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Abstract—The properties and features of wireless channels
have recently attracted the attention of researchers since they
include valuable and powerful parameters for security services.
This has paved the way for a new security paradigm, Physical
Layer Security (PLS). To further improve the performance
and security of such technology, it is recently being combined
with machine learning algorithms to provide authentication,
confidentiality and intrusion detection. Motivated by the novel
advancements in this field, we present a brief overview of the
different machine learning techniques and algorithms that offer
PLS-based security services. These techniques are discussed in
details to shed the light on the existing methods in the literature.
We also propose several recommendations for enhancing the
performance and efficiency of the presented schemes.

Keywords— Machine learning; physical layer security; authenti-
cation, confidentiality, intrusion detection system.

I. INTRODUCTION

Machine Learning (ML) is a fundamental branch of artificial
intelligence that allows a system to parse data, learn from it and
predict future outcomes. This is mainly done without the intervention
of human assistance. In particular, machine learning algorithms form
a mathematical model based on a specific amount of ”training data”,
which can be either labeled or unlabeled, to enable correct decision
making and precise predictions regarding future input data. Lately,
this technology gained a lot of attention due to its applicability within
numerous applications such as image classification, self-driving cars,
natural language processing, speech recognition, smart healthcare,
and search engine result refining [1]. Additionally, machine learning
has played an important role in enhancing and ensuring robust
security in terms of user/device authentication, data protection and
confidentiality and most importantly behavior-based intrusion de-
tection. Some examples of ML-based security include email spam
detection, malware filtering and online fraud detection.

Typically, security solutions are based on cryptographic and non-
cryptographic approaches (Figure 1). The cryptographic ones can
be divided into algorithms and protocols. On the other hand, non-
cryptographic approaches use different solutions such as physical
protection and ML, which are the main focus of this paper. Traditional
cryptographic algorithms rely on the Shannon’s concept, which
requires the iteration of a round function multiple times. However,
this type of solutions exhibits high computational complexity and
relatively large delays, which necessitates the introduction of more
efficient techniques [2], [3], [4]. With the help of machine learning
algorithms, security systems can mitigate future attacks and adapt to
changing behavior in real-time, which is crucial since some malware
and attacks are frequently modified to evade the security measures.
This offers protection for legitimate users and their data when they
communicate with each other, and it safeguards data that is stored in
the cloud.

In this paper, we focus on machine learning techniques that are
adopted for physical layer security (PLS), a new security paradigm

that exploits the inherent randomness and dynamicity of the physical
layer to secure data in transit over wireless channels. The unique
features and properties of wireless channels are extracted and used
for securing data. Several works in the literature have resorted to
machine learning algorithms to greatly enhance systems’ security
due to their ability to analyze threats, learn patterns and prevent
malware and attacks. Moreover, such techniques enable a system
to automatically respond to changing behavior and to adapt to new
types of risks and threats. Based on the underlying security service,
the presented schemes are divided into three groups: authentication,
confidentiality, and intrusion detection. An overview of these
schemes is presented and each scheme is described in details. We
also highlight the limitations of each method and we propose ways
to overcome these drawbacks.

The rest of the paper is organized as follows. Section II presents
some background information on machine learning and related al-
gorithms. Section III presents an overview of the schemes presented
in the literature, and a thorough discussion of each of the schemes.
Section IV presents the current challenges in this field, and Section V
discusses the lessons learnt. Section VI presents some recommenda-
tions to enhance the existing schemes. Finally, Section VII concludes
the paper and presents future prospects.

II. BACKGROUND

Machine learning is mainly divided into two types: supervised and
unsupervised [5], [6].

For the former learning method, the machine is first trained using
labeled data, based on which, the machine develops a function that
predicts the right answer/category of future input data. Supervised
learning is divided into two sub-types, regression and classification.
Regression is used when the input is continuous (for example,
”height”). In contrast, classification is used for simple data such as
binary (”yes” or ”no”) or multi-classification, in the case of multiple
categories) [7], [8]. Some examples of supervised machine learning
algorithms include decision trees, linear regression, K-NN (k nearest
neighbors), support vector machine and Naive Bayes. Supervised
learning has many advantages some of which are:

• It is specific and accurate since the machine is trained to
distinguish the different classes and features of the input data.

• One is able to determine the number of required classes.
• Input data is well known and labeled.
• It is a simple process.
• Once training is complete, the training data can be discarded

from memory.
On the other hand, this technique suffers from some disadvantages:
• The input data should be divided and labeled correctly, other-

wise the model will not function properly.
• The process is not done in real time; the input data should be

trained offline prior to the prediction process.
• In some cases, the required training data is not available.
• The training process is time consuming.
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Fig. 1: Classification of security techniques

• It is limited because when the data does not belong to any of
the labeled classes, the output will be erroneously attributed to
one of the existing classes.

• Supervised learning does not provide new information from the
training data.

Typically, supervised learning is used in file analysis such as anti-
virus use cases where the applications and files are already known
and documented.

In contrast, unsupervised machine learning is used for network
traffic analysis, whereby data is frequently changing (dynamic) [9].
As such, the labeling is scarce since the behavior is constantly
changing and anomalies are continuously adapting. Therefore,
unsupervised learning does not require human guidance, training
data or labeled classes, to predict future data. Specifically, this
technique groups unknown data based on their similarities and
differences. The main task here is to be able to distinguish the
different features, the structure and the hidden patterns of the input
data.

Unsupervised learning algorithms fall under two categories:
clustering and association. For the former, the data is grouped based
on similarities, whereas for the latter, the data is grouped based on
the relation between their attributes. Some unsupervised machine
learning algorithms include K-means clustering, dimensionality
reduction, neural networks and deep learning. These algorithms have
multiple advantages:

• Data is analyzed in real time.
• Unlabeled data is easier to obtain.
• There is no need to label the data and specify the different

classes. The algorithm figures out this task on its own.
• They are Less computationally complex than supervised learn-

ing; offline analysis is not needed.
• The machine is able to learn new features and adapt to changing

data.

The disadvantage of unsupervised learning is that it is less accurate
and less specific since data is not labeled and there are no pre-defined
classes.

Machine learning techniques can also be semi-supervised, where
two types of data are used in the training process: labeled data
and unlabeled data [10]. In this class, the number of labeled data
is far less than that of the unlabeled data, and thus, overcoming
some of the disadvantages of supervised learning such as the
scarcity of labeled data. Finally, reinforcement learning, which is
the fourth paradigm within machine learning, enables the model to
make decisions in complex environments [11]. The classification of
machine learning types and algorithms is illustrated in Fig. 2.

Recently, machine learning has been adopted to enhance existing
physical layer security schemes and to increase their robustness
against various attacks. Specifically, machine learning has been
used to analyze the physical layer properties of shared wireless
channels, such as the channel state information and carrier frequency
offset, to realize different security services such as authentication,
confidentiality and intrusion detection. As such, legitimate users are
able to detect any abnormal behavior caused by adversaries.

In the following section, we will present and describe the schemes
in the literature that combine the notion of machine learning and
physical layer security.

III. MACHINE LEARNING FOR PHYSICAL LAYER
SECURITY

Machine learning can be used to achieve authentication, confiden-
tiality and intrusion detection. The schemes in the literature will be
divided according to the previous categories and they will be detailed
next.

A. User and Device Authentication based on Machine Learn-
ing

The importance of machine learning in achieving authentication
is highlighted in [12]. In particular, the authors classify machine
learning algorithms into two groups: parametric/non-parametric (de-
pending on whether there are specific forms of training functions)
and supervised/unsupervised/reinforcement learning (depending on
whether there are labeled samples in the database). The authors
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Fig. 2: Classification of machine learning techniques

also conducted several tests to evaluate the performance of intel-
ligent schemes and static schemes in terms of miss-detection rate
and computational costs. The obtained results showed that machine
learning has a lower miss-detection rate than static approaches,
especially those depending on multiple features, and it requires lower
computational costs.

1) Authentication based on Physical Channel Features:
The physical channel properties are used as key features to train
input data to achieve device authentication. Examples of channel
properties are channel state information, time of arrival and carrier
frequency offset. In [13], the authors combined physical layer
security and machine learning to authenticate communicating users
at the physical layer. Upon the reception of packets, both users
perform authentication by extracting the channel state information
of each packet from the received pilots. Typically, the difference
between the channel state information matrices should be below
a specific threshold for the authentication to be successful. In
particular, the ε-greedy strategy is applied to identify the optimal
threshold that maximizes the gain, which is expressed in terms
of the probabilities of the four possible cases: true positive, true
negative, false positive and false negative.

Similarly, the authors in [14] presented a physical layer
authentication mechanism based on machine learning to authenticate
users in Multiple-Input Multiple-Output (MIMO) systems. The
proposed scheme exploits the randomness of the channel response
and the location of users to perform classification with minimum
error. Specifically, three steps are considered: feature extraction,
feature selection and classification. The Channel Impulse Response
(CIR) features are divided into four groups: 1) antenna processing
(minimum, maximum, average and concatenation), 2) signal
transform (original, Discrete Cosine Transform (DCT), Fast Four
Transform (FFT), and gradient), 3) information enhancement
(original, auto-correlation) and 4) complex signal processing (no
process, real, imaginary, gain, phase, arc). The high dimensions of
obtained features are reduced using the Neighborhood Component
Analysis (NCA) algorithm. Moreover, the chosen features are
classified using a Radial Basis Function (RBF) kernel-based Support
Vector Machine (SVM).

Channel matrices are also used in [15] as features to achieve
physical layer authentication based on Machine Learning. Unlike
the traditional threshold-based physical layer authentication schemes
(stationary scenarios), the presented solution benefits from adaptive
classification based on machine learning, which suits mobile
scenarios. For the offline training phase, four ML classification
algorithms are considered, the Decision Tree (DT), the Support
Vector Machine (SVM), the K-Nearest Neighbors (KNN), and the
ensemble learning. The same methodology was applied in [16].

In [17], the authors relied on deep learning to extract blind
features form physical channels to authenticate users. In [18], the
authors presented an authentication mechanism that consists of three
main phases. First, the channel state information is extracted, after
estimating the channel. Then, the dimension of the channel matrix
is reduced using Karhunen-Loeve Transform (KLT) to decrease the
computational complexity. Finally, a Gaussian Mixture Model-based
(GMM) authentication algorithm is performed. The parameters
of the GMM function can be estimated using the Expectation
Maximization (EM) algorithm whose parameters can be initialized
by the Linde-Buzo-Gray (LBG) algorithm. This algorithm trains the
channel data, and then, the mean and variance are utilized in the
Gaussian Mixture Model.

By leveraging the physical channel characteristics and machine
learning techniques, the authors in [19] presented two authentication
schemes based on different algorithms, the support vector machine-
based authentication algorithm, and the linear Fisher Discriminant
Analysis-based scheme. Both of these schemes rely on three main
features, the received signal strength, the time of arrival and the
correlation of cyclic feature vectors.

2) Authentication based on the ”You Are” Factor: Another
approach to ensure robust authentication is by using the unique
features of the user that cannot be changed such as fingerprint,
physical unclonable functions (PUF), and facial features.

In [20], the authors leveraged the uniqueness of Physical
Unclonable Functions in transmitters to achieve on-the-fly



authentication. Specifically, Artificial Neural Networks (ANN) are
used to train data according to the following features: local oscillator
frequency offset, channel information, DC offset and I-Q mismatch
in transmitters. Since these features vary greatly from one device
to the other (Radio Frequency properties) as a result of fabrication,
they can be used to achieve proper authentication.

In [21], the security of automobiles was achieved through driver
fingerprinting. The authors conducted a comprehensive study on
behavioral characteristics of drivers in two types of vehicles, Luxgen
U5 SUV and Buick Regal. This is of great significance since,
currently, the identity of drivers is not monitored in real-time. The
main goal of the proposed scheme is to ensure the safety of people’s
properties and even lives using an efficient and robust real-time
automobile driver fingerprinting scheme.

Differently, the authors in [22] relied on the Radio frequency
(RF) fingerprint recognition technology in the authentication
process. In this work, the radio frequency characteristics are used
to authenticate users/devices since these properties are unique and
cannot be imitated. The proposed scheme is based on dimensional
reduction and machine learning. The same concept was adopted
in [23], where RF fingerprint features are extracted. The behavioral
characteristics of smartphones were used in [24], along with machine
learning, to authenticate smartphones. Similarly, the authors in [25]
approximated the behavior of a device using features extracted from
the device network traffic.

In contrast, the authors in [26] leveraged the signal features to
authenticate devices. They used the wavelet transform to decompose
signals and extract feature matrices of the samples.

3) Authentication based on the ”You Do” Factor: This
factor is based on the actions performed by the device. One main
example is the traffic generated by users. It can be listed under the
”you are” factor and the ”you do”, since network traffic is unique
for each user and it is a result of a set of actions done by the user
at the same time.

In [27], the authors classified the devices’ types based on
their unique fingerprints, which are attributed to the number of
packets generated during the setup phase. The authors performed
classification in two phases: during the first phase, trained classifiers
are used to classify device fingerprints. Afterwards, the most
suitable (probable) device class is identified. This step is crucial
when a device is classified as belonging to several classes.
Differently, self-learning was adopted in [28], where the device
model is specified based on its signature. A similar concept was
adopted in [29], where the authors used the patterns of physical layer
communication to recognize a device connected to a certain network.

On the other hand, traffic features were utilized in [30] to identify
Internet-of-Things (IoT) devices. Some of these traffic features
include the packet size and inter-arrival time. Similarly, a multi-stage
classifier was used in [31]. First, classification is done taking into
consideration port numbers, domain names, and cipher suites. Next,
another classifier uses statistical features such as the flow volume,
flow rate, flow duration, sleep time, DNS interval, and NTP interval.
The authors in [32] and in [33] also classified devices based on
network traffic flows.

In [34], physical layer fingerprinting was considered for device
classification. Some of the features that are adopted are signal power,
attenuation, and interference. Differently, signal imperfections were
used to create user profiles in [35], [36], by monitoring and
differentiating different types of devices present in a smart home.

The features and characteristics of IoT devices were defined based
on the packet contents in [37]. In their recent work, the authors
in [38] utilized basic flow features such as size, timestamp, and
direction to recognize the type of IoT devices and to detect traffic
attacks.

The discussed schemes are summarized in Table I.

B. Intrusion Detection Systems using Machine Learning
In [39] an attack detection scheme was presented. It consists of

feature generation and detection modelling. The feature generation
mechanism depends on one variable (univariate) or on multiple
variables (multivariate). In the former case, the features depend on
statistical measurements such as the minimum, the maximum and
the standard deviation. For the later case, three groups of features
are calculated using multiple variables. The first group evaluates
the relation (difference) between a pair of measurements (defined
by domain experts or learned from the data). The second group is
physics-based and uses the difference between the measurements
and the model’s predictions. The last group is learning-based, and
it is completely data driven. It learns from multiple measurements
using deep learning. As the number of stacked shallow learning
blocks increases, the learned data become more informative, more
robust to variations, and will have more abstract aspects. For this
phase, the authors utilized the stacked de-noising auto-encoder
(SDAE) as the deep learning architecture. For detection modelling,
the Extreme Learning Machine (ELM) was employed.

The authors in [40] proposed a directional reactive jamming
scheme based on machine learning. In particular, the transmitter sends
a broadcast signal to the eavesdropper and the legitimate receiver,
which in return replies with preamble sequences. Consequently, the
transmitter extracts the real and imaginary components (features)
of the Channel State Information (CSI), and divide them into two
clusters based on the K-means algorithm. Afterwards, a support
vector machine (SVM) with soft threshold is trained with the labeled
data. Using this technique, the transmitter directs its beam to send
interference signals to the eavesdropper to degrade its channel. One
drawback of this scheme is the assumption that the transmitter is
able to obtain the CSI of the eavesdropper, which might not be
possible in most cases.

On the other hand, the authors in [41] proposed a fault detection
mechanism based on neural networks for cooperative adaptive cruise
control systems to prevent collisions among vehicles. The proposed
technique utilizes a fuzzy decision-making system, which maintains
a safe gap between the vehicles. The inputs are the follower vehicle’s
speed and speed error (based on the difference of the actual and the
estimated speed of the leading vehicle), whereas the output is the
additional safe distance added to the present gap to prevent possible
incidents.

Also, the authors in [42] benefited from machine learning and
the multiple features of electromagnetic signals to identify abnormal
electromagnetic signals at the physical layer.

An intrusion detection and location system based on machine
learning was proposed in [43]. The tasks of the proposed solution
were divided into three categories: detection, branch location,
and position determination. The first two tasks are formulated as
supervised classification based the channel impulse response and
the position determination task as supervised regression tasks. The
support vector machine (SVM) and boosting ML algorithms were
considered for both, classification and regression.

Since temporal information (information in previous states)
can be useful to detect attacks in vehicular systems, the authors



TABLE I: The summary of machine learning schemes that achieve device authentication

Reference Features Machine learning algorithm Type
[13] Channel state information from pilot packets ε-greedy strategy to identify the optimal threshold Supervised
[14] Channel Impulse Response (CIR) features: 1) antenna pro-

cessing, 2) signal transform, 3) information enhancement and
4) complex signal processing

Basis Function (RBF) kernel-based Support Vector Machine (SVM) Supervised

[15] Channel state information Decision Tree (DT), Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), and ensemble learning

Supervised

[17] Blind features Deep learning models Unsupervised
[18] Channel state information Gaussian Mixture Model-based (GMM) authentication algorithm Unsupervised
[19] The received signal strength, the time of arrival and the

correlation of cyclic feature vectors
Support vector machine-based authentication algorithm and the linear
fisher discriminant analysis-based authentication scheme

Supervised

[20] Local oscillator frequency offset, channel information, DC
offset and I-Q mismatch in transmitters

Artificial Neural Networks (ANN) Supervised

Fig. 3: Classification of anomaly detection techniques

of [44] used recurrent neural networks instead of feed-forward
neural networks, which look for occurrences of the same patterns
in the feature-space based on current state. In recurrent neural
networks, the occurrence of attacks depends on input features in
the previous as well as current states (state refer to period of time).
The features that were considered are the cyber input features
(related to communication and processing) and the physical input
features (related to the physical properties). The first type includes
network incoming and outgoing traffic rates, CPU utilization and
the data being written on the disk. The second type includes
encoder (measuring the difference between two consecutive encoder
value readings in a fixed period of time), accelerometer (the
vibration of the chassis), power (the overall power consumption
by the vehicle) and current (the overall current drawn by the vehicle).

In [45], the authors conducted several experiments to study
the importance of machine learning in detecting physical layer
attacks in optical networks. They also listed the types of supervised
ML algorithms used in the classification process, artificial neural
networks, support vector machine, Gaussian process, decision
tree, random forests, naive bayes, nearest neighbors, quadratic
discriminant analysis. Similarly, the authors in [46] studied the effect

of machine learning in detecting attacks in software defined networks.

In [47], the authors proposed the detection of primary user
emulation attack in cognitive radio networks based on machine
learning. Here, four main features were considered: the mean of the
channel impulse response values, the variance (value fluctuations
corresponding to the mean), skewness (asymmetry of value with
respect to the mean) and the difference between the maximum
and minimum values. For the training and testing steps, six
classification models were considered: Logistic Regression (LR),
Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN),
Decision Tree Classifier (DTC), Gaussian Naive Bayes (NB), and
Support Vector Machine (SVM).

The authors of [48], proposed a machine learning-based technique
(un-supervised) to detect malicious relays in cooperative networks.
They utilized Support Vector Machines (SVM) functions, k-Nearest
Neighbors (k-NN), and Isolation Forest. Moreover, three main
features were considered: amplitude of the symbol, the position of
the symbol in the constellation and the phase difference between
two consecutive symbols.



In [49], a multi-stage scheme was proposed to detect four
jamming attacks in Cloud Radio Access Networks. Specifically,
the proposed machine learning-based intrusion detection system
identifies five scenarios: normal traffic (no attack), constant jammer
(jammer sending random data constantly), random jammer (the
jammer remains idle during the sleeping period and acts as a
constant jammer during the jamming period), deceptive jammer
(the jammer sends illegitimate packets and not random data) and
the reactive jammer (jammer sends illegitimate packets only when
data transmission is detected on a specific channel). The authors
processed and classified the data using the Multilayer Perceptron
(MLP). If the traffic is classified as normal, the Kernelized Support
Vector Machine is utilized to reduce the false negative rate. For
feature extraction, the principal component analysis technique was
used to identify the most significant features in wireless sensor
networks, which is a statistical technique used mainly to decrease
dimensionality. As such, the authors identified the most important
ten features.

Table II summarises the machine learning-based schemes that
achieve intrusion detection. Figure 3 also presents a taxonomy of the
anomaly detection schemes based on machine learning techniques.

C. Confidentiality using Machine Learning
In [50], the authors used machine learning to provide proper

beamforming and power allocation. In particular, the channel
state information of the eavesdropper and the legitimate receiver
are evaluated so that only the legitimate receiver is able to
correctly recover the original data. However, obtaining the channel
state information of a passive eavesdropper is not always possible,
and hence, the scheme should not depend on the adversary’s channel.

In [51], the authors presented the transmit antenna selection
(TAS) as a transmission strategy based on machine learning. The
scheme accounts for the case of full CSI (CSI of eavesdropper is
known) as well as partial CSI (CSI of eavesdropper is unknown).
First, the obtained CSI values are transformed into real values and
then normalized. Next, SVM and the naive-Bayes are used to select
the optimal antenna that maximizes the channel secrecy.

To enhance the security of Smart Grids, the authors in [52]
presented a brief survey of the threats and vulnerabilities of smart
grids, and possible countermeasures based on machine learning.
The same approach was also considered for securing cyber-physical
systems in [53].

Differently, the authors in [54] used supervised machine learning
(neural networks) to choose the optimal relay among a set of relays,
based on the maximum achievable secrecy rate. The authors assumed
that the information related to the adversary’s channel is available,
which again may not be possible in most cases.

In [55], the authors proposed a low probability of intercept
communication scheme based on machine learning. They used the
Plane Spiral Orbital Angular Momentum (OAM) in the radio domain
to secure transmitted data between the communicating entities. The
transmitter modulates data using several PS-QAM modes and relies
on supervised SVM to evaluate the performance of communication
and to restore symbols from high dimensional space. The receiver,
on the other hand, demodulates the received data and uses the
K-means technique (unsupervised) to intercept the data, measure its
similarity and to cluster it, accordingly.

In [56], the authors presented a brief overview of cyber-physical
systems, their associated security threats at different layers and
possible ways to mitigate them. To enhance the security of
cyber-physical systems, they proposed the use of machine learning.

However, the proposal suffers from multiple security vulnerabilities
mainly data poisoning during training and ML architectural
intrusions.

In [57], the authors illustrated the benefits of machine learning
at the different layers. They indicated that deep learning plays an
important role at the physical layer of wireless networks since
it can be used for interference alignment, anti-jamming schemes,
modulation classification and types, and physical coding.

IV. MACHINE LEARNING SECURITY CHALLENGES AND
OPEN ISSUES

Although machine learning has been used to enhance many
aspects of network security, there are some remaining challenges
associated with this technology. One main issue is compromising
the privacy and identity of devices such as IoT (Internet-of-Things)
devices. By applying machine learning to the traffic, one can identify
the different communicating devices. Another important point is the
heterogeneous types of the data having different characteristics and
properties, which is accounted for in machine learning algorithms.
Also, with the large number of already existing algorithms, it is
hard to choose the appropriate algorithm for a specific problem.
Therefore, more research should be directed towards specifying
the characteristics, advantages and disadvantages of each of the
algorithms [58], [59].

Moreover, it has been shown that machine learning requires a
significant overhead in terms of computational complexity, which
can be a challenge for current and emerging restricted devices. There
is a need for efficient schemes that strike the appropriate balance
between the security level and performance [58], [59].

When addressing security issues in a system, it is important to
have a robust key generation and distribution scheme. Currently,
there are no such schemes available when using machine learning
for physical layer security. Also, there is a need to enhance the
detection of behavior-based attacks, and more efforts should be
exerted to efficiently defend against DDoS (Distributed Denial of
Service) attacks [58], [59].

There is still a lot of work to be done in this area, which paves
the way for researchers to explore this topic and the numerous
opportunities for contribution [58], [59].

V. LESSONS LEARNT

Two important takeaways that need to be emphasized when dealing
with machine learning are the choice of the algorithm(s) and the
associated complexity. Currently, there are many machine learning
algorithms within the supervised and unsupervised domains. More
research should be dedicated towards assessing the capabilities of
each of the algorithms and their suitability for the different existing
problems. This would help researchers in the selection process of the
best fitted algorithm for the problems they are tackling. Also, there is
the need for more efficient (low computational complexity) machine
learning algorithms while maintaining the same performance.

VI. RECOMMENDATION

Most security schemes in the literature rely on a single factor to
secure data, such as the case in authentication and confidentiality
processes. In order to enhance the security level of existing PLS
schemes that are based on machine learning, one needs to resort to
two factors instead of just one. For example, users can use channel
information, such as the channel state information, along with the
unique features of the communicating devices, such as physical
unclonable functions, to authenticate each others. Also, users can
use reinforcement learning, which allows devices to make decisions



TABLE II: The summary of machine learning schemes that achieve anomaly intrusion detection against jamming attacks

Reference Features Machine learning algorithm Type
[39] Uni-variate, statistical measurements: minimum, the maxi-

mum and the standard deviation, or multi-variate
stacked de-noising auto-encoder (SDAE) as the deep learning
architecture and Extreme Learning Machine (ELM)

Supervised

[40] Channel State Information (CSI) Support Vector Machine (SVM) Supervised
[41] - Neural networks Unsupervised
[42] - Apriori algorithm Unsupervised
[43] Channel impulse response Support Vector Machine (SVM) Supervised
[44] The cyber input features and the physical input features Neural networks Supervised
[47] The mean of the channel impulse response values, the vari-

ance, skewness and the difference between the maximum and
minimum values

Logistic Regression (LR), Linear Discriminant Analysis
(LDA), k-Nearest Neighbors (KNN), Decision Tree Classifier
(DTC), Gaussian Naive Bayes (NB), and Support Vector
Machine (SVM)

Supervised

[48] - Support Vector Machines (SVM) functions, k-Nearest Neigh-
bors (k-NN), and Isolation Forest

Unsupervised

[49] Ten features are identified Multi-layers Perceptron (MLP) Supervised

and to take action in real time. This is mainly important in the
case of intrusion detection and prevention systems. Since supervised
learning requires a large amount of labeled data that are not always
be available, users can rely instead on semi-supervised algorithms.
This type requires much less labeled data versus unlabeled data.

Moreover, machine learning can be used for the selection of
the set of channels having the best conditions in a system with
multiple links/channels. This is applicable in a Multiple-Input
Multiple-Output or in multi-homed systems (mobile device with
Wi-Fi and cellular connections). Following this step, users can
utilize the chosen set for legitimate data transfer and the remaining
links to send jamming signals to illegitimate users. One can also
use machine learning to extract the unique features of the common
channel between the legitimate entities and then, random nonce
values can be derived and an encryption key can be constructed
by combining the nonce with a secret key that is only know to
the communicating entities. the resulting key can then be used to
provide data confidentiality, privacy, authentication, and message
integrity.

It should also be noted that current advances in hardware opti-
mizations will reduce the associated delays and costs of some ML
schemes that typically require high computational complexity and
resources.

VII. CONCLUSION

In this overview, we summarized the different physical layer
security schemes, in the literature, which employ machine learning
algorithms to achieve robust security. The presented schemes have
been thoroughly described and classified into three groups, each
targeting a different security service including authentication, con-
fidentiality and intrusion detection. These schemes were compared
and assessed in terms of their advantages and limitations, and several
recommendations were proposed. Our future work will focus on the
design and implementation of a physical layer security scheme that
employs machine learning efficiently for various security services.
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