
1

A Deep Learning Scheme for Efficient Multimedia
IoT Data Compression

Hassan N. Noura1, Joseph Azar1, Ola Salman2, Raphaël Couturier1, and Kamel Mazouzi1

1Univ. Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute, France
2American University of Beirut, Beirut, Lebanon

Abstract—Multimedia Internet of Things (MIoT) devices and
networks will face many power and communication overhead
constraints given the volume of multimedia sensed data. One
classic approach to overcoming the difficulty of large-scale data
is to use lossy compression. However, current lossy compression
algorithms require a limited compression rate to maintain ac-
ceptable perceived image quality. This is commonly referred to
as the image quality-compression ratio trade-off. Motivated by
current breakthroughs in computer vision, this article proposes
recovering high-quality decompressed images at the application
server level using a deep learning-based super-resolution model.
As a result, this paper proposes ignoring the trade-off between
image quality and size and increasing the reduction size further
by using a lossy compressor with downscaling to conserve
energy. The experimental study demonstrates that the proposed
technique effectively improves the visual quality of compressed
and downscaled images. The proposed solution was evaluated
on resource-constrained microcontrollers. The obtained results
show that the transmission latency and energy consumption can
be decreased by up to 10% compared to conventional lossy
compression techniques.

Index Terms—Multimedia data compression, Deep learning
image super-resolution, Visual degradation, Communication over-
head, Multimedia IoT devices.

I. INTRODUCTION

Nowadays, IoT is witnessing an extensive development with
the emergence of new wireless technologies and new types of
devices. In this context, the availability of cheaper hardware, as
CMOS cameras and microphones, has enabled the development
of large-scale Multimedia IoT (MIoT) networks [1], [2].
Therefore, a set of IoT applications have been developed,
requiring the transmission of a large amount of multimedia
data such as images, audios, or videos.

A. Problem Formulation

However, multimedia data is more scalable than standard
scalar data and can be delivered with real-time limitations [3].
The transmission of such bulky data requires high bandwidth
at the network level and high energy consumption, memory,
and computational power processing at the device level [4].
Imposing real-time constraints with the limited bandwidth
networks and limited IoT devices hinder the wide deployment
and adoption of some MIoT applications [5].

As a result, there is an increasing need to improve the MIoT
transmission task’s efficiency and reliability. Data compression

is an essential function for reducing the size of transmitted
data. At the time, the standard JPEG [6] and BPG [7] are used
extensively in academic and industrial image compression
projects. For these algorithms, the compression efficiency
can be increased by gradually decreasing the compressed
multimedia data, hence lowering communication, computation,
and time overhead. This can be accomplished by using a high
compression ratio. This, however, comes at the expense of
content quality. Thus, with existing compression algorithms,
preserving high image quality impose a variety of constraints
on the operation of MIoT devices, including limitations on
processing, memory, and/or energy consumption. Thus, new
data processing algorithms are required to maximize the
trade-off between the size of transmitted data (or compression
ratio) and the content quality.

Deep Learning (DL) was recently applied to numerous
scientific domains such as security [8], medical [9], smart
city [10], social network analysis [11], network computing [12]
in general but also into many other scientific domains. In
the domain of computer vision, DL allows to solve difficult
tasks that were previously unsolvable using conventional
machine learning methods [13], [14]. DL has been used in
this context for image denoising and super-resolution [15]-
[18], which can help to mitigate the effects of severe visual
degeneration. Additionally, DL has been utilized recently for
applications such as image recovery in conjunction with multi-
view approaches [19], depth image denoising [20], [21], image
captioning [22], and age invariant face recognition [23].

B. Motivation

Deep learning has revolutionized computer vision in a matter
of a few years. Prior to the hundreds of papers in computational
vision, notably in image reconstruction and super-resolution, the
typical method to image compression was to consider the trade-
off between image quality and compression ratio. Motivated by
recent improvements in super-resolution, this article proposes
to push the compressor performance of existing compression
techniques such as JPEG and BPG beyond this trade-off and
attain a maximum compression ratio. This is now achievable
because super-resolution at the gateway level can be used to
repair the compressor’s damage and restore high image quality.

2

C. Contributions

To the best of our knowledge, this is the first work
designing a DL-based solution to handle the MIoT intrinsic
limitations. This approach integrates the data reduction at the
MIoT devices (by applying data compression with a maximal
compression rate) with the visual content enhancement and
super-resolution at the application server(s) (by employing
a DL model). It should be noted here that any denoising &
super-resolution DL model that can achieve good results, can
be applied [18].

This paper presents two variants of the data reduction
solution. While both variants employ data compression, the
second variant applies the down-scaling operation to reduce
the image size before compression, and consequently, more
data reduction can be achieved compared to the first variant at
the cost of higher visual degradation.

Mainly, the proposed approach is designed to satisfy the
following objectives:

1) Reduce the quantity of data communicated in order to
minimize communication overhead and latency, as well as
transmission energy consumption. This is accomplished
by increasing the compression ratio beyond the trade-off
between data reduction and image quality.

2) Preserve (or enhance) the perceived visual quality of
the heavily compressed images. This is accomplished
by proposing a flexible denoising and super-resolution
solution capable of working with a variety of image
quality (or compression ratios) and downscaling sizes,
depending on the requirements of MIoT devices and
applications.

D. Organization

The rest of this paper is organized as follows: Section II
reviews the related work, especially the recent DL denoising
and super-resolution approaches. Then, the proposed system
model is presented and described in Section III. Then, Sec-
tion IV details the experimental setup and the obtained results.
Section V discusses the obtained results and presents future
research directions. Finally, Section VI concludes the paper.

II. BACKGROUND & RELATED WORK

In this section, we start by briefly describing the well-known
image compression algorithms, which are JPEG and BPG.
After this, a set of recent DL-based image denoising and super-
resolution approaches are discussed. Finally, the related work
to applying DL for compressed images restoration is reviewed.

A. Image Compression

The image compression techniques can be divided into two
classes: lossless and lossy (as illustrated in Fig. 1). The lossless
compression techniques preserve better the visual content
compared to the lossy ones since the decompressed image with
lossless compression is the same as the original one. However,

the lossless compression results in larger compressed data size
compared to the lossy one. In general, the lossy compression
is used to reduce the bandwidth overhead in existing networks.
In fact, the compression ratio is inversely proportional to the
image quality. Using a low compression ratio results into a
high perceived image quality and vice versa.

Existing lossy compression techniques convert data from the
spatial to the frequency domain by applying a spatial-frequency
transformation such as the Discrete Cosine Transform (DCT2)
used in JPEG [6] and BPG or Discrete Wavelet Transform
(DWT2) in JPEG 2000 [24]. On the other hand, DCT2 is
also used in the well-used lossy video compression standards
such as MPEG 1/2, AVC/H.264, MPEG-4, and HEVC. After
the spatial-frequency transformation, the frequency values are
quantized (according to the frequency level) and ordered, then
they get through the Huffman or arithmetic encoding process.
Given that the human eye is good in remarking changes in low
frequency regions while disregarding the changes in the busy
patterns regions, the lossy compression techniques represents
the less important data with the high frequency components,
while the most important information are represented by the
lower frequencies. Consequently, the lossy compression targets
to eliminate more data from the high frequency components
than from the low frequency ones. Therefore, the frequency
coefficients have different importance levels and consequently
they are quantized according to their importance and the
desired compression ratio. This can lead to different visual
effects. A high compression ratio means that only high and
middle-frequency coefficients are quantized more coarsely
compared to low-frequency coefficients.

In the following, JPEG and BPG image compression
algorithms will be described.

1) JPEG Compression Standard: JPEG [6] is a lossy
image compression standard that was developed by the Joint
Photographic Experts Group (JPEG) committee. It is based
on the concept of frequency transform coding, where DCT
is used as frequency transformation on each image block (8×8).

The JPEG compression process can be divided into five
main steps, which are:

1) Pre-processing: In this step, a color transformation is
applied to convert the pixels of the R (Red), G (Green),
and B (Blue) components into Y (Luminance), Cb (Blue-
difference Chroma), and Cr (Red-difference Chroma)
components. Then, the chroma sub-sampling process is
applied.

2) Discrete Cosine Transform (DCT): After preprocessing,
the output matrices are divided into blocks (sub-matrix)
of equal size (e.g 8× 8). Then, a frequency transformation
is applied to each image block. This transformation
decomposes each block into high, middle, and low-
frequency sub-bands (DCT coefficients), resulting into
64 coefficients for each block. Each obtained coefficient
carries distinct information of the transformed signal.

3

Fig. 1: Taxonomy of multimedia compression

The first DCT coefficient is called the DC coefficient,
which carries the average intensity of the transformed
block (64 elements). The remaining DCT coefficients
are called AC coefficients. Therefore, DC consists of
the most important lowest frequency. DC and first AC
coefficients represent the low frequencies, while other
AC coefficients represent middle and high frequencies.

3) Quantization: In this step, the DCT coefficients are
quantized using a quantization matrix. The quantization
matrix depends on the compression ratio (image quality).
In this step, many of the AC coefficients (middle and
high frequencies) will be ignored. The quantization and
rounding step determines the number of DCT coefficients
that will be rounded to zeros.

4) Zigzag and run-length ordering
5) Encoding: Finally, each compressed block is encoded

using the Huffman entropy encoding.

2) BPG Compression Standard: The Better Portable
Graphics (BGP) is an image format, presenting several
advantages compared to JPEG [7], [25]. It achieves a
lower visual degradation compared to JPEG, with the same
compression ratio. In addition, BPG can be applied for lossless
compression, provides the animation, and supports multiple
color spaces (gray-scale, YCbCr, RGB, YCqCo) as well as
chroma formats.

The BPG video encoder is based on HEVC [26], which is the
successor of H.264/AVC. It is a well-known video compression
standard [27]. HEVC presents good compression efficiency and
it is considered as a major advance in the video compression
domain. Like JPEG, BPG uses an 8×8 block as the basic coding
unit, and DCT as the frequency transformation mechanism.

Furthermore, as BPG is based on HEVC still-picture coding,
also larger block sizes (i.e., size of Coding Unit (CU)) should
be possible. Besides, BPG can use the Discrete Sine Transform
(DST) instead of DCT, reaching better performance compared
to JPEG at the cost of higher computational overhead. Besides,
many multimedia compression standards use the DCT transform
on two dimensions (DCT-2D) with a small coding unit to reduce
the overall time complexity.

B. DL-based Image Restoration Models

The image restoration task can be very challenging since the
image degradation process is mostly irreversible. Recently, a
set of DL-based models were presented to tackle this challenge
and they are listed and described briefly in the following.

The current DL-based models have demonstrated a high-
efficiency in extracting patterns from high dimensional-data
(images). These models can achieve promising results in
several image restoration tasks such as image super-resolution,
and image denoising. In this context, residual networks,
a type of DL architecture, have been widely adopted for
image super-resolution. A CNN-based super-resolution
architecture has been proposed in [28], [29]. This architecture
is based on mapping the low-resolution parts of an image
to their corresponding interpolated high-resolution parts.
This architecture has been later enhanced by adding more
layers and sharing weights. Introducing residual layers and
adding substantial layers, Kim et al. present VDSR [30] and
then add recursive connections with a deeper network with
weights sharing in DRCN [31]. Tai et al. propose a similar
architecture based on recursive blocks in DRRN [32] and
then they add a memory to these blocks in Memnet [33]. A
common characteristic of the residual-based architectures is

4

adding skip connections between layers. This was applied
in SRResNet [34] and EDSR [34] for designing efficient
super-resolution networks. However, the main limitation
of such networks is the reuse of features in just one layer
per block. DenseNet was proposed permitting subsequent
reuse of features. Concatenating the layers instead of the
summation in ResNet, DensNET achieves better performance.
In this context, Tong et al. propose SRDenseNet [35] for
image super-resolution by removing the pooling layers from
DensNet. Similarly, Zhang et al. use the dense residual
blocks in RDN [36]. Haris et al. propose DBPN [37], which
is constructed by iterative up and down sampling blocks
restricting the block information flow during propagation. To
guarantee a better flow of information between blocks, DBDN
was proposed in [38] enabling the reuse of the local and
high-level information by adding intra-block and inter-block
dense connections. More recently, RGSR was proposed as
a two-step image super-resolution scheme having as input
compressed images [39].

In this paper, the Residual Dense Network (RDN) [36] model
is used as a denoising and super-resolution model to be applied
for recovering compressed images with low image quality (high
compression ratio).

C. DL-based Image Compression

The work described in [40] presents a novel approach for
compressing data using JPEG image compression standards.
This method is specific for the JPEG codec and sends fewer
AC values for each block than 63. At the application server(s),
compressed data is analyzed by a reconstruction model to
obtain all AC values for each block. The reconstructed image
is then applied to a trained model to improve the visual
quality of the received image. However, this solution is
limited to the JPEG codec. Moreover, this solution requires
modifying the JPEG standard, which is not preferable for
practical applications. Similarly, another solution is proposed
in [41], in which a Convolution Neural Network (CNN)-based
auto-encoder is used to compress an image captured from a
MIoT device, followed by the Discrete Wavelet Transformation
(DWT). However, implementing CNN networks with a large
number of input dimensions and multi-layers with multiple
operations (convolution, Relu activation function, and batch
normalization) in addition to DWT, is infeasible for MIoT
devices. this is due to the high memory, computational
power, and energy consumption requirements. As a result,
this method cannot be used effectively with MIoT devices
and is also incompatible with existing image compression
algorithms. Recently, the authors in [42] proposed a DL-
based compression technique. However, DL-based image
compression approaches demand more memory and energy
compared to the standard image compression algorithms.
Applying an existing compression standard, the authors in [43]
presents a solution to compress raw IoT data by using the
lossy SZ algorithm. To enhance the reconstructed 1D signal, a
trained autoencoder-based model is applied at the edge node.
However, this approach cannot be easily applied to multimedia

content such as images.

As a summary, existing DL image compression techniques
can achieve large gains but cannot be applied on MIoT devices,
that present memory, computation, and energy constraints.
Additionally, employing a hybrid solution (a specific lossy
image compression method combined with a DL model) is
inflexible and could necessitate changes to existing standards.
To overcome this limitation, our proposed solution is generic
and can be applied with any image lossy compression.

III. SYSTEM MODEL

As shown in Fig. 2, MIoT consists of a large number of
edge MIoT devices that can capture, process, and deliver
multimedia data (e.g. images) to the data center or application
server(s) through multi-hop or star wireless communications.
Each MIoT device, after image acquisition, compresses
the image and sends it to the application server. Then, the
application server or data center decompresses the received
image to recover the visual content. Given the large scale of
the MIoT network and the large amount of communicated
multimedia data, there is a real burden on the network
bandwidth and MIoT devices’ resources. Therefore, to reduce
the required resources overhead, the compression algorithm
realized on the MIoT devices should reduce the size of the
transmitted image to the minimum possible to optimize the
energy and bandwidth consumption.

Thus, our proposed solution aims to allow MIoT devices
compressing the collected images with a high compression
ratio to minimize the transmitted data size. Then, the visual
contents of the received decompressed images can be enhanced
at the application server(s) by employing a DL denoising &
super-resolution model such as the RDN model. Two variants
of the proposed solution are considered (see Fig. 3): the first
consists of having only compressed images sent by the MIoT
devices, while the second variant considers sub-sampled and
compressed images sent by MIoT devices. In this context, our
proposed system model, illustrated in Fig. 4, consists mainly
of two steps:

1) Using a lossy image compression with a high compres-
sion ratio, the MIoT devices send the compressed images
to the application server.

2) Upon receiving the compressed images from MIoT
devices, the application server (or data center) recovers
their visual contents, which might present visual
degradation, depending on the employed compression
ratio. Then, the RDN model is applied to further
enhance the quality of the decompressed images by
reducing the compression noise effect. Let us indicate
that, for the first variant of the proposed solution, the
RDN model plays the role of a denoiser, while, for
the second variant, the RDN model ensures also the
super-resolution property in addition to the denoising
one since the images are down-scaled before being
compressed.

5

Fig. 2: An example of an MIoT network model: a set of n MIoT devices, m gateways, and the application server (or data
center)

(a) First variant

(b) Second variant

Fig. 3: The proposed first (a) and second (b) variants

In fact, the MIoT devices have different constraints, and
using the same image quality for all applications is not practical.
The image quality (and down-scaling factor for the second
variant) depends on the target application requirements. Thus,
the denoising and super-resolution model should be able to
function with these different configurations (ensuring flexibility)
towards effectively reconstructing the decompressed images.
To this aim, the considered RDN model is trained (scaling
or without scaling) with different image quality values to
respond better to real-world scenarios. The proposed model
aims to reduce the effect of lossy compression and down-
scaling operations in contrast to existing applications of the
RDN model, which aim to reduce the effect of other types of
noise (e.g. Gaussian white noise). There is a range of targeted
applications that can profit from the suggested approach, from

military monitoring applications to automated assistance for
older individuals, including advanced healthcare systems, home
automation applications, etc.

A. RDN Architecture

RDN consists mainly of four main components as illustrated
in Fig. 5:

1) The Shallow Feature Extraction Net (SFENet): which
consists of two convolutional layers, introduced to extract
shallow features.

2) The Residual Dense Blocks (RDB): which take as input
the extracted shallow features.

3) The Dense Feature Fusion (DFF) layer: that fuses
features from all the preceding layers, which are:

6

Fig. 4: Functional diagram of the proposed solution.

Fig. 5: Residual Dense Network (RDN) architecture [36].

• The Global Residual Learning (GRL) layer: that
processes the shallow feature-maps that represent
the output of the first convolution layer of SFENet.

• The Global Feature Fusion (GFF) layer: that fuses
features from all the RDB.

4) The Up-sampling Net (UPNet)

As illustrated in Fig. 5, the RDN architecture consists of
D identical Residual Dense Blocks (RDB). Each residual
block contains C = 8 convolution layers (with 3×3 filters)
and 1 convolution layer (with 1×1 filters). In each residual
dense block, there are Ns shortcut connections, which
represent an identity mapping that can help to solve the visual

degradation problem appearing in stacked non-linear layers.
Moreover, all layers use the Rectified Linear Unit (ReLU) as
activation function to fit the residual dense mappings. The
final convoluional layer has 3 output channels, given that the
output high-resolution images can be colored, but also it can
process gray images. For more information about the RDN
architecture, readers can refer to [36].

The benefit of the RDN model is that the hierarchy of all
convolutional layers can be completely used. RDN consists of
a D Residual Dense Block (RDB), which can extract several
local features (characteristics) through densely connected

7

convolution layers. RDB creates direct links from previous
RDB states to all current RDB layers, resulting into a
Contiguous Memory (CM) mechanism. RDB’s local feature
fusion is used to acquire more effective features from previous
and current local features in addition to stabilizing the learning
of a wider network. The global feature fusion is employed
to learn global hierarchical features jointly and adaptively in
a comprehensive way after acquiring dense local features.
Compared to DenseNet, RDN eliminates batch normalization
and pooling layers. Pooling layers are removed from RDB
since it could discard some pixel-level information, which is
not preferable for image denoising and super-resolution.

The proposed solution applies the RDN model at the
application server(s) to improve the image quality of the
recovered decompressed images. Moreover, this model can
also ensure the super-resolution property, which is beneficial
for the second variant (that uses down-sampling). The purpose
of RDN in the proposed approach is to learn mapping
functions between the original uncompressed image I and
the compressed image J . For achieving this purpose, a set of
denoising and super-resolution models were tested, and we
select RDN since it can ensure acceptable performance. Any
new image restoration model that can ensure better results
can be used instead of RDN. The model’s input image is
I = J + N , where J represents the compressed image and
N represents the reflecting block artifacts image introduced
by lossy compression. The aim is to learn a residual dense
mapping function between the original and the decompressed
one.

In addition, the trained model for each variant, that will
be applied at the application server (or cloud/ data center),
requires a standard desktop computer without GPU or with
a GPU to speed up the computation process. This work
proposes the use of denoising and super-resolution DL model
to enhance MIoT communication that their devices suffer
from limitations in terms of computation and resources in
addition to latency requirements for these applications.

Besides, this type of DL model can help these limited devices
by reducing computation and communication overhead, which
can help to reach a good balance between communication size
and image quality. We have tested other models in addition
to the listed RDN model and similar results were obtained.
After receiving all packets of compressed images, they are
decoded and form the compressed image at the application
server. Then, the decompression image algorithm is applied
to provide a decompressed image that will be enhanced by
using the corresponding trained model. Trained model can be
selected in fixed or dynamic manner (first or second variant)
according to the desired configuration.

IV. EXPERIMENTAL ANALYSIS

In this section, we include the implementation details of
the proposed solution. Then, we present and discuss the
evaluation results including the compression visual effect, the

communication size efficiency, the visual quality enhancement
after applying the proposed model and the power consumption.
Experiments were done on a Tesla V100 GPU. Moreover, we
present the results of applying the proposed method on limited
microcontrollers with different communication technologies,
including transmission time and energy consumption results.

A. Data Description

The RDN model was trained using the dataset described
in [44]. This dataset consists of a large set of colored images
collected from the Internet. These high-resolution images are
first down-scaled to images having random size between 500
and 1000 pixels. Then, the obtained images of variable size
are cropped randomly to get 256x256 images. These images
are compressed using JPEG and BPG, respectively, and the
obtained pixel values are scaled between [0;1]. The testing
is done with images chosen from the Kodak dataset (24
images) [45].

B. Model Implementation

The employed RDN model was implemented in Pytorch [46].
The mini-batch technique is used to train the RDN model.
The learning rate is initialized to 10−4. At each iteration,
the normalization is applied to each mini-batch. The final
output (desired output) is the reference uncompressed image
(enhanced) I , which will be compared with the compressed
image through the loss function. The Adam optimizer with
an adaptive learning factor is used to optimize the loss function.

Before being passed to the RDN model, the images are
compressed with JPEG and BPG, respectively, using variable
compression ratio. Increasing the compression ratio will
lead to an increase in the block artifacts. The size of the
image patch should be then selected to include relevant useful
patterns. According to the empirical evaluation, we find that
the size of the image patch varies between 96 and 192 to
contain enough information to remove noise and compression
artifacts.

Two models are trained, where the first model is for the first
variant (compression image without down-scaling operation),
and the second one is for the second variant (compression with
down-scaling operation). The compressed (and scaled) and
uncompressed images are then fed into the proposed model.
The output of the first RDN model (first variant) has the same
size as the input, which can be considered as the input image
plus the related compressed noised image. While for the second
model of the second variant, the input size is down-scaled by
4 compared to the output high-resolution image, which has
the same size as the original uncompressed one. These RDN
models can be then employed to better remove and/or reduce
the compressed noise.

C. Compression Effect on Image Quality

In this part, we analyze the effect of the compression on
the visual degradation, considering different compression

8

(a) JPEG (b) BPG

Fig. 6: Variation of the compression size versus compression image quality for two Kodak images with JPEG compressor.

ratios. The lower is the compression ratio, the better is the
compressed image quality, and vice-versa. The image quality
parameter depends on the target IoT multimedia application
and should be set accordingly (see Fig. 6). We should note
that this parameter has not to be static and could be adapted
dynamically regarding the instantaneous requirement of the
IoT multimedia application. For instance, if an event of major
importance occurs (e.g. robber detection in a surveillance
system) and the application requires a higher image quality, it
could then configure the MIoT devices to send the image with
low compression ratio. Otherwise, the application server (or
data center) could enhance the quality of highly compressed
images. In this sense, the proposed approach can offer the
flexibility on the quality of the received multimedia contents
that can be controlled by the application server (or the data
center).

The variation of the Structural Similarity (SSIM) and Peak
Signal-to-Noise Ratio (PSNR) versus the compressed data size
are presented for both variants in Fig. 7 for the images shown
in Fig. 8. The obtained results indicate that by increasing the
image quality (or decreasing the compression ratio), the PSNR,
SSIM, and the size of the transmitted (stored) data increase.
This clearly indicates that the visual degradation increases when
the compressed data size decreases (or when the compression
ratio increases), as shown in Fig. 7. Thus, a trade-off between
visual quality and compressed data size exists.

D. Denoising and Super-resolution Effect on Image Quality

Given that some visual information are lost after lossy
compression and cannot be recovered, the proposed approach
is introduced to provide a better image quality by reducing
the compression noise effect. In this context, the results
shown in Fig. 7 show that the SSIM and PSNR values of the
enhanced reconstructed images are higher compared to the

decompressed ones with or without down-scaling operations.
Moreover, the obtained visual content quality with the first
variant is better compared to the second variant. Therefore, if
the down-scaling operation is applied (second variant), a lower
compression ratio is required compared to the first variant
towards preserving the main visual content quality. However,
the down-scaling results in higher data reduction compared
to the first variant (without down-scaling) even with low
compression ratio. Thus, the choice of which variant should
be applied (with or without down-scaling operation) depends
on the target IoT multimedia application and MIoT device
limitations. For example, 33% of compressed data reduction
compared to a JPEG image with default image quality (85%)
is required to reach the same image quality by using the
proposed approach (with the first variant).

To evaluate the image quality enhancement, the proposed
solution (two different models for each image compression
algorithm) was tested with 24 images selected from the Kodak
dataset. For two images randomly chosen from the testing
dataset (see Fig. 8), we show the visual degradation versus
image compression ratio for the decompressed and enhanced
images with the first variant (without down-scaling operation)
in Fig. 9 and 10, respectively. Also, same results are provided
with the second variant (with down-scaling operation) in
Fig. 11 and 12. It should be noted here that these results are
for the JPEG standard, and that similar results were obtained
with BPG, but they were omitted to conserve space.

To evaluate the visual degradation before and after applying
the proposed model, the PSNR and SSIM metrics were used.
According to the obtained results, illustrated in Fig. 7, the
proposed solution ensures better image quality compared to
the decompressed one. This indicates clearly that the effect of
lossy compression with high compression ratio can be reduced

9

(a) SSIM without down-scaling operation (b) SSIM with down-scaling operation

(c) PSNR without down-scaling operation (d) PSNR with down-scaling operation

Fig. 7: Variation of the average of SSIM (a), PSNR (b) versus image quality for Kodak test images without or with down-scaling.

(a) kodim01 (b) kodim02

Fig. 8: Original uncompressed images "kodim01",(a) and
"kodim02" (b)

by applying the proposed RDN model (without or with
down-scaling). Moreover, the average of SSIM and PSNR,
shown in Fig. 7, indicates that the recovered images with the

first variant presents higher SSIM and PSNR values compared
to the second variant that uses a down-scaling operation.

In the JPEG case (see Fig. 7-a)), with the first variant,
the SSIM varies between 0.5532 and 0.8574, while for the
reconstructed images, the SSIM is between 0.6477 and 0.8936.
Similarly, the PSNR varies between 21.44 dB and 30.38
dB for the decompressed images, and it varies between 24
dB and 32.5 dB for the reconstructed images. For the first
variant, the enhancement in the visual content is increased
by 0.0585 in terms of SSIM and by 2.25 in terms of PSNR.
Additionally, we found that on average, if the compressed file
size is increased by 3989 bytes, the SSIM and PSNR values
will be increased by 0.041 and 1.417, respectively. Besides,

10

(a) Quality=1 (b) Quality=5 (c) Quality=10 (d) Quality=15

(e) Quality=1 (f) Quality=5 (g) Quality=10 (h) Quality=15

Fig. 9: Corresponding compressed (JPEG) "kodim01" images (a)-(d) and reconstructed ones (e)-(h) by using the proposed model
after decompression, respectively versus different image quality, and for the proposed solution without down-scaling operation.

(a) Quality=1 (b) Quality=5 (c) Quality=10 (d) Quality=15

(e) Quality=1 (f) Quality=5 (g) Quality=10 (h) Quality=15

Fig. 10: Corresponding compressed (JPEG) "kodim02" images (a)-(d) and reconstructed ones (e)-(h) by using the proposed
model after decompression, respectively versus different image quality, and for the proposed solution without down-scaling
operation.

(a)
Qual-
ity=10

(b)
Qual-
ity=20

(c)
Qual-
ity=30

(d)
Qual-
ity=40

(e) Quality=10 (f) Quality=20 (g) Quality=30 (h) Quality=40

Fig. 11: Corresponding compressed scaled (JPEG) "kodim01" images (a)-(d) and the reconstructed ones (e)-(h) by using the
proposed model after decompression, respectively versus different image quality, and for the proposed solution with down-scaling
operation.

with the second variant, the SSIM varies between 0.5415 and
0.6809 for the decompressed images, while the SSIM of the
enhanced recovered images varies between 0.5881 and 0.7415.

The enhancement of the visual content quality is increased
by 0.0491 in terms of SSIM and by 1.09 in terms of PSNR.
Additionally, we found that on average, if the compressed file

11

(a)
Qual-
ity=10

(b)
Qual-
ity=20

(c)
Qual-
ity=30

(d)
Qual-
ity=40

(e) Quality=10 (f) Quality=20 (g) Quality=30 (h) Quality=40

Fig. 12: Corresponding compressed scaled (JPEG) "kodim02" images (a)-(d) and the reconstructed ones (e)-(h) by using the
proposed model after decompression, respectively versus different image quality, and for the proposed solution with down-scaling
operation.

size is increased by 574 bytes, the SSIM and PSNR values
will be increased by 0.015 and 0.387, respectively. Moreover,
for the first variant, the maximum SSIM and PSNR values
are 0.89 and 32 dB, respectively, while for the second variant,
the maximum values of SSIM and PSNR are 0.741 and 26,
respectively. Furthermore, the second variant with an average
of 18% compression size of the first variant can ensure less
than 0.168 for the SSIM and 4.56 for the PSNR. The first
variant with JPEG ensures an SSIM and PSNR greater by
an average of 0.15 and 3.3 in the first variant compared to
the second one, respectively but with 4 times of additional
communication overhead.

In the case of BPG (see Fig. 7-b)), a lower visual content
enhancement is achieved for the first variant compared to
JPEG. This is due to the fact that decompressed BPG images
are less degraded compared to the JPEG case. Furthermore,
BPG introduces more computing overhead (more resources for
the compression process compared to JPEG) but it ensures less
communication overhead. In contrast, for the second variant,
the visual content is enhanced with BPG, where a down-scaling
operation is applied. The SSIM varies between 0.6355 and
0.8804 for the reconstructed enhanced images with the first
variant, while it varies between 0.5374 and 0.7394 for the
second variant. Similarly, the PSNR varies between 24.95 dB
and 32.48 dB for the first variant, and it varies between 21.08
dB and 26.66 dB for the second variant. The enhancement
in the visual content is increased on average by 0.00375 and
0.0373 in terms of SSIM and by 0.1325 and 0.8433 in terms
of PSNR for the first and second variants, respectively.

E. Computation Complexity

In fact, the proposed solution is designed to reduce the
required computation complexity for IoT end-devices, which
depends on the variant, as follows:

1) Only one operation is required, which is the image com-
pression for the first variant. In addition, the computation
complexity of this variant depends on the employed
image compression algorithm and the input image size.

This was the main motivation of proposing the second
variant.

2) For the second variant, an additional simple operation
is required compared to the first variant, which is the
down-sampling operation that decreases the image size
and consequently this will lead to reduce the input image
size and consequently the computation complexity of the
image compression process.

Besides, the proposed solution was tested with two image
compression algorithms: JPEG and BPG. The idea of testing
with JPEG is that it is more simpler compared to BPG and
can be implemented with limited MIoT devices.

On the other hand, BPG compression reduce the
communication size (compressed image) compared to
the JPEG but it requires more compression computation
overhead and consequently increases the computation power
consumption. Unfortunately, BPG can be implemented with
powerful devices such as raspberry pi Zero but not with
limited ones such as micro-controllers.

On the cloud side/ data center/ application server(s), a
trained denoising super-resolution DL model will be applied
to reduce the introduced visual degradation during the
compression with a high compression ratio in addition to the
down-sampling operation. The trained model plays the role to
reduce/eliminate the strong compression distortion. RDN is
used in this solution as proof of concept and similar results
are obtained with other models.

At the application server(s)/ data center/ Cloud, no limitation
in terms of computation and resources. Therefore, the trained
model can be run without any hardware issues in contrast of
MIoT end devices. A standard desktop computer can be used
in this context. In addition, using GPU devices will accelerate
the computation of the enhancement process.

F. WiFi Multimedia Applications

The communication efficiency is proportional to the
communicated data size. In our proposed approach, we

12

TABLE I: Comparative analysis results between proposed variants

Image Quality
without
downscaling

Image
Quality with
downscaling

SSIM without
downscaling
− SSIM with
downscaling)

PSNR without
downscaling
− PSNR with
downscaling

Compression
Size Ratio
(without down-
scaling/with
downscaling)

1 10 0.012 -0.77 0.209
5 20 0.07 0.58 0.228
10 30 0.152 2.92 0.19
15 40 0.191 4.12 0.17
20 50 0.213 4.92 0.16
25 60 0.225 5.47 0.155
30 70 0.23 5.85 0.161

aim at adapting the existing compression algorithms to be
applied with high compression ratio to achieve communication
efficiency. The first test involves storing a 1179 Kbyte image1

on a Raspberry Pi 3 Model B and calculating the time required
to send the compressed image to a local PC using various
compression approaches. WiFi was employed as the wireless
communication technique in this test, and the data packet size
was set to 1400 Bytes.

The compression ratio is calculated by dividing the
compressed image size by the original image size. As a result,
smaller compressed data sizes lead to higher compression
ratios, but the decompressed image has important visual
degradation. Using the proposed method, a larger compression
ratio can be used while maintaining the same image quality.

For instance, in the case of JPEG, a lower-quality image
can be used (between 1 and 25 percent without scaling,
and between 20 percent and 60 percent with scaling). For
various image quality (compression ratio) values, the ratio of
compressed transmitted data with and without scaling is shown
in TABLE I. This clearly demonstrates that the proposed
approach with downscaling reduces the compressed image’s
size by an average of 18% when compared to utilizing JPEG
without scaling.

Table II shows the average compression and transmission
times and the average compression data size for both lossless
(BMP) and lossy (JPEG codec) techniques. The results show
that the compression time is roughly constant for a given
image size regardless of the image quality. The second
lossy variant (scaling) requires less latency than the lossy
variant without scaling and the lossless variant. Moreover,
the transmission time increases with image quality as the
compressed data size increases.

In summary, the image quality influences both transmission
delay and size. The lossy compression with scaling, with the
same image quality, can reduce latency by 50-60% and data
size by 63-65% compared to the lossy compression without
scaling. This clearly shows that the proposed alternative can
reduce communication sizes and latency than the first.

1http://r0k.us/graphics/kodak/kodim01.html

G. Bluetooth Low Energy Multimedia Applications

To demonstrate the proposed approach’s efficacy on devices
smaller than a Raspberry Pi, various experiments were done on
resource-constrained microcontrollers. Bluetooth Low Energy
(BLE) was also used for testing due to its widespread use in
commercial products in addition to its low energy consumption
and short packet size, emphasizing the crucial significance of
dramatically lowering the size of communicated data.

1) Experimental setup: The ESP WROOM 32 with 520
KBytes on-chip SRAM and the more resource-constrained
RedBear BLE Nano with 64 KBytes RAM were utilized to
implement the compressor. The amount of data per packet
was set to 1500 Bytes for WiFi communication. The BLE
communication was configured with an advertising interval of
1800 milliseconds, and a transmit power of +4 dBm, and the
amount of data per packet was set to 15 Bytes. An Arduino
UNO with an INA219 breakout board was utilized to measure
the energy consumption. Figure 13 depicts the instruments
used in this section’s experiments.

The JPEGENC library was used to implement the JPEG
encoder on the microcontrollers 2. It was slightly modified to
allow an option with a high compression ratio and bad quality.
In the following, four image reduction ratios were considered
for the proposed approach:

• High quality: the compressed data consists of 18% of
the original data

• Medium quality: the compressed data consists of 12%
of the original data

• Low quality: the compressed data consists of 8% of the
original data

• Bad quality: the compressed data consists of 6% of the
original data

Take note that a compressor of "Bad quality" implies that
the compression ratio was highly prioritized over data quality.

The processing time required to compress an image varies
between 7 and 150 milliseconds, depending on the image’s
size. The time required to compress various grayscale photos
of varying sizes on an ARM Cortex-M4 is illustrated in Figure

2https://www.arduino.cc/reference/en/libraries/jpegenc/

13

TABLE II: Statistical results about communication latency and data size for the proposed variants

Variant BMP Lossless JPEG Without Scaling JPEG With Scaling (4 times)
Quality= 20 Quality=40 Quality=60 Quality= 20 Quality=40 Quality=60

Mean Compression
Time (seconds)

0.0223 0.0486 0.0489 0.049 0.0173 0.0175 0.0179

Mean Transmission
Time (seconds)

23.01 0.164 0.291 0.4041 0.0594 0.095 0.1929

Mean Compressed
Data Size (bytes)

786486 13848 21051 28100 5161 7773 10138

(a) The ESP WROOM 32 was used to calculate the amount
of time required to transfer an image to the gateway

(b) Using an Arduino and an INA219 to measure the
current of a REDBEAR NANO

Fig. 13: The devices used to evaluate the transmission time
and current consumption

48x48 80x80 120x120 160x160 200x180
Image shape

10

15

20

25

30

35

40

Av
er
ag

e
co

m
pr
es

sio
n
tim

e
(m

s)

7.50
11.12

14.62

29.62

36.93

Fig. 14: Average compression time in milliseconds on an ARM
Cortex-M4F for multiple images with varying shapes

14. Large photos need more time to be compressed. For
example, compressing a 120x120 image takes approximately
14.5 milliseconds, whereas compressing a 200x180 image takes
approximately 37 milliseconds.

2) Transmission time: The BLE packet data field is
dependent on the Bluetooth specification. In this experiment,
we considered a gateway that uses Bluetooth v4.0 where
the maximum size of the data field is 27 bytes. The BLE
throughput is dependent on the duration of the connection
interval and the number of packets transmitted per connection
event. The latter depends on the BLE stack and chipsets.
The transmission time was calculated by storing a 36 Kbytes
image in the memory of the ESP WROOM 32 and setting the
connection interval to 100 ms. As a gateway, a Raspberry Pi
3 Model B was utilized, and the "pygatt"3 Python library was
used to receive the BLE data. It is worth mentioning that the
distance between the sender and receiver varies between one
and two meters.

According to the obtained results displayed in Figure 15,
the transmission of the uncompressed 36 Kbytes image took
around 71 seconds and used approximately 2400 BLE packets.
When a high-quality compressor that takes into account the
trade-off between compression ratio and data distortion is
used, the transmission time is reduced to around 13 seconds.
The number of packets necessary is reduced to 18% of
the number required to send the original image. When a
bad-quality compressor is used to boost the compression ratio
at the cost of image quality, an additional 10% in time is
gained (equivalent to 8 seconds approximately). The required
number of packets is reduced to 6% of the number required
to transmit the original image.

3) Energy consumption: In this experiment, four scenarios
were examined. Each one was monitored using the INA219
for 90 seconds to determine the REDBEAR NANO’s current
consumption. Notably, because a fixed voltage was used in
this test, we just present the current consumption results
given that the energy consumption is proportional to the
current one. In the first scenario, the device is in advertising
mode and is not connected to the gateway. In the second
scenario, the device transmits a 14 Kbytes image stored in its
memory to the gateway. The third and fourth scenarios involve
compressing and then sending the image using a high-quality
compression algorithm and a low-quality compression
algorithm, respectively. Thus, there is no transmission during
the 90 seconds of recording in the first scenario, whereas

3https://github.com/peplin/pygatt

14

Original High quality Med quality Low quality Bad quality0

10

20

30

40

50

60

70

Tr
an
sm
iss
io
n
tim

e
(s
)

(a) The time in seconds required for transmission using various image reduction ratios

Original High quality Med quality Low quality Bad quality0

500

1000

1500

2000

2500

of
 tr
an

sm
itt
ed

 p
ac
ke
ts

2401

439
297

206 146

(b) The number of packets required for transmission using a 15-byte packet size

Fig. 15: The transmission time and number of packets required to transfer a 36 Kbytes image from the ESP WROOM 32 to the
gateway

there is only one image transmission in the others. Given
that our objective is to determine the effect of increasing
the compression ratio on energy consumption, we did not
employ a camera to take images and hence did not incorporate
the sensing operation in this experiment. Instead of that, a
picture with a 120x120 shape was loaded from an array and
compressed. Note that the image size was reduced from 36
to 14 Kbytes due to the REDBEAR NANO’s lower memory
capacity compared to the ESP WROOM 32.

To evaluate the energy consumption (approximated
by the current consumption per time), we measure the
current over a period of time, 90 seconds in our case.
Then, we can calculate the integral over that time period to
find the area under the curve denoted in the following equation:

Et1−tn [mA.s] =

∫ tn

t1

I(t)dt (1)

The trapezoidal function that returns an approximation of
the integral was used to approximate the area under a curve.

Figure 16 illustrates the current consumption of REDBEAR
NANO over a 90-seconds period for each of the four scenarios.
When the device is operating solely in the advertising mode
(Figure 16-a), it is possible to observe a low base current
consumption corresponding to the device’s sleep mode
consumption and a peak that appears approximately every 2
seconds (defined advertising interval), corresponding to the
advertising packet sent for other devices to receive and process.
A zone where the base consumption increased to around 6
mA may be seen in Figure 16-b. This zone corresponds to
the transmission phase, during which the device exits the
sleep mode for around 30 seconds. Prior to and following
this phase, the device is connected to the gateway, and the
device and the gateway exchange more data, as the connection
interval is shorter than the advertisement interval. Figure 16-b
demonstrates the importance of drastically lowering the
quantity of delivered data, not only to reduce the number of
packets but also to avoid waking up the device for an extended
period.

Figures 16-c and 16-d show how a compressor can reduce

15

the current consumption by shortening the time spent outside
the sleep mode. As illustrated in Table III, when a high-quality
compressor is used, the current consumption per time (mA.s) is
decreased from 189 to 47 and the average current consumption
(mA) is lowered from 2 to 0.52. By implementing the proposed
approach, which involves increasing the compression ratio at
the expense of image quality and then recovering the image
at the gateway, we gain around 20 mA.s over a 90-seconds
period and we reduce the average current consumption from
0.52 to 0.3. Keep in mind that the image was loaded from an
array in this experiment. In reality, the microcontroller will exit
sleep mode to capture an image, resulting in slightly higher
energy consumption. However, the central premise remains
valid: to maximize the device’s lifetime, it should return to
sleep mode as quickly as feasible after capturing and sending
an image. This was done in this experiment by modifying the
JPEG encoder and allowing a higher compression ratio so the
image transmission could be done faster.

V. DISCUSSIONS

In this paper, the aim was to minimize the communication
cost by highly compressing the data without loosing the image
quality. The work done in this paper can improve the existing
limitations of multimedia compression approaches used in
MIoT. The advantage of the proposed solution is that it is
independent of the used multimedia compression algorithms
and it does not require any modification in the existing
multimedia compression standards (practical implementation).
The main challenge was to preserve image quality while using
high compression ratio. This was addressed by employing the
RDN learning model. The proposed solution was tested with
the JPEG and BPG image compression algorithms (with or
without down-scaling operation).

The employed RDN learning model succeeded in enhancing
the compressed image quality. This was validated by evaluating
the PSNR and SSIM values that were increased compared to
the decompressed images for both variants. This solution was
designed to not require any additional operation on the MIoT
devices by delegating the role of image quality enhancement
to the application server. In addition, the proposed solution
optimizes the transmitted data size, that can be reduced to
33% for image quality equal to 5 with JPEG compression
compared to default image quality. Thus, the proposed solution
could highly improve the transmission efficiency for any MIoT
application using any compressor like JPEG or BPG. The
experimentation results showed that the average PSNR and
SSIM values are increased and the transmission data ratio
is decreased by an average of 18% using the second variant
compared to the first variant.

A further optimization of the communicated data size
would be in delivering gray images while designing (using) a
DL-based model for the colorization. As a future work, we will
further explore other learning models that can colorize gray
images towards reducing more and more the communication
overhead.

Besides, applying the proposed method with video compres-
sion, key-frame extraction techniques for event summarization
such as in [47]-[52] can enhance the proposed approach
by generating concisely and intelligently video abstraction.
This will reduce the number of transmitted frames that can
be compressed by using the proposed solution. Indeed, this
requires to employ (or adapt) these summarization techniques
at the MIoT devices. Then, each summarized frame can be
considered as input to the proposed solution (one of both
variants) to benefit from the reduction of the transmitted frames
to reduce more and more the communication overhead. This
is useful to ensure real time MIoT applications with minimum
possible overhead in terms of communication, latency and
resources. Furthermore, the generalization performance of this
model can be validated since enhancement in image restoration
has been confirmed with two different image compression
algorithms for variable compression ratio. Besides, similar
results are obtained by using another compression format. On
the other hand, we have tested the proposed solution with
RDN and other efficient denoising/super-resolution models and
similar results were obtained. The obtained results confirm that
any other efficient model can be used instead of RDN for both
proposed variants.

VI. CONCLUSION

In this paper, we aimed to respond better to the hard chal-
lenge of communication and resources overhead in the MIoT
domain. One solution to cope with the high communicated
data size is to use hard lossy multimedia data compression. In
this context, a high compression ratio is required to achieve
high communication efficiency. However, the current filtering
theory cannot fix the hard effect of multimedia compression
with a high compression ratio. Our proposed solution consists
of reducing the hard visual degradation at the application server
by employing a denoising-super resolution DL-based model.
Two variants of the proposed scheme were presented: the first
one applies the compression with a high compression ratio but
without down-scaling the image size, while the second one
down-scales the image before applying the lossy compression.
The second variant ensures minimum communication overhead
at the cost of additional visual degradation compared to the
first variant. The experimentation results showed that enhanced
decompressed images were obtained (with or without down-
scaling). Equally important, the performance analysis confirms
the effectiveness of the proposed solution since it reaches a
good balance between visual degradation and communication
size. Thus, the proposed solution can be considered as an
adequate candidate to enhance compressed MIoT transmitted
data. Finally, one of the main features of the proposed
approach is being flexible, and functional with any multimedia
compressor at different compression ratios and down-scaling
factors.

ACKNOWLEDGMENT

This work was partially supported by the EIPHI Graduate
School (contract ”ANR-17-EURE-0002”). The Mesocentre of
Franche-Comté provided the computing facilities.

16

0 20000 40000 60000 80000
Time (ms)

0

2

4

6

8

10

12
Cu

rre
nt
 (m

A)
(a) Advertising

0 20000 40000 60000 80000
Time (ms)

0

2

4

6

8

10

12

14

Cu
rre

nt
 (m

A)

(b) Advertising + Connected + Tx Original

0 20000 40000 60000 80000
Time (ms)

0

2

4

6

8

10

12

14

Cu
rre

nt
 (m

A)

(c) Advertising + Connected + high quality Compression + TX

0 20000 40000 60000 80000
Time (ms)

0

2

4

6

8

10

12

Cu
rre

nt
 (m

A)

(d) Advertising + Connected + bad quality Compression + TX

Fig. 16: Current consumption of REDBEAR NANO in milliamps over a 90-seconds period

TABLE III: Total current consumption per time [mA.s] and average current consumption [mA] per second of REDBEAR
NANO over a 90-seconds period

Advertising Adv + Connected + Tx Original Adv + Con + Comp HIGH + Tx Adv + Con + Comp BAD + Tx
Total current consumption (mA.s) 10.76 189.35 47.53 27.56
Average current consumption (mA) 0.12 2.08 0.52 0.30

REFERENCES

[1] Qin Wang, Yanxiao Zhao, Wei Wang, Daniel Minoli, Kazem Sohraby,
Hongbo Zhu, and Ben Occhiogrosso. Multimedia iot systems and
applications. In 2017 Global Internet of Things Summit (GIoTS), pages
1–6. IEEE, 2017.

[2] Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Al-Ali, Xiaojiang Du,
Ihsan Ali, and Mohsen Guizani. A survey of machine and deep learning
methods for internet of things (iot) security. IEEE Communications
Surveys & Tutorials, 2020.

[3] Asra Aslam and Edward Curry. A survey on object detection for the
internet of multimedia things (iomt) using deep learning and event-based
middleware: approaches, challenges, and future directions. Image and
Vision Computing, 106:104095, 2021.

[4] Ali Nauman, Yazdan Ahmad Qadri, Muhammad Amjad, Yousaf Bin
Zikria, Muhammad Khalil Afzal, and Sung Won Kim. Multimedia
internet of things: A comprehensive survey. IEEE Access, 8:8202–8250,
2020.

[5] Kaneez Fizza, Abhik Banerjee, Karan Mitra, Prem Prakash Jayaraman,
Rajiv Ranjan, Pankesh Patel, and Dimitrios Georgakopoulos. Qoe in
iot: a vision, survey and future directions. Discover Internet of Things,
1(1):1–14, 2021.

[6] Gregory K Wallace. The jpeg still picture compression standard. IEEE
transactions on consumer electronics, 38(1):xviii–xxxiv, 1992.

[7] F. Bellard. Bpg image format. https://bellard.org/bpg/, 12 2014.
[8] Chaochao Luo, Zhiyuan Tan, Geyong Min, Jie Gan, Wei Shi, and Zhihong

Tian. A novel web attack detection system for internet of things via
ensemble classification. IEEE Transactions on Industrial Informatics,
17(8):5810–5818, 2021.

[9] Worku J Sori, Jiang Feng, Arero W Godana, Shaohui Liu, and Demissie J
Gelmecha. Dfd-net: lung cancer detection from denoised ct scan image
using deep learning. Frontiers of Computer Science, 15(2):1–13, 2021.

[10] Jing Qiu, Lei Du, Dongwen Zhang, Shen Su, and Zhihong Tian. Nei-tte:
intelligent traffic time estimation based on fine-grained time derivation of
road segments for smart city. IEEE Transactions on Industrial Informatics,
16(4):2659–2666, 2019.

[11] Dongliang Xu, Zhihong Tian, Rufeng Lai, Xiangtao Kong, Zhiyuan Tan,
and Wei Shi. Deep learning based emotion analysis of microblog texts.
Information Fusion, 64:1–11, 2020.

[12] Ning Hu, Zhihong Tian, Xiaojiang Du, Nadra Guizani, and Zhihan
Zhu. Deep-green: A dispersed energy-efficiency computing paradigm
for green industrial iot. IEEE Transactions on Green Communications
and Networking, 5(2):750–764, 2021.

[13] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep
learning for the internet of things with edge computing. IEEE network,
32(1):96–101, 2018.

[14] Jie Tang, Dawei Sun, Shaoshan Liu, and Jean-Luc Gaudiot. Enabling
deep learning on iot devices. Computer, 50(10):92–96, 2017.

[15] Chunwei Tian, Yong Xu, Lunke Fei, and Ke Yan. Deep learning for
image denoising: a survey. In International Conference on Genetic and
Evolutionary Computing, pages 563–572. Springer, 2018.

[16] Chunwei Tian, Lunke Fei, Wenxian Zheng, Yong Xu, Wangmeng Zuo,
and Chia-Wen Lin. Deep learning on image denoising: An overview.
Neural Networks, 2020.

[17] K Bai, X Liao, Q Zhang, X Jia, and S Liu. Survey of learning based single
image super-resolution reconstruction technology. Pattern Recognition
and Image Analysis, 30(4):567–577, 2020.

[18] Zhihao Wang, Jian Chen, and Steven CH Hoi. Deep learning for image
super-resolution: A survey. IEEE transactions on pattern analysis and
machine intelligence, 2020.

[19] Chenggang Yan, Biao Gong, