
1

LESCA: LightwEight Stream Cipher Algorithm
for Emerging Systems

Hassan Noura1, Ola Salman2, Raphaël Couturier1 and Ali Chehab2
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Abstract—Recently, there has been a dire need for
lightweight cryptographic solutions, which exhibit low
computational complexity and require few resources. In
this paper, we present LESCA, a novel dynamic key-
dependent lightweight stream cipher, which consists of
two main functions, a typical round function based on
cryptographic primitives, and a function that updates these
primitives. The update is performed in a selective (partial)
manner while encrypting a block, and in full after each
δ blocks/iterations. As such, LESCA consumes minimal
resources and introduces a very low latency. The originality
of this solution stems from the fact that the cryptographic
primitives get updated even when encrypting the same
message. Several performance and security tests were
performed to confirm that the proposed cipher is robust
and efficient, especially for limited devices and real-time ap-
plications. The proposed cipher achieves a high throughput;
for example, when implemented on a Raspberry Pi (RPI4)
device, LESCA provides an enhancement of at least 343%
when compared to the Advanced Encryption Standard
(AES), 72% over a recent one-round cipher scheme, and
43% improvement compared to a recent LORCA stream
cipher that outperforms the Simon and Speck algorithms.

Index Terms—Dynamic cryptography; lightweight en-
cryption; variable cryptographic primitives; Security and
performance analysis;

I. INTRODUCTION

Emerging systems, especially Internet of Things (IoT)
networks, are enabling the online interconnection of
different types of devices and in large numbers. These
large-scale networks offer users a myriad of applications
by leveraging the massive quantity of gathered data.
However, this gives rise to new Quality of Service (QoS)
challenges, in addition to dangerous security threats.
These systems are vulnerable to the typical threats
associated with traditional networks, in addition to new
types of threats that might compromise their availability,
in addition to breaching the privacy and security of
their data. Data confidentiality and privacy are critical
security services, and the challenge is intensified by
the huge volume of data and limited resources of some

IoT devices. In general, symmetric encryption algorithms
are used to achieve data confidentiality, which in some
scenarios achieve data privacy as well, such as the case of
encrypted surveillance recordings that prevent attackers
from identifying individuals.

A. Problem Formulation

Several applications transmit and process sensitive
data that must be protected by adopting the best
practices in terms of data confidentiality and privacy.
However, most current symmetric encryption algorithms
are computationally costly, mainly due to the use of a
round function that 1) consists of multiple operations,
some of which are complex, and 2) needs to be iterated
multiple times. As a result, they are not appropriate for
tiny devices (e.g., micro-controllers and constrained IoT
devices) and/or real-time applications. This led to the
emergence of “lightweight” cryptographic algorithms
in an attempt to reduce the encryption computational
complexity, and hence, to decrease the latency and
energy consumption, which are directly related to the
time spent in data processing and transmission.

Traditional encryption algorithms such as AES iterate
a round function that includes complex operations with
static (fixed) cryptographic primitives. The secret key is
solely used to derive the sub-keys used in the iteration
process. Such algorithms exhibit a high computational
complexity, and they are vulnerable to side channel
attacks because of their static approach. In response to
a NIST call for lightweight cipher solutions, mainly
to cater for constrained IoT devices, the shortlisted
algorithms adopted the static approach, and focused on
1) the design of a simplified round function (e.g., SI-
MON and SPECK by eliminating the substitution table)
and/or 2) reducing the number of iterations of the round
function. One possible solution for reducing the number
of iterations is to adopt the dynamic approach whereby



the cryptographic primitives are no longer fixed, instead
they get updated frequently, which in turns provides
random physical properties and consequently immunity
against side channel attacks.

B. Motivation

The recent lightweight ciphers that adopt the static
approach still require a relatively large number of
rounds [1], such as ASCON and Elephant that require
at least 6 and 18 rounds, respectively. In this work, we
propose a novel stream cipher scheme based on the
dynamic cryptographic approach that uses a minimum
number of operations, and thus, minimizes the associated
latency, while maintaining the required security level.
Such a solution is appropriate for restricted devices and
real-time applications. For each new input message,
the encryption is performed using a different set of
cryptographic primitives. The key-stream is generated
by iterating two functions, “round” and “update”. The
round function is iterated once to generate a new
key-stream block, and the update function changes
the cipher primitives such as the permutations tables,
and it could be configured to perform the update
for each δ blocks or messages. For example, in the
case of multimedia contents, these could be divided
into α blocks, each encrypted using a different set of
cryptographic primitives. The two functions consist of
simple, yet effective operations that enable them to
satisfy the required cryptographic properties.

In summary, the proposed scheme is designed to out-
perform the NIST shortlisted algorithms that adopt the
static approach, and at the same time provide immunity
against side channel attacks.

C. Contributions

The construction of cipher schemes, based on
the dynamic approach, was proposed to reduce the
number of rounds [2]–[6]. These schemes were the
first to offer a good balance between performance
and the security level. However, they still exhibit a
relatively high cost when re-generating the dynamic
keys and cryptographic primitives, or when updating the
cryptographic primitives after each input block. In this
work, we address this issue by simplifying the update
process using just a permutation operation. Moreover,
to increase the security level, we propose to update all
cryptographic primitives (three permutation tables) for
each new δ blocks of a message. This design enhances
the performance without degrading the security level.

