterizes the current configuration in the
most precise way.

Let us consider a set R of reconfiguration operations, which make the compo-
nent-based architecture evolve dynamically. They are combinations of primitive
operations such as instantiation/destruction of components; setting components
on/off; binding/unbinding of component interfaces; starting/stopping compo-
nents, etc. Let Rrun = R ∪ Θ ∪ {run} be a set of actions, where R is a finite
set of reconfiguration operations, Θ is the set of operations triggered by external
events (R∩Θ = ∅), and run is the name of a generic action used to represent all
the running operations of the component-based system, different from reconfig-
urations. We assume, as in [17], that external events are captured by the system’
sensors and processed immediately by triggering internal methods from Θ.

Definition 1 (Labelled transition system). A labelled transition system is
the tuple S = 〈C, C0, Rrun,→, l〉 where C is a set of configurations, C0 ⊆ C is a
set of initial configurations, → ⊆ C × Rrun × C is the reconfiguration relation,
and l : C → CP is a total labelling function.

Let us note c ope→ c′ the transition (c, ope, c′) ∈→, also called a step.

Definition 2 (Path). Given S, a (reconfiguration) path σ of S is a sequence
of steps c0

ope0→ c1, c1
ope1→ c2, . . . such that ∀i ≥ 0. (ci, opei, ci+1) ∈→. Given σ,

its trace is a word tr(σ) = ope0.ope1 . . . opei . . . of operation names occurred in
σ.

We write ci or σ(i) to denote the starting i-th configuration of σ’s i-th step. The
notation σi denotes the suffix path starting at σ(i), and σji the path segment in
between σ(i) and σ(j). Let ΣS denote the set of paths of S, and Σf (⊆ Σ) the
set of finite paths. A configuration c′ is reachable from c when there is a path
σ = c0

ope0→ c1, . . . cn−1
open−1→ cn in Σf s.t. c = c0 and c′ = cn. An execution is a

path σ in Σ s.t. σ(0) ∈ C0.

2.3 Adaptation Policies

Adaptation policies are composed of rules that indicate, for a given set of config-
urations, which reconfiguration operations can be triggered, with a utility level
associated. Reconfiguration operations in adaptation rules are guarded by se-
quences of events that may either exploit a configuration proposition, or involve
temporal logic properties. This section recalls the FTPL1 temporal patterns [9],
before integrating them into adaptation policy rules.
1 FTPL comes from the fusion between TPL (Temporal Pattern Language) and ‘F’
for First order logic consistency constraints over components.
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FTPL is a pattern language used to specify properties over execution traces,
on which the reconfiguration operations are expected. Let PropFTPL denote the
set of the FTPL formulae obeying the FTPL grammar in Fig. 2. In addition
to configuration propositions (cp) in CP from Sect. 2, FTPL contains tempo-
ral properties (temp) together with events (external events as well as events of
reconfiguration operations). Following Dwyer’s seminal work on patterns, trace
properties (trace) are embedded into temporal properties.

The FTPL semantics <FTPL> ::= <temp> |<events> | cp
<temp> ::= after <events> <temp>

| before <events> <trace>
| <trace> until <events> | <trace>

<trace> ::= always cp | eventually cp
| <trace> ∧ <trace>
| <trace> ∨ <trace>

<events> ::= <event>,<events>
| <event>

<event> ::= ope normal | ope exceptional
| ope terminates | ext

Fig. 2. FTPL syntax

described in [18] is basic
for configuration propo-
sitions (e.g., like in PLTL2).
For other temporal pat-
terns, it makes use of scopes
(before, after, until) while
considering trace prop-
erties and occurrence of
events. Like in [17], let
suppose that the exter-
nal events occur instan-
taneously and can be seen as invocations of methods from Θ performed by
system’ sensors when a change is detected in their environment. For each exter-
nal event ext that may occur on a given execution path σ, we define 1. a guard
cpext, which is a first-order logic formula over the parameters specified in the
invocation of the method corresponding to ext, and 2. an assertion happensσ,
valued in {>,⊥}.

Following the semantics of the Event Calculus [20,23], happensσ(cpext, i, j) =
> if there is at least one occurrence of ext between i-th and j-th states of σ, s.t.
cpext = >; otherwise, happensσ(cpext, i) = ⊥.
Definition 3 (FTPL semantics). Let σ ∈ Σ. The FTPL semantics is defined
on Σ × PropFTPL → B2 by induction on the form of the formulae as follows:

For configuration properties:
σ(i) |= cp if l(σ(i))⇒ cp

For the event(s):
σ(i) |= ope normal if i > 0 ∧ σ(i− 1) 6= σ(i) ∧ σ(i− 1)

ope→ σ(i) ∈→
σ(i) |= ope exceptional if i > 0 ∧ σ(i− 1) = σ(i) ∧ σ(i− 1)

ope→ σ(i) ∈→
σ(i) |= ope terminates if σ(i) |= ope normal ∨ σ(i) |= ope exceptional
σ(i) |= ext if evalσ(cpext, i) = >
σ(i) |= event, events if σ(i) |= event ∨ σ(i) |= events

For the trace properties:
σ |= always cp if ∀i.(i > 0 ⇒ σ(i) |= cp)
σ |= eventually cp if ∃i.(i > 0 ∧ σ(i) |= cp)
σ |= trace1 ∧ trace2 if σ |= trace1 ∧ σ |= trace2
σ |= trace1 ∨ trace2 if σ |= trace1 ∨ σ |= trace2

For the temporal properties:
σ |= after event temp if ∀i.(i > 0 ∧ σ(i) |= event⇒ σi |= temp)

σ |= before event trace if ∀i.(i > 0 ∧ σ(i) |= event⇒ σi−1
0 |= trace)

σ |= trace until event if ∃i.(i > 0 ∧ σ(i) |= event ∧ σi−1
0 |= trace)

A reconfiguration model S satisfies a property φ ∈ PropFTPL, denoted S |=
φ, if ∀σ, (σ ∈ ΣS ∧ σ(0) ∈ C0 ⇒ σ |= φ).
2 PLTL, or Propositional Linear Temporal Logic
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For the detailed formal semantics, the reader is refered to [18]. The short
FTPL presentation above aims to illustrate temporal patterns integrated into
adaptation policies, which make them more expressive than policies in [4] using
only propositional properties and invariants over configurations.

Example 3. Let us consider an FTPL property for the VANet system:

ϕ1: after Join normal always Battery ≥ 5 ∧Dist > 2 until Quit normal
This property specifies that after a vehicle joins a platoon, its autonomy and
remaining distance are greater than respectively 5% and 2km, until it quits
the platoon. It applies to each vehicle.

We now define adaptation policies by adapting [4] to integrate temporal patterns,
when simplifying the notations from [18].

Definition 4 (Adaptation policy). Let S be an LTS with its reconfigurations
R∪Θ, CP be a set of configuration propositions labelling its states, and Ftype
a finite set of fuzzy types. An adaptation policy is defined as A = 〈RN , RR〉,
where:

– RN ⊆ R ∪Θ is a finite (non-empty) set of reconfiguration operations,
– RR is a finite set of adaptation rules (b, g, ir) ∈ PropFTPL×CP × I, where
ir ∈ I ⊆ RN × Ft is a pair that associates a utility fuzzy value f from
Ft ∈ Ftype with a reconfiguration operation ope ∈ RN .

Let us note that I is a relation, and thus the designer can connect different fuzzy
values to one reconfiguration: sometimes, the utility is high, sometimes it is low.
Moreover, some operations (in R∪Θ \RN ) may be not concerned by designed
policies, and may have no utility value associated.
Each adaptation rule (in RR) is built using several keywords as follows: when b
if g then utility of ope is f . The b property after the when keyword determines
the temporal scope of the reconfiguration operation to occur. Within the defined
temporal scope, the guard g on system’s configurations is then described after
the if keyword. It defines the system’s configurations where a reconfiguration
can be triggered. Afterwards, in order to bind the utility to the reconfiguration
operation, ope ∈ RN is associated with its utility f ∈ Ft by using the then
utility of and is keywords. The utility is specified by a fuzzy value (e.g.,
high, medium, low).

when after Join normal until Quit normal and VehicleId.battery < 33
if state = leader then utility of PassRelay is high

when after Join normal until Quit normal and VehicleId.battery > Leader.battery
if state = platooned then utility of GetRelay is medium

Example 4. Let us consider 2 adaptation rules involving the PassRelay and Ge-
tRelay reconfigurations. Intuitively, the above rules apply to all vehicles and are
used to determine when it is possible to have a relay between the leader and
another vehicle of the platoon. In the first case, the PassRelay reconfiguration
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triggers when the leader has not enough autonomy to stay leader. In the second
case, the GetRelay reconfiguration triggers when the autonomy of a vehicle is
greater than the autonomy of the leader. Notice that the addition/removal of
a component is not strictly requested, but rather suggested with a utility value
(e.g. with Ft = { high, medium, low}). Hence, there is no guarantee that the
system eventually executes the considered reconfiguration operation.

We now define how the adaptation policies affect the behaviour of S. For an
LTS S and a finite set AP of adaptation policies, let S / AP denote S under
policies in AP .

Definition 5 (LTS under Adaptation Policies). The restriction of S by
adaptation policies in AP is defined as S/AP = 〈C/AP , C0/AP ,Rrun,→, l〉, where
C/AP is the least set s.t. if c ∈ C and A ∈ AP then c/A ∈ C/AP , Rrun ∩
(∪A∈APRN ) 6= ∅, l : C/AP → CP is a total labelling function, and for every
ope ∈ Rrun, the transition relation →∈ C/AP ×Rrun × C/AP is the least set of
triples (c/A, ope, c

′
/A) satisfying the following rules:

[ACT1] c
ope→ c′

c/A
ope→ c′/A

(ope ∈
⋃
A∈AP RN ) ∧ b ∧ g

[ACT2] c
ope→ c′

c/A
ope→ c′/A

ope /∈
⋃
A∈AP RN

This definition means that the transitions of S under AP result from performing
either reconfiguration operations obeying adaptation policies (Rule [ACT1]), or
reconfigurations which are not involved in adaptation policies (Rule [ACT2])).
Regarding evaluation of Rule [ACT1] side condition, namely its temporal b part,
it is possible to proceed in a decentralised manner, using progressive semantics,
like in [2,19].

Adaptation policies have to be faithfully implemented by the system, espe-
cially wrt. the utility values occurring in the rules, which are generally spec-
ified for optimizing some extra-functional properties (e.g. minimizing resource
consumption). To this end, various relations can be used, e.g., a refinement re-
lation [21], simulation relations [24], a satisfaction relation [15], etc. However,
deciding those relations to compare implementations wrt. specifications under
adaptation policies may be a hard problem, which becomes trickier when consid-
ering events from the system environment. This problem is in general undecid-
able for infinite-state systems. Instead, in the next section, we propose a usage-
model-based methodology to validate implementations of adaptive systems with
adaptation policies.

3 Online Testing with a Usage Model

In this section we first motivate the use of an online testing approach before
describing the usage models and the test generation algorithm needed to compute
the test cases.
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Fig. 3. Online test generation process

3.1 Online Test Generation Process

Adaptive systems react to external events, according to adaptation policies that
provide guidelines to detect when to execute reconfigurations on the system.
There are numerious different but correct implementations for a system under
given adaptation policies. Let us call a frequency of a reconfiguration the ratio of
the number of times a reconfiguration is applied to the number of times that it
could have been. When considering traces of executions and relative frequencies
of reconfiguration operations, if a reconfiguration operation with a high utility
has a lower relative frequency than an operation with a low utility, it means that
either the system implementation incorrectly takes the utility value into account,
or the utility value specified in the adaptation policy needs to be modified.
As different implementations of a system under given adaptation policies are
possible, describing a unique reference model of these implementations could be
complicated: it would require to make many design choices on the behavior of the
system, and then would force the implementations to comply to these choices.

In order to avoid the description of LTSs of implementations and their valida-
tion wrt. the specification–an LTS under adaptation policies, whose application
is not mandatory–this paper suggests to consider a usage model of the system
under test [30]. Thus, in our case, it is not a model of the adaptive system under
policies itself, but a model of its environment [29] focused on the events that
occur, and to which the system may react according to adaptation policies. Such
models are usually smaller than models describing the whole system, and simpler
to design manually by a validation engineer.

As described before, the system may evolve in response to the external events
from Θ (also seen as controllable events, e.g., sent by the tester for validation
purpose), its state changes as well. It may trigger internal (uncontrollable) events
that are logged to be observed from the outside 3. This influences the genera-
tion of the next possible external events that will be sent to the system, as a
reconfiguration may prevent some external events from being effective on the
system. Thus, it is important for the test generation process to avoid generating
tests that perform irrelevant actions. It should also take into account the inter-
nal events, which will only be observable, and adjust the next test generation

3 These two sets are disjoint, as set in Sect. 2 for reconfiguration operations and
reflected in the FTPL grammar.
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step accordingly. As a consequence, the usage model also considers the internal
events that correspond to reconfigurations that may occur in the system.

To be able to deal with such situations, we propose an online testing ap-
proach, in which: (a) each step of the test is directly executed on the system
under test (SUT for short), (b) the evolution of the SUT is detected by the test
generation algorithm, and taken into account for generating the next test step.
The proposed process is depicted in Fig. 3. The usage models are explored by a
dedicated algorithm, which aims to compute the next test steps. They are given
as an input to the test generator (1), which is connected to the SUT.

In an online manner, the algorithm randomly chooses a component and com-
putes, by browsing its usage model, a test step (2), namely an event that will be
sent to the SUT. The SUT may possibly react to the event, and perform a re-
configuration, which will be logged onto the execution trace (3). To compute the
next step, the test generator also considers the updated execution trace, which is
used to update the current state of the generator (4). In parallel, the execution
traces are used to detect the possible violation of temporal properties integrated
into the policies (as described in [19]), or the triggering of unauthorized recon-
figuration operations, as described in [6]. These aspects, studied before, are not
in the focus of this paper.

3.2 Test Cases and Reconfiguration Paths

We define test cases as sequences of controllable events that are sent to the
system under test, at a given rate. In the case of adaptive systems that are
hybrid systems, in which discrete and continuous time are mixed, a discretized
approach can be adopted, like in [10] for handling events. In this case, the events
used to stimulate the system are sent at a given rate, symbolized by clock ticks
whose duration is parameterized. In addition, we rely on the notion of delay,
denoted by δ, which consists in performing no action on the SUT.

Example 5 (Test case for the VANet example). The following test case is pro-
duced for exercizing the VANet system:

δ; δ;V 1.join; δ; ...; δ;V 2.join; δ; ...V 2.forceQuit; ...

It displays frequent occurrences of the delay δ representing a period of time
during which the system state evolves without any request from the environment;
concretely the vehicles’ battery resource decreases. In this sequence, join is a
request from a vehicle (external to a platoon) to joint it, and forceQuit is a
request from a driver to quit a platoon.

When a test case is executed on the SUT, it produces a reconfiguration trace.
It can then be analyzed to decide if the system complies with the various speci-
fications, namely, the adaptation policies and the expected temporal properties.

Example 6 (A reconfiguration path wrt. external events). Let us consider two
sequences illustrated in Fig. 4: the sequence of external events (namely, the test
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Fig. 4. A reconfiguration path according to external events

case) made of join and quit requests at the top-level line, and the reconfigura-
tion path (namely the execution trace) of the system generated in response to
the external events, at the bottom-level line. Sequences of external events are
sampled with a clock tick on the same frequency, while execution paths report
on the reception of events and triggering of reconfigurations in response to these
events.

In the VANet system, several external events can occur. The join event hap-
pens when vehicles are close enough to merge, the system can either accept to
merge and trigger the acceptJoin reconfiguration, or decide to refuse the request
and trigger the refuseJoin reconfiguration. When a driver decides to quit the
platoon (an external event to the autonomous vehicle), the forceQuit event is
emitted and the system reacts to it with a (quit) reconfiguration. The system
can also react to internal events. For example, the leader may change with the
(getRelay) reconfiguration.

3.3 Usage Models for Online Testing

This section describes the artifact that will be exploited to generate such test
cases: usage models of the components.

Introduced in [29] usage models mainly aim to specify the various events that
may occur in system’s environment. These controllable events can be sent to the
system under test to which it reacts. In usage models, it is also possible to use
delay representing an absence of external events for a given time period.

The most common way to design usage models is to rely on probabilistic
automata. In this paper it is suggested to associate them with components.
Intuitively, to each state of such an automaton corresponds a set of events that
can be triggered on it, i.e., which the component is able to respond to. They will
be used by the test generator to produce a test case.

As indicated in Sect. 3.1, reconfiguration operations, that are not controllable,
can be observed on the execution traces. They are related to the observable
events which also appear in the usage model. They will be used to detect and
capture an evolution of the component current state, which is necessary to send
relevant events to the system.

Definition 6 (Usage model probabilistic automaton). For each compo-
nent C, its usage model is defined as a deterministic probabilistic automaton
AC = 〈Q, q0, Eδ ∪ O,F, P 〉, where Q is a set of states, q0 ∈ Q is the initial
state, Eδ is the set of controllable external events4 together with δ for the delay
(the absence of external events), O is the set of uncontrollable events, made of
4 giving rise to reconfigurations from Θ, Sect. 2.2
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0 1 2

δ(0.97)δ(0.95)
enter(0.05) acceptJoin

join(0.03)

δ(0.98)

forceQuit(0.02)
quitleave

Fig. 5. Usage model of the VANet vehicle

the possible reconfiguration operations observed on the system5, F is a transi-
tion relation F ∈ Q × (Eδ ∪ O) × Q, and P is the probability6 of a transition
P : Q× Eδ → [0; 1] such that ∀q ∈ Q⇒ Σe∈EδP (q, e) = 1.

Each automaton is associated with a component, which can be either a high-
level virtual component (such as the road in our example), or a low-level com-
ponent (such as a vehicle).

Example 7 (Usage models of the VANet vehicles). In the VANet example, each
vehicle responds to three external events: enter, denoting that a vehicle enters
the road; join, which denotes that a vehicle requests to join another vehicle or
an existing platoon; and forceQuit, which indicates that the vehicle exits the
platoon due to its driver’s intervention.

In addition, there are three not controllable but observable events relative
to vehicles: leave, which denotes that the vehicle leaves the road; acceptJoin,
which represents the reconfiguration of a platoon to accept the vehicle’s request;
and quit, which represents the reconfiguration operation for the vehicle to exit
its platoon. The usage model for this example is displayed in Fig. 5. Let us
assume that these events only occur with a user-defined probability (a number
in parentheses). In this figure, the δ-labelled transitions represent a delay of one
time unit, and the other transitions with labels represent either the controllable
events enter, join and forceQuit, or the observable events leave, acceptJoin and
quit, denoting reconfigurations in the system. The latter are represented with
the dashed lines.

Based on usage models of individual components, a composition of usage
models of components can be built by using e.g., a component encapsulation
and refinement, a composition of (extended) interface automata, or hierarchical
input/output automata, etc. To avoid this (memory- and time-consuming) con-
struction, it is possible to proceed in a decentralised manner, like in [2,19] for a
run-time property evaluation. In our approach, the component-based model is
used while proceeding in a decentralized manner.

3.4 Test Generation with Usage Models

The test generation process relies on the usage models of the components in the
SUT, summarized in Fig. 3. As the components may evolve in an uncontrollable
5 reconfigurations from R, Sect. 2.2
6 We assume that if no outgoing transition of the current state is labeled by an event,
its probability is 0.
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Algorithm 1 Online test generation algorithm
1: for all AC do
2: state(AC) ← q0(AC)
3: end for
4: i ← 0
5: while i < n do
6: C ← selectComponent()
7: state(AC) ← update(AC , trace)
8: e ← pick(Eδ, state(AC))
9: if e 6= δ then
10: C.send(e)
11: state(AC) ← update(AC , [e])
12: i ← i + 1
13: end if
14: await()
15: end while

way, the online approach also relies on the trace of the system’s execution, which
is expected to log onto the occurred reconfigurations.

A test case is defined as a sequence of events obtained by traversing transi-
tions of the probabilistic automata of the components usage models. Let Aδ(C)
be the usage model associated with component C. For a given component sys-
tem, a test case, based on a set of usage models, is a finite sequence of events
Cj0 .e

j
0;C

k
1 .e

k
1 ; ...C

l
n.e

l
n (of length n + 1) in which, at i-th step (0 ≤ i ≤ n),

the triggered event ej is associated with component Cj and has a probability
PCj (q

j , ej) > 0.
In order to compute a set of test cases, a.k.a. test suite, a Markov random

walk [27] is performed on the probabilistic usage models of components. How-
ever, the exploration of components’ usage models is performed in a random
manner. The test generation algorithm, represented in Algorithm 1, repeats the
following steps until the maximal length of test cases is reached. First, one of the
components is randomly selected (line 6). The current state of the automaton
is updated w.r.t. the execution trace of the system (line 7). This step consists
in taking into account different reconfiguration operations (i.e., the observable
events) that may have occurred since the last selection of the component. A tran-
sition is then randomly selected among the outgoing transitions of the current
state w.r.t. its associated probability (line 8). If the transition is not a delay (line
9), the event is sent to the system under test via the considered component (line
10-12), and the current state is updated. At the end (line 14), the test generation
process awaits (depending on the sampling rate of events) before computing the
next test step.

This algorithm can be employed to generate test suites of arbitrary size and
test cases of arbitrary length. It provides means to evaluate whether the fuzzy
values associated with reconfiguration operations in the adaptation policy are
faithfully implemented, or not. To achieve that, the analysis of the relative fre-
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quencies of the reconfigurations over traces of the executions is performed, which
is now described.

4 Adaptation Policies Compliance

Our goal is to evaluate whether an implementation of an adaptation policy com-
plies with the utility of the reconfigurations specified by using fuzzy values. In a
previous work [6], we have presented the use of the adaptation policy rules as a
coverage metrics to evaluate the relevance of a test suite. We now present a new
and complementary use of such a coverage measure, in order to assess the com-
pliance of the implementation w.r.t. the triggering of reconfiguration operations
when applying adaptation policy rules.

4.1 Coverage, Eligibility and Frequency of a Rule

Coverage of a rule We first define a function that counts the number of execu-
tions of a rule on a given reconfiguration path.

Definition 7 (Number of executions of a rule). Let σ be a reconfiguration
path, and actualσ(i) the actual reconfiguration operation occurring at σ(i). The
number of executions of a rule r ∈ RR on σ is given by:

#actualr(σ) =
∑

i
fra (σ(i))

where fra(σ(i)) is the characteristic function of predicate actualσ(i) ∈ dom(I)7

in which I is the relation linking reconfiguration operations with fuzzy values.

This information can be used to evaluate if a given rule is covered by a test
case, or, more generally, by a test suite. However, if the rule is never covered,
multiple causes can be identified. First, the test cases do not reach a configu-
ration where the reconfiguration is applicable. In this case, the test suite has
to be refined to try to cover the rule. Second, some parts of the rules might be
incorrectly written, and present a too restrictive (or even unreachable/invalid)
trigger (property b or guard g in Def. 4). For such cases, we propose to count
the number of times these different parts of the rule are satisfied.

Eligibility of a rule We now define the number of triggerings of a rule as the
number of configurations in which its triggering property became true.

Definition 8 (Number of triggerings of a rule). Let σ be a reconfiguration
path, and let trigσ(i) be the set of reconfiguration operations that can be triggered
at σ(i), i.e., whose b-triggers are true at this state. The number of triggerings of
a rule r ∈ RR on σ is given by: #trigr(σ) =

∑
i f

r
t (σ(i)) where frt (σ(i)) is the

characteristic function of predicate

r ∈ trigσ(i) ∧ r 6∈ trigσ(i−1) ∧ actualσ(i−1) 6∈ dom(I)
7 which equals to 1 if the predicate holds, and 0 otherwise
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As a reconfiguration may occur at any configuration within the scope of the
rule, while such a b property holds, the number of configurations in which the
property holds does not provide the information on the real situation with recon-
figurations. This is why for a given path σ we define the number of eligibilities
of a rule, which is the number of states of σ where the rule became eligible. The
rules whose b-triggers and g-guards are true at σ(i) are called eligible in this
state.

Definition 9 (Number of eligibilities of a rule). Let σ be a reconfiguration
path, and eligσ(i) the set of eligible rules that could have been applied at σ(i).
The number of eligibilities of a rule r ∈ RR is given by: #eligr(σ) =

∑
i f

r
e (σ(i))

where fre (σ(i)) is the characteristic function of predicate

r ∈ eligσ(i) ∧ r 6∈ eligσ(i−1) ∧ actualσ(i−1) 6∈ dom(I)

These measures, reported for each rule, help determine which part of the rule
has not been satisfied during the test cases execution. However, in some cases,
the rule may have been eligible, but the implementation deliberately ignores it.
For such cases, we compute the frequency of the adaptation rules as an additional
measure.

Frequency of a rule Given a test suite, the frequency of a rule activation is
measured as the number of activations on the number of configurations in which
this rule became eligible.

Definition 10 (Frequency of a rule). For a given test suite TS composed of
test cases tc, the frequency of a rule r ∈ RR is defined as follows:

freqr(TS) =
Σtc∈TS #actualr(exec(tc))

Σtc∈TS #eligr(exec(tc))

Notice that if the rule is not eligible in any states, i.e., if its eligibility number
is equal to 0, its frequency is also set to 0.

In order to obtain meaningful frequencies, we rely on the test generation
process described in Sect. 3. Thanks to this algorithm it is possible to produce
large test suites, while covering the rules of adaptation policies. This measure
is useful to evaluate whether a given rule is frequently activated or not. Once
measured, the frequency can be compared against the fuzzy value specified in
the rule, in order to detect a potential inconsistency in the adaptation policy
implementation. Notably, starting from a particular set of initial configurations
and based on an expected system behavior, the frequency analysis allows detect-
ing a rule with a high-utility reconfiguration that is less frequently applied than
a rule with a low -utility reconfiguration.

4.2 Compliance with the Adaptation Policy

Intuitively, the compliance of the implementation w.r.t. the adaptation policy
can be explained thanks to utility values used in adaptation rules.
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Given an adaptation rule r = (b, g, ir), by Def. 4 the pair ir = (ope, f)
associates in r utility f with reconfiguration ope. Assuming that the fuzzy values
are ordered. Then the validation engineer may expect each rule with utility N
to be applied at a greater frequency than every rule with utility N−1. Formally,
for a given adaptation policy A, and a given test suite TS, we say that the
adaptation policy is faithfully implemented if

∀r, r′ ∈ A, fr > fr
′
⇒ freqr(TS) > freqr

′
(TS)

Let v denote the well-known sub-word embedding relation. Given the set
Eδ ∪ O of controllable and uncontrollable events, we use v modulo δ, written
vδ, after removing δ from considered words.

Proposition 1. If the adaptation policy A is faithfully implemented then ∀tc ∈
TS, ∃σ ∈ ΣS/A s.t. tc vδ tr(σ). Moreover, ∀i ≥ 0, configuration σ(i) is reachable
by performing reconfiguration operations given by set eligσ of adaptation rules
eligible on σ.

Proof. By construction. Every test case tc ∈ TS is generated by applying Algo-
rithm 1 and using Def. 6. By Def. 5 for S/A, each state σ(i) on path σ corre-
sponding to test case tc is obtained by applying either rule [ACT1] in the case
of a reconfiguration by one of the adaptation rules, or rule [ACT2] in the case
of an observable reconfiguration.

Starting from initial configurations, in the case when rule [ACT1] is applied
at step i, the target state results from the reconfiguration actually performed
(actualσ(i)), which has been choosen accordingly to its utility among the re-
configurations from set eligσ(i) of rules, which are eligible in this configuration.
This utility-based reconfiguration choice during the system execution increases
the reconfiguration frequency, and thus it makes the adaptation policy faithfully
implemented. The reachability of configurations on σ is ensured by construction,
thanks to Def. 5. Finally, the sub-word tc vδ tr(σ) relationship between the test
case and the execution trace relies on Defs. 6, 1 and 5.

5 Experimentation

In order to validate the proposed approach, this section describes the exper-
iments, where inconsistencies in the adaptation policies implementation wrt.
specified utilities have been detected. We start this section with the research
questions (RQ) before describing the experimentation. We then report on the
results and discuss the threats to validity.
[RQ1.] To what extent our approach is efficient to generate large amount of
pertinent test cases? The goal is to evaluate the capability of the test generator
to produce large test suites with a good coverage of the adaptation policy rules.
Notably, we want to ensure that the test cases are able to reach system states
in which reconfigurations are eligible.
[RQ2.] To what extent the frequency analysis makes it possible to assess the fuzzy
values? In order to be able to measure frequencies with accuracy, the goal is to
verify that a significant number of reconfigurations are performed.
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[RQ3.] To what extent suspicious results can be detected? Our overall objective
is to evaluate whether the process is able to detect inconsistencies in the recon-
figurations that are performed w.r.t. the fuzzy values described in the adaptation
policy.
Experimental procedure To address these research questions, the following ex-
periment has been designed. Several simulators of the VANet have been imple-
mented in Java, which differ in their strategy to perform the reconfigurations.
These different implementations are inspired by typical implementation styles
that we have found in the literature. For example, in [9] the authors translate
a fuzzy value for reconfiguration operation with a ranking, the utility of apply-
ing operations is guaranteed by a threshold value. The rules of the adaptation
policies implemented in Tangram4Fractal [4] are considered in the declaration
order, meaning that the first applicable rule that is declared in the adaptation
policy is selected. In [26] the authors classify the reconfigurations according to
defined priorities: if two operations with same priority are eligible, the first one
is chosen.

The designed experiment for the VANet case study has 9 reconfiguration
operations, among them 3 (getRelay, passRelay and quit) are triggered by 8
rules of the adaptation policy, named R1-R8. Informally, R1 rule specifies when
the leader vehicle can pass the relay, R6 rule specifies when a vehicle can replace
the current leader. Other rules specify the different cases when a vehicle may quit
its current platoon, namely by running out of energy, or reaching its destination.
Rules R1-R4 have a high utility, rules R5-R6 are with a medium utility, and rules
R7-R8 display a low utility.

In the considered setup, it is supposed that vehicles can be dynamically added
onto the road, and they are removed once they reach their destination. During
the running of the experiments, the number of vehicle has oscillated between 100
and 250. In sum, in addition to vehicles in solo mode, several platoons have been
constituted (from 4 to 25), with up to 8 vehicles in each of them. This mechanism
has ensured the renewal of vehicles on the road and increased the chances to reach
configurations that were likely to trigger possible reconfigurations. Notice that
the generation of relevant initial configurations that minimizes the number of
components is not in the focus of this study.

Our test generation process described in Algorithm 1 has been used to pro-
duce and to execute test cases on these implementations. Based on the execution
traces, the rules’ frequencies have been computed, according to the formulas pro-
vided in Sect. 4. Then they have been compared to the fuzzy values specified
in the adaptation policy rules. In our experimentation, the analysis has been
performed on test cases composed of 100.000 steps. To ensure that the test suite
activates each reconfiguration rule at least once, we rely on the coverage criteria
defined in [6].

Measuring the frequencies at each step of the execution allows us to draw
graphs which show the evolution of the frequencies over the execution steps. For
each reconfiguration these graphs can be used to compare its frequency w.r.t. the
utility described in the adaptation rule. At the end of the execution/experiment,
it is possible to compare the frequencies altogether so as to check their actual
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triggering. As shown in Fig. 6, the frequencies stabilize when the number of
steps increases, showing that the number of test cases that we generate makes
it possible to perform a reliable frequency comparison (RQ1).

Using plots allows a visual analysis, which makes it possible to detect sus-
picious behaviors, for example a potential instability in one of the frequencies
(RQ3).

In order to evaluate the capability of the approach to detect potential issues
in the implementation of an adaptation policy, several implementations (E1-E6)
have been developed, which differ in the way a reconfiguration is selected. The
first implementation E1 selects reconfigurations according to a priority level.
In addition, if an eligible reconfiguration has not been executed, its priority is
increased for the next step. The results of executions of E1 can be found on
the left-hand side of Fig. 6 and in Table 1. When examining the graph, one can
notice that the plot of reconfiguration R5 is under the plots of reconfigurations
R7 and R8. These plots show an inconsistency as R5 is of medium priority and
should have a higher frequency than low priority reconfigurations R7 and R8. We
then modified E1 to create implementation E2 by increasing the priority level of
reconfiguration R5 whose results can be found on the right-hand side of Fig. 6
and in Table 1. The plot for R5 is now above those of R7 and R8, complying
with specified priorities. Thus, this example shows that the proposed approach
helps in detecting an inconsistent implementation choice and then in validating
the adjustment made (RQ2).

To go further in the experiments, we have simulated other implementation
choices with the priority level adjusted as in E2. Their results are shown in
Table 1. In implementation E3, we make use of a fairness assumption: among
two eligible reconfigurations with the same priority, the one that is not selected
will be chosen the next time this scenario happens. In simulation with E4, the
reconfigurations are chosen on the base of their priority level. Implementation E5
selects a low-utility rule in 20% of the cases. Finally, implementation E6 selects
the first reconfiguration of the adaptation policy that can be triggered.

The results of simulations with E2 and E3 show that the implementation
choice made matches the specified fuzzy utility values. Implementation E4 shows
acceptable results but reconfiguration R4 occurs too often compared to other re-
configurations with the same utility. Implementation E5 is not consistent, as
the plot of reconfiguration R5 of medium priority is below the plots of recon-

Fig. 6. Frequency analysis of implementation E1 (left) vs. E2 (right)
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R1(%) R2(%) R3(%) R4(%) R5(%) R6(%) R7(%) R8(%)
high high high high med. med. low low

E1 78.4 67.2 78 82.8 10.6 29.7 16 11.5
E2 77 71.3 72.9 87.9 25.5 30 17.3 10.9
E3 68.7 64.7 70.8 76 23.1 31.4 14.9 9.4
E4 79.2 72.3 74.1 92.9 25 30.2 17.2 11.4
E5 64.4 66 56.6 68.2 17 29.7 19.1 24.4
E6 22.9 14.9 0.7 0 4.2 26.2 10.4 23.3

Table 1. Average results for 100.000-step executions

figurations R7 and R8 of low priority. Finally, the simulation with E6 shows
several inconsistencies in the frequencies. These experiments show the interest
of the proposed approach allowing the user to validate implementations under
adaptation policies as well as to identify suspicious behaviors. In this case, a
subsequent analysis permits to design a system implementation that complies
with the adaptation policy (RQ2).

Threats to validity A first threat to validity relates to the frequency analysis,
which may rely on too few occurrences of rules triggering to be able to perform
an accurate ordering of the rules actual utilities. In relation with this, notice
that during the experiments each reconfiguration has been triggered from sev-
eral dozen of times to thousands of times on 100.000 step test cases. Thus, it
has provided a significant number of eligibility for each rule, which gives rele-
vance to the frequencies that are computed. A second threat to validity is that
the experimentation has been performed on only one complex system example,
though with several implementations. Extending the experimentation to other
case studies is part of the future works. Finally, one more threat to validity is
the fact that we have developed all the implementations which may introduce a
bias. However, as mentioned before, the implementation choices that we made
are inspired from real-world strategies already described in the literature.

6 Related Work and Conclusion

Related work The present paper continues the study of complex systems self-
adaptation.

The special issues [8,7] indicate that adaptive and self-adaptive systems are
challenging in terms of insurance, at several levels, of such adaptation, automa-
tion, and dependencies between rules. They propose a feedback control that
measures the behavior of the system and changes it if necessary. We also pro-
ceed by system instrumenting. However, instead of direct change of the behavior
of the system we chose to inform the validation engineer or the user of a potential
error because: 1) there is no direct control of the system when performing black-
box testing; and 2) we consider that the error may come from the development
phase rather than from the environment itself. In [13] the online testing approach
has been discussed; the authors advocate using online detection and diagnosis to
recover to a correct system state after a failure. In [5] the authors summarize the
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use of models to address the assurance of self-adaptive systems. They identify
techniques that rely on evolutionary algorithms to automatically generate test
cases. Other approaches [11] make use of a MAPE-T loop to monitor the appli-
cability and utility of test cases during the execution. Our approach is also based
on monitoring principles, however we do not analyse the tests themselves. Our
overall goal is the validation of implementations of the systems under adaptation
policies, so we produce them directly, in an online manner, based on a model of
the environment and the systems execution.

Among interaction models for distributed systems, the interaction language
in [22] is equipped with operational semantics based on step-by-step execution.
Unlike [22] permitting trace validation by reading events one by one in the
offline mode, our testing approach with components usage models allows pro-
cessing events in the online mode. The framework in [1] is used offline as well, to
manage component-based system’ states. For this the authors use policies with
a subset of temporal constraints over states. Differently from our approach, the
policies are applied, allowing to build the state space and thus to plan system’
reconfigurations aiming to optimize some of its extra-functional requirements.

In the component-based systems area, online testing is used in [12] to detect
violation of proprieties in order to rollback the reconfiguration to a normal state.
Several articles relate to built-in tests for component systems, with a focus on
the architecture of component systems. In [3], an online model-based testing
approach is used, where the system under test (SUT) is stimulated by a Markov
Decision Process (MDP). The states of the model and behavior of the system
are linked in order to generate actions with the usage model that will lead to
a targeted behavior. Unlike the previously cited works, our contributions are
based on retrieving the information from system’s logs to exploit usage models
to generate relevant tests for the SUT.

Adaptation rules and adaptation policies are useful to reduce or even resolve
non-determinism when multiple actions can be performed by the adaptive sys-
tem. In the field of dynamic delta modeling for adaptive component systems, in
[14] sets of rules with priorities are used as product lines. In [26,28] adaptation
policies contain rules with priority values, whereas in [16] utility functions are
used to define objectives of the system. On the one hand, our utility notion is
close to them as it permits a priority management, in order to select the rule
with best utility wrt. aimed objectives. On the other hand, those works do not
validate that the sets of rules are faithfully implemented. In [25], the authors
improve the reactivity of self-adaptive systems with predictive algorithms. Our
approach is more general as it validates utility of reconfiguration rules for large
diversity of systems with adaption policies.

Conclusion In this paper, we have presented an approach and a method to au-
tomatically generate test cases for validating adaptation policies of component-
based systems. This approach aims to produce large test suites, from probabilis-
tic models of the components’ environment, so as to be able to evaluate metrics
during the system’s execution and then to compare occurrence of reconfiguration
operations w.r.t. their formal specification in adaptation policies. The developed
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experiments have shown that the approach makes it possible to detect imple-
mentations that would not properly respect the utility of the reconfigurations.
Notice that this approach, applied to component systems in this paper, could be
easily adapted to other formal frameworks using rules and policies.

Based on the same approach, one of the future work directions consists in
providing the user with the means to validate that an adaptation policy, that
is correctly implemented, fulfills extra-functional properties, such as optimized
resource-consumption, etc. In this work, we focused on generating test cases as
event sequences. One improvement would be the automatic generation of large
sets of meaningful initial configurations, which can be decisive in the testing
process for reaching specific configurations during the execution of the adaptive
system.
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