LESCA consists of a round function that is basically
a key-stream generation function, and the update
process of the cryptographic primitives takes place in a
selective manner after each iteration, and in full after
a number of input blocks, δ. The update process itself
is lightweight when compared to other existing solutions.

LESCA exhibits the following properties:
• Flexibility: A block to be encrypted has a variable

length of h words, where h depends on the applica-
tion requirements and device limitations. The block
length is (h × W ) bits, where W represents the
word’s size (precision).

• Efficiency: LESCA consists of a simple round
function with simple operations that can process h
words in parallel, in addition to a simple update
process for the cryptographic primitives. Hence,
the scheme minimizes the resource utilization and
computational complexity.

• Simple hardware and software implementations:
This is possible since the scheme uses the “XOR”
logical operation, a simple and efficient PRNG, as
well as look-up tables for the selection process of
permutation tables.

• Error Tolerance: Compared to [3], as a stream ci-
pher, LESCA has a higher channel error resistance.
In an encrypted block, a bit error affects only a
single byte, which corresponds to the byte in error.

• Session Key-Dependent Approach: LESCA re-
lies on dynamic and key-dependent cryptographic
primitives, which can vary in a pseudo-random
manner for each block. After each δ blocks or
messages, all cryptographic primitives used in the
encryption and decryption processes are updated.
This renders analytic and implementation attacks
very challenging [4], [7], [8].

• Dynamic Cryptographic Primitives: Existing ci-
phers employ fixed cryptographic primitives to en-
crypt all blocks in a message. However, LESCA
uses the concept of variable cryptographic primi-
tives, which makes the relation among the produced
key-streams more complex and random, and ensures
its resistance to various analytic attacks.

D. Organization

The paper is structured as follows: in Section II, we
review the existing lightweight cipher algorithms, and we
highlight their limitations. The dynamic key generation
and the construction of the cryptographic primitives are
described in Section III. Section IV describes the LESCA
stream cipher and its main components. In Section V,
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we perform a security analysis to assess the proposed
cipher against the required cryptographic properties. In
Section V-D, the cipher’s resistance to various types of
attacks is assessed, while the efficiency of LESCA is
proved in Section VI. Finally, we conclude the paper in
Section VII.

II. RELATED WORK

Encryption can be done either at the block level or
stream level. An input data block is combined with
a pseudo-random key-stream in the case of a stream
cipher, whereas input data is divided into fixed-size
blocks in the case of a block cipher (usually 128 bits)
and encrypted according to a specific mode of operation.
Typically, a block cipher relies on an invertible round
function that is iterated r times, for each block [9].
A block cipher algorithm can be used to generate a
key-stream sequence by adopting the Output FeedBack
(OFB) or CounTeR (CTR) modes of operation. In
these cases, the block cipher could be used as a stream
cipher [10].

Traditional block ciphers exhibit a high computational
cost since they require a large number of rounds, in
addition to a diffusion operation within the round
function [3]. The minimum number of rounds for
existing block ciphers is 4, which is the case of
the Hummingbird2 cipher. Such an overhead is not
appropriate for some emerging systems [3]. Recently,
there has been an interest in designing new lightweight
cryptographic algorithms that exhibit much lower
overhead in terms of latency and required resources.

Researchers proposed several lightweight ciphers
to address the issue of computational complexity,
such as RECTANGLE, which is based on the
Substitution–Permutation Network (SPN) [11].
Similarly, other lightweight ciphers that use the
Feistel networks were presented recently such as
AKF [12], Simon and Speck [13].

The Simon algorithm has been optimized for perfor-
mance in hardware implementations, while Speck is bet-
ter suited for software implementations. The main idea
of the two techniques (Speck and Simon) is to reduce
the complexity of the round function, but they both use
the multi-round structure. Next, the SIMECK algorithm,
a combination of Speck and Simon algorithms, was
proposed in [14]. However, the authors of [15] proved
SIMECK to be vulnerable to the random byte attack and
the bit-flip attack.

Elliptic curve cryptography was adopted by
researchers to design lightweight cipher schemes [16].
TWINE is a primary work in this direction, and it
was described in [17], [18]. In recent works such as
QTL [19], and the Substitution–permutation Feistel
Network (SP-FN) [20], the authors merged SPN with
Feistel Network (FN) to leverage the benefits of both.
However, the techniques are still based on static
cryptographic primitives, and a round function that
needs to be iterated multiple times. Thus, these schemes
are not efficient enough for constrained devices or for
real-time applications.

Another approach in the same direction is based on
chaotic cryptography. However, the proposed algorithms
suffer from different security and performance
challenges. They are vulnerable to some attacks
and they exhibit performance difficulties due to the
need for conversion operations, and floating-point
calculations. Furthermore, these ciphers employ a
multi-round structure, as seen in [21].

Stream cipher algorithms are typically faster and
require less computational and memory resources when
compared to block ciphers. Many lightweight cipher
schemes have been proposed such as Grain [22] and
Grain-128 [23]. These schemes, however, still require
r rounds, and they employ a round function with
fixed cryptographic primitives, and thus, reducing their
number of rounds renders them vulnerable to a range
of analytical attacks.

In summary, the need persists for cipher schemes
that are well suited for real-time applications and that
can be adopted by devices with limited computational
power, memory capacity, and battery life [24], [25].

To that end, researchers are targeting 1) the
design of lightweight round functions that use simple
operations, and 2) the use of a dynamic key-dependent
cryptographic technique to minimize the number of
rounds. The authors of this paper have been focusing on
the design of such techniques, and they presented in [3],
[26], a scheme with with a low number of rounds with
a high level of security. Another technique presented
in [2], requires two rounds, and the one proposed in [3]
needs a single round, and it processes two blocks at once.

In this paper, the objective is to enhance the prior
works through the design of a robust and more efficient
stream cipher that uses variable cryptographic primitives
with minimal costs associated with the construction of
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Table I: Table of notations

Symbol Definition
SK Shared secret session key
DV The hashed of SK by using a cryptographic hash function such as SHA-512 and updated per session

kpi The ith sub-key of permutation that will be used to construct the ith permutation table πi for i =1, 2,
3 and 4

πi The ith dynamic permutation table, which will be updated after each δ encrypted/decrypted blocks
kS PRNG Seed
V a sequence of pseudo-random keystream values.
Vj a block of h words from V produced at iteration j, which is updated after each δ (mod(j, δ) == 0)

encrypted/decrypted blocks.
len Input message length
dxe x gets the next integer higher than its existing value
h Number of words per block message
Wp

The word precision and it can be equal to 64 bits

nb The number of blocks per input message and it is equal to d len
h×Wp

e
M Plaintext message

mi ith original plain block
C Ciphertext message

ci ith encrypted block
MKSA RC4’s modified KSA was presented in [3].
[Y,X] = XorShift64(X)

The XorShift PRNG is iterated with h words as input block X to generate a pseudo-random block Y
(round key). The ith element of the input word is considered as seed for the XorShift PRNG and its
corresponding output is stored in the ith index in Y .

x << n
The bits in x shifted to the left by n times.

Vj(πi) means that the produced vector is the permutation vector of the jth V is ordered according to the ith
permutation table

x >> n Right shift operator.

Figure 1: Generation technique of the dynamic keys and cryptographic primitives

these primitives. We show that the proposed scheme
outperforms AES and the recent lightweight dynamic
ciphers of [3], [5], [6].

In order to better highlight the contribution of this
work, we list below the advantages of the proposed
solution as compared to our previous works [5], [6]:
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• LESCA uses a round function that can process h
words in parallel instead of using a single word
that is iterated recursively to generate a block of h
words.

• In LESCA, all operations are performed at the
word level (64 bits), while the prior techniques
perform some operations at the byte level such as
the substitution operation.

• In LESCA, a key-stream could be generated inde-
pendently of other ones, while the prior works start
with a word and perform an iterative approach in a
chaining mode.

• In prior works, all the cryptographic primitives are
updated after an iteration, while LESCA performs
selective update of the primitives. A full update
takes place only after δ blocks. Increasing δ will
further reduce the computational overhead.

• LESCA avoids the substitution operation and en-
sures the confusion property by performing bit
rotation, which reduces the computational overhead
and associated latency.

III. PROPOSED KEY DERIVATION FUNCTION

This section describes the proposed construction
technique of the dynamic cryptographic primitives.
Table I lists all notations used in this paper, and the
construction process is illustrated in Figure 1.

We assume that every IoT device (Di) has a built-in
secret (S(Di)) that is shared with the application
server(s). The process starts when a new session is
to be established between an IoT device (Di) and an
application server. First, a new shared secret session key
(SK) is generated and shared by adopting any protocol
for key management as in [27]. Next, the common
secret (S(Di)) is used as a seed to a pseudo-random
generator to generate a Nonce (No) simultaneously at
the IoT device and at the application server; the Nonce
(No) is not transmitted. Then, (SK) and (S(Di))
are XOR-ed, and the result is fed to a cryptographic
hash function such as SHA-512 to produce a 512-bit
dynamic vector, DV .

Please note that this paper does not focus on
lightweight hash functions, which have been investigated
by many researchers and several such algorithms have
been proposed and evaluated for their lightweight
implementations. The majority of these algorithms
are based on the Sponge construction [28], such
as Spongent [29], PHOTON [30], GLUON [31],
Keccak [32], Quark [33], Neiva [34], and others.

The proposed algorithm requires a secure Hash
function only as an initialization step at the beginning
of a session. The reference to SHA-512 has been
made to indicate the required size to be generated (512
bits), and it could be instead replaced, for example, by
Keccak that is used in very lightweight scenarios such
is the case of RFID.

The dynamic vector, DV , is split into 5 components
(sub-keys), DV = {kp1, kp2, kp3, kp4, kS}, which
are used to generate the cryptographic primitives and
their corresponding update primitives. Note that DV and
the generated primitives are unknown to attackers, which
reinforces the security level of the proposed scheme
when compared to the existing cryptographic techniques
that rely on the session key.

The first four sub-keys of the dynamic vector
{kp1, kp2, kp3, kp4} have each a size of 96 bits (12
bytes), and the last sub-key, kS , has a size of 128 bits
(16 bytes). These sub-keys are used as follows:
• Permutation sub-key kpi: it is employed to build

the ith permutation table πi and it consists of the
ith set of the most significant 12 bytes of DV ,
for i =1, 2, 3 and 4. Each permutation table is
generated using the modified key setup algorithm
of RC4, as described in [3]. A permutation table
is used as a selection table, and its values range
between 1 and h, where h is the number of words
in an input block.

• Pseudo-random sub-key kS : it represents the least
significant 16 bytes of DV , and it is employed
to produce a pseudo-random vector, V , of size h
words. kS is used as a seed in any pseudo-random
generator (PRNG) or stream cipher, to produce the
vector V . The word size is decided according to
the devices’ characteristics. Note that, for each new
input block, V is updated during the encryption pro-
cess, and all cryptographic primitives are changed
for every set of (δ) input blocks or messages.

All cryptographic primitives are extremely sensitive
to any slight modification in any bit of the session
key, which results into a completely different DV , and
consequently, different cryptographic primitives. Also,
this improves the ciphertext randomness, uniformity,
and independence, and makes the cryptanalysis very
challenging.

IV. LESCA STREAM CIPHER SCHEME

An input message M is divided into nb blocks
M = m1, m2, . . . , mnb, where each block has a
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length of h words. The value of h affects the security
level and the impact on performance; for real-time
applications, a low value of h is preferable.

As shown in Figure 2, the jth ciphertext block (cj)
is obtained by mixing the jth plaintext block (mj) with
the jth produced key-stream block Vj . The process is
detailed in Algorithm 1, and expressed in Eq. 1:

cj = EK(mj) = mj ⊕ Vj ; j = 1, 2, . . . , nb (1)

the produced key-stream (Vector V ) is updated
iteratively: the (j + 1)

th vector is updated as a function
of the jth vector.

The proposed stream cipher consists of two sub-
functions:

1) Round Function (RF): applied once to initialize the
key-stream V , which afterwards gets updated in an
iterative manner. The (j+1)th encrypted block cj+1

is obtained by mixing (xor) the (j + 1)th plaintext
block with the (j + 1)th key-stream V .

2) Update PrimitivesFunction (UPF): applied once
every δ blocks or messages, to update all the
cryptographic primitives used in encryption (V , π1,
π2, and π3) except for π4.

A. The Round Function (RF )

The first step is to convert each input block of
plaintext or ciphertext to word precision Wp for
example, a size of 32 or 64 bits). Each block will have
h words, which is a common value between the source
and destination. In this work, we set h to 32 and the
word precision Wp to 64 bits. Hence, the plain or
ciphertext blocks have the same representation as V ,
which consists also of h elements.

Next, to produce the jth key-stream block Vj , the
Round Function (RF ) is iterated as follows:

1) Compute X by mixing three different elements of
V , two of them are selected according to the first
and the second permutation tables, and expressed
as:

X = V [w]⊕ V [π1[w]]⊕ V [π2[w]]
for w = 1, 2, . . ., h.

2) Iterate an efficient PRNG once, for each element
of vector X , using the elements as seeds, and store
each output in its corresponding index in vector V ;
this updates the vector V . As a proof of concept, we
set the word precision, Wp, to 64, and we choose
XorShift64 as a PRNG due to its low computational

complexity. Note that any other secure and efficient
PRNG can be used instead of XorShift64.

3) Rotate right each output word of V using the
RORWp function, and this operation is controlled
by the values of the first permutation table, that is
the first element of V is rotated π1[1] times. This
operation increases the non-linearity, randomness,
and uniformity, and it was defined in Speck and
Simon Cipher [13] for a word precision Wp of 64
and 128 bits. The output of this operation represents
the key-stream of the jth iteration.

4) XOR the jth plaintext block mj with its corre-
sponding key-stream word Vj .

The same process is adopted for the construction of
all the required key-streams.

Algorithm 1 The proposed LESCA round function
Input: jth Plaintext block mj , Key-stream vector (V ),
two permutation tables (π1, π2)
Output: ith ciphertext block ci

1: procedure LESCA SC(V, π1, π2, π3, π4)
2: for j = 1→ nb do
3: if j%δ = 0 then
4: Update Primitives(V, π1, π2, π3, π4)
5: end if
6: X = Vj−1 ⊕ Vj−1(π1) ⊕ Vj−1(π2)
7: Vj ← PRNG(X)
8: Vj ← ROR64(Vj , π1)
9: cj ← mj ⊕ Vj

10: end for
11: return c1||c2|| . . . ||cnb
12: end procedure

All the plaintext blocks are encrypted with their
corresponding key-stream blocks, to produce the
ciphertext C = c1||c2|| . . . ||cnb.

The decryption algorithm follows the same processes
for the dynamic key production and the construction of
required cryptographic primitives, in addition to the key-
stream blocks generation Vj ; the latter are “xor-ed” with
the ciphertext blocks cj to obtain the plaintext message
block mj . That is, to recover the jth plain block m′j ,
the jth ciphertext block cj is mixed (XOR) with the jth

produced key-stream word Vj , as expressed in Eq. 2:

m′j = EK(cj) = cj ⊕ Vj , j = 1, 2, . . . , nb (2)

On the other hand, the non-linearity property of
LESCA is ensured based on two factors: dynamicity
(variable cryptographic primitives) and the bit rotation
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Figure 2: Structure of the proposed round function (RF ) of LESCA stream cipher for the jth block (iteration)

Figure 3: Structure of the proposed update function
(Update Primitives) of LESCA stream cipher called
in Algorithm 1.

operation. The vector V is changed after each iteration,
and each word is diffused first with two other words,
and confused using the bit rotation operation of the
PRNG, and another final rotation using the right bit
rotation. The diffusion operation is needed to ensure
the global confusion property and consequently the key
avalanche effect.

The bit rotation operation is inspired by 1) the RC6
non-linear function concept, which is used for that
purpose, and 2) its low computational and memory
consumption. The dynamicity property is ensured at
two different levels: the variable initial words V for
each new iterated plaintext block, and the update of all
cryptographic primitives except π4 after δ blocks, which
further enhances the non-linearity level.

Next, we describe the update process of the
cryptographic primitives.

B. Update Primitives Function
For each δ input blocks (or messages), all

cryptographic primitives are updated, except the
last permutation table π4, which is used only to update
the third permutation table. The latter controls the update
process of the first two permutation tables used in the
key-stream generation algorithm (see Algorithm 1).

The update process starts by updating V using the R
function, as described in SIMON/Speck [13], and it is
controlled by the first and second permutation tables (π1
and π2) as follows:

Vj,t = R(Vj,t, Vj,π1[t], Vj,π2[t]), t= 1, 2, . . . , h (3)

Each new element of V is updated using three current
elements of V ; one element is selected according to π1,
and the second using π2. Then, the first three permutation
tables are updated according to the following equations:

π1 = Permutation(π1, π3) (4)
π2 = Permutation(π2, π4) (5)
π3 = Permutation(π3, π4) (6)

Next, we provide an example on the use of “Xor-
Shift64” as a PRNG.

1) Xorshift PRNG: To generate the vectors V , a
PRNG is iterated, starting from the seed value X . For a
word precision of Wp = 64, we selected “XorShift64”,
which provides an output block of 64 bits. The PRNG
is iterated h times; in each iteration, an input seed value
X[w] is used, and the output corresponds to the element
of V at index w.
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Xorshift is a successor of the Linear-Feedback
Shift Registers (LFSR) family, which is explained in
Algorithm 2. The recent implementation of Xorshift
makes it very fast since it avoids the use of excessively
sparse polynomials [35], and non-linear operations. It
is highly efficient, however, it fails certain statistical
tests [35]. In the proposed scheme, this issue is resolved
through the use of dynamic bit rotation to achieve the
desired non-linearity degree. Note that any PRNG or a
combination of different PRNGs can be used instead of
Xorshift.

The following sections discuss the security and
performance analysis needed to evaluate the robustness
and efficiency of the proposed stream cipher.

Algorithm 2 xorshift64 PRNG
Input: 64-bit word of state t
Output: A produced random number word x with 64-
bits length

1: procedure XORSHIFT64(t)
2: x← t;
3: x← x⊕ (x >> 12);
4: x← x⊕ (x << 25);
5: x← x⊕ (x >> 27);
6: return x;
7: end procedure

V. SECURITY ANALYSIS

A cryptographic solution is designed to resist all
sorts of analytical attacks such as statistical, brute-force,
linear, and differential attacks [27], [36]. In this section,
we assess LESCA’s immunity against such attacks. We
consider the worst-case scenario with input messages
consisting of ”all-zero” bytes and an attacker trying
to compromise the secret key from the produced key-
stream. We select a message length of 10,240 bytes,
h = 16, and δ = 64. Several tests such as the difference
and sensitivity tests were repeated and averaged for
1,000 times.

A. Resistance Against Statistical Analysis

Statistical attacks can be avoided if the encrypted
messages exhibit high uniformity and randomness
levels. Hence, the produced key-stream should satisfy
these properties, in addition to exhibiting a high
periodicity [37].

The produced ciphertexts were tested using the
typical benchmark statistical tests, PractRand [38] and
TestU01 [39], [40], which are considered as the most
difficult ones, and they guarantee that the generated
key-streams satisfy the appropriate randomization and
uniformity levels, and they confirm that no periodic
pattern exists within the produced keystream(s). The
results of the generated key-streams confirmed that
the proposed stream cipher effectively passes these
randomness tests, TestU01 and PractRand, with all of
the examined seeds.

On the other hand, the visual results of the key-stream
for a size of 10,240 bytes are illustrated in Figure 4-
a), which illustrates the histogram of the key-stream
with a random SK, and its corresponding recurrence
in Figure 4-b). The results show that the generated key-
stream exhibits a random recurrence since the values are
(distributed over the whole space), and it matches the
uniform distribution (all symbols have the same proba-
bility of occurrence). More details on the implementation
of these tests are described in [3].

B. Key Sensitivity Test

The proposed stream cipher relies on the dynamic
key-dependent approach, where all cryptographic
primitives and their corresponding update primitives are
changed for each new session. Moreover, the proposed
round function updates the vector V for each input
block. The update process guarantees the generation of
different key-streams, which increases the non-linearity
degree and extends their periodicity.

The key sensitivity test quantifies the percentage dif-
ference between the produced key-streams for a bit
difference in the secret session key. In the proposed
solution, the secret session key is hashed using (SHA-
512) to produce DV , which guarantees a high sensitivity
for a bit change in the input. Hence, if the same
plaintext is encrypted twice, the algorithm generates two
different ciphertexts as different cryptographic primitives
are used. Figure 5 shows the proposed stream cipher’s
key sensitivity for 1,000 random dynamic keys and key-
stream length of 10,240 bytes. The difference in the
produced cipher-texts (key-streams) is very close to 50%
and hence, this validates the key avalanche effect.

C. High Periodicity

The key-stream periodicity is strongly linked to the
PRNG being used, the periodicity of the permutation
tables, the block length h, and the word precision Wp.
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(a) (b)

Figure 4: The corresponding (a) histogram, and (b) recurrence, of the produced key-stream for a random dynamic
key (h = 16).

(a) NS (b) KS

Figure 5: Difference (a) and Key (b) sensitivity results for the proposed stream cipher considering 1,000 random
keys.

The proposed cipher uses a perturbation technique by
updating V (after each input block) and the permutation
tables (π1, π2, and π3), after each δ blocks; and the
update process uses four permutation tables to maximize
this effect. Hence, this results into a high periodicity, and
a minimal probability of repeated key-streams.

D. Analytic and Brute Force Attacks

With a single round and simple operations, the
proposed cipher satisfies the confusion and diffusion
properties. The round function includes addition,
PRNG, mixing, and bit rotation operations. As
previously stated, LESCA exhibits high degrees of
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randomness and uniformity, and the visual results of the
ciphertexts reflect these results, as well as the strong
immunity to statistical attacks. Also, LESCA achieves
a high key sensitivity. Hence, the scheme is immune
against key-related attacks.

Note that the update process makes algebraic, linear,
and differential attacks very challenging. All tested an-
alytical attacks on the stream cipher were unsuccessful.
On the other hand, the secret key size is either 128, 196,
or 256 bits, and the hash output, DV , is 512 bits long,
which is sufficient to prevent brute force attacks.

Given that every new session uses a different key,
that vector V is updated for every new block, and the
primitives are updated regularly, the same plaintext/ci-
phertext will be encrypted/decrypted differently either
within the same session and in different sessions. Hence,
the proposed scheme is immune to analytic attacks.

VI. PERFORMANCE ANALYSIS

The performance of LESCA is evaluated in this sec-
tion to validate its efficiency through two important
metrics, the error propagation rate and the computational
delay. The experimental set up is based on values for
h = 16 and δ = 64, and a message length varying
between 26 and 218 bytes. The throughput measures were
collected for 1,000 times on actual hardware devices
including Raspberry Pi, Teensy, and ESP32.

A. Error Propagation Rate

Being a stream cipher, a bit error in an encrypted
block, ci, will only impact the block’s corresponding bit
in the decrypted block. As such, LESCA is very suitable
for noisy wireless channels.

B. Encryption Computational Delay

One of the main objectives of this work is to achieve
a high degree of security with minimal computational
complexity and energy consumption. We computed the
delays associated with all of LESCA’s components to get
the overall delay:

1) Txor is the time it takes to perform an XOR
operation between two blocks, each with a length
of h words.

2) TPRNG is the time it takes to iterate the selected
PRNG to produce a word.

3) TROR is the time needed to rotate right the bits of
one word.

4) TP is the time required to permute h elements of a
block.

The total Computational Delay (CDKSGW ) to pro-
duce a single key-stream word of Wp bits is:

CDKSGW = (3× Txor + TPRNG + TROR) (7)

To encrypt a single block of h words, the required
CD is:

CD = h× (CDKSGW + Txor) (8)

The delay associated with the construction of crypto-
graphic primitives (CDCCP ) is given by the following
equation:

CDCCP = TH + 4TMKSA(h) + TPRNG (9)

where:
1) TH stands for the time needed to hash an N -byte

block.
2) TMKSA(x) stands for the needed execution time

of the modified KSA of RC4 for a table with x
elements.

3) TPRNG is the needed execution time of a PRNG to
generate h seeds.

It is worth noting that lowering the parameter (delta)
increases the security level while also increasing the
delays, and vice versa. The value of delta is configured
depending on the application needs and the required
security level.

C. The Cipher Throughput

The average throughput of the proposed stream
cipher is computed by conducting 1,000 runs with a
message length varying between 26 and 218 bytes on the
hardware platforms, Raspberry Pi, Teensy, and ESP32
that may be employed in emerging systems. The tests
were performed on Raspberry device classes (RPI0,
RPI3, and RPI4), and two Teensy classes (Teensy
3.6 and Teensy 4), and the (characteristics of these
devices are listed in Table III). We consider only the
key-stream throughput since it accurately represents the
encryption/decryption throughput and it involves the
same number of operations.

Based on the experimental results, the best
performance is achieved for h=16. Figure 6 shows
the throughput results of the proposed cipher as a
function of the message length, for different Raspberry
Pi classes, and with h = 16 and δ = 64. The results are
compared to those of AES OpenSSL in CTR operation
mode (making it a stream cipher), LORCA Stream
Cipher (SC) [6], which exhibits a better throughout
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Table II: Statistical Results of security sensitivity tests for h = 16

Security Tests min Avg max STD
ρ -0.044 -0.0019 0.0486 0.0156
HC 7.941 7.954 7.967 0.004
Dif 49.258 50.051 50.54 0.253
KS 49.35 49.983 50.469 0.287

Table III: Employed devices during bench-marking

Device Characteristics
RPI0 • RAM: 512MB

• Processor: 1GHZ, Broadcom BCM2835
(32bits)

RPI3 • RAM: 1GB
• Processor: 1.2GHz ARM Cortex-A53 (64bits)

RPI4 • RAM: 4GB
• Processor: 1.5GHz ARM Cortex-A72 (64bits)

Teensy 3.6 • RAM: 256MB
• Processor: 180MHz Cortex-M4F (32bits)

Teensy 4 • RAM: 1GB
• Processor: 600MHz Cortex-M7 (64bits)

ESP32 • RAM: 320MB
• Processor: 160MHz Tensilica Xtensa LX6

(32bits)

compared to recent lightweight cipher schemes such
as the enhanced one round of [4] and Simon and
Speck [13].We shall refer to the former as AES-CTR,
and the latter as One-Round. Similar results were
obtained for the decryption process.

Note that the optimized implementation of AES with
OpenSSL is possible only on devices that support op-
erating systems such as Raspier-Pi devices. For other
devices such as Teensy, we used another optimized
implementation of AES.

The throughput results in Figure 6 show that LESCA
outperforms AES-CTR, and the recent LORCA-SC
stream cipher, on all devices versus different message
lengths. The numerical results of the throughput
ratio for the proposed cipher against AES-CTR, the
recent One-Round cipher scheme [4], LORCA-SC [6],
finalist NIST Grain-128 v2 [41] stream cipher, and the
Lightweight Stream Cipher (LSC) of [5] are presented
in Tables IV and V for different hardware platforms.
Furthermore, Figure 7 provides a visual representation
of the results versus AES-CTR and LORCA.

The throughput ratio of LESCA over that of AES-
CTR varies between 3.61 and 8.72 for RPI0, between
3.66 and 8.61 for RPI3, and between 4.12 and 8.70

for RPI-4. Also, it varies between 1.72 and 1.87 for
Teensy 3.6, between 3.0 and 3.85 for Teensy 4, and
between 2.224 and 2.315 for ESP32. Moreover, the
throughput ratio of LESCA over that of the Enhanced
One-Round [4] varies between 1.12 and 2.13 for RPI0,
between 1.50 and 2.917 for RPI3, and between 1.724
and 2.92 for RPI4. It varies between 1.30 and 1.45 for
Teensy 3.6, between 1.40 and 1.85 for Teensy 4, and
between 1.195 and 1.568 for ESP32. When compared
to LORCA-SC [6], the throughput ratio varies between
1.01 and 1.33 for RPI0, between 1.02 and 1.93 for
RPI3, and between 1.43 and 1.76 for RPI4. Higher
throughput ratio of LESCA is obtained with the finalist
stream cipher GRAIN 128 v2 on all RPI devices,
varying between 13.98 and 37.94. These results indicate
clearly the efficiency of the proposed solution compared
to all recent techniques.

The maximum throughput of LESCA over AES-CTR,
LORCA-SC and other listed stream ciphers is achieved
on RPI4. However, the performance is slightly reduced
on RPI3, and more so on RPI0. Note that the optimized
AES-CTR implementation leverages the hardware en-
hancement of RPI4 compared to previous classes of RPI.

On the other hand, LESCA was implemented in C,
but AES-CTR is written in assembly language, and it
is highly optimized. A significant gain can be attained
by optimizing LESCA using assembly language in a
similar manner to AES-CTR.

Note that One-Round has been validated in terms of
its efficiency, and it was compared to the state-of-the-art
lightweight cipher algorithms such as Simon and Speck.
In this work, the results demonstrate that the proposed
LESCA scheme outperforms One-Round. The numerical
results in Table IV and Table V validate this conclusion.

D. Memory Consumption

The encryption process of LESCA involves one in-
put block (h words), a vector V (h words), and two
permutations tables (π1 and π2), each with h elements
varying between 0 and (h− 1). For the update process,
the scheme requires two permutation tables (π3 and π4)
of h elements. Thus, the required memory consumption
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(a) RPI0 (b) Teensy 3.6

(c) RPI3 (d) Teensy 4

(e) RPI4 (f) ESP32

Figure 6: Encryption throughput (GBytes/s) versus message size on (a) RPI0, (b) Teensy 3.6, (c) RPI3, (d) Teensy
4, (e) RPI4, and (f) ESP32, for LESCA, LORCA-SC [6], and AES-CTR, with h = 16 and δ = 64.
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(a) RPI0 (b) Teensy 3.6

(c) RPI3 (d) Teensy 4

(e) RPI4 (f) ESP 32

Figure 7: Throughput Ratio variation (MB/s) in function of message size on (a) RPI0, (b) Teensy3.6, (c) RPI3, (d)
Teensy4, (e) RPI4, and (f) ESP32, for h = 16 and δ = 64, for LESCA, LORCA-SC [6] and AES-CTR.
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Table IV: Speedup comparison of LESCA versus AES-CTR, LORCA-SC [6], enhanced One-Round of [4], finalist
NIST Grain-128 v2 [41] stream cipher and Lightweight Stream Cipher (LSC) of [5], on a set of RPI devices

Hardware Protocol comparison Message Length (Bytes)
26 28 210 212 214 216 218

RPI0

LESCA vs Enhanced One-Round 1.81 2.13 2.06 1.56 1.34 1.24 1.12
LESCA vs LSC 1.32 1.46 1.53 1.55 1.44 1.39 1.33

LESCA vs LORCA-Stream cipher 1.12 1.33 1.27 1.27 1.18 1.11 1.01
LESCA vs GRAIN-128 23.43 20.98 20.01 19.74 18.39 16.74 13.98
LESCA vs AES-CTR 8.72 5.87 4.94 4.68 4.34 4 3.61

RPI3

LESCA vs Enhanced One-Round 1.87 2.92 2.58 1.82 1.61 2.18 1.5
LESCA vs LSC 1.92 2.15 2.64 2.25 2.28 2.27 2.22

LESCA vs LORCA-Stream cipher 1.02 1.81 1.68 1.7 1.93 1.67 1.62
LESCA vs GRAIN-128 37.94 34.12 33.73 33.53 32.96 32.6 31.54
LESCA vs AES-CTR 8.62 5.54 4.3 3.94 4.07 3.76 3.67

RPI4

LESCA vs Enhanced One-Round 1.72 2.72 2.9 2.07 1.88 1.85 1.82
LESCA vs LSC 1.82 2.09 2.12 2.11 2.13 2.14 2.11

LESCA vs LORCA-Stream cipher 1.49 1.76 1.44 1.43 1.45 1.45 1.43
LESCA vs GRAIN-128 32.21 32.75 31.16 30.82 30.93 30.42 30.21
LESCA vs AES-CTR 8.71 5.87 4.66 4.27 4.21 4.18 4.13

Table V: Speedup comparison of LESCA versus AES-CTR, and LORCA-SC [6], on Teensy 3.6, Teensy 4, and
ESP32

Hardware Protocol comparison Message Length (Bytes)
27 28 29 210 211 212 213 214

Teensy 3.6 LESCA vs LORCA-SC 1.45 1.38 1.31 1.33 1.34 1.34 1.34 1.33
LESCA vs AES-CTR 1.73 1.76 1.76 1.77 1.79 1.87 1.87 1.86

Teensy 4 LESCA vs LORCA-SC 1.5 1.75 1.86 1.64 1.67 1.41 1.66 1.65
LESCA vs AES-CTR 3 3.25 3.71 3.64 3.85 3.25 3.84 3.82

ESP32 LESCA vs LORCA-SC 1.2 1.26 1.34 1.45 1.51 1.54 1.56 1.57
LESCA vs AES-CTR 2.22 2.23 2.24 2.26 2.29 2.28 2.32 2.29

to encrypt/decrypt a block of h words is (2× h) words
+ (4 × h) elements. In the case of devices with limited
memory capacity, two permutations tables are preferred
instead of 4 to reduce the required memory consumption.
In this case, we can update π1 in function of π2 and π2
in function of the updated π1. This reduces the required
memory to (2× h) words + (2× h) elements. Note that
AES-CTR requires an input key of size (16, 24 or 32
bytes) and r round keys (r×16 bytes), in addition to
256 bytes for the substitution table. As for the one-round
cipher scheme, it requires two substitution tables (256
bytes each), a permutation table with nb elements, in
addition to two sets of round keys.

VII. CONCLUSION & FUTURE WORK

In this paper, we presented LESCA, a lightweight
stream cipher scheme suitable for constrained devices
and real-time applications. It consists of two lightweight
functions: a round function and another function to
update the cryptographic primitives. The two functions
are applied once, and they make use of simple logical op-
erations (a bit rotation and “exclusive-or”), a lightweight
PRNG, and a permutation operation. LESCA adopts the

dynamic key-dependent structure to achieve an optimal
balance between the security level and performance.
The update process is performed after every (delta)
blocks to update all cryptographic primitives used in
the key-stream generation of the round function. When
compared to traditional ciphers like AES and to recent
one-round cipher schemes, LESCA reduces significantly
the execution time and required resources. The security
tests and performance evaluations confirmed LESCA’s
efficacy and robustness when compared against recent
lightweight ciphers and the optimized implementation
of AES. Finally, this work follows the new trend in the
design of lightweight cryptographic algorithms for an op-
timized trade-off between the security and performance
levels.

FUNDING:
The EIPHI Graduate School (contract “ANR-17-

EURE-0002”) provided funding for this work.

REFERENCES

[1] M. S. Turan, K. McKay, D. Chang, C. Calik, L. Bassham,
J. Kang, J. Kelsey et al., “Status report on the second round of the

14



nist lightweight cryptography standardization process,” National
Institute of Standards and Technology Internal Report, vol. 8369,
no. 10.6028, 2021.

[2] Noura, Hassan N and Noura, Mohamad and Chehab, Ali and
Mansour, Mohammad M and Couturier, Raphaël, “Efficient and
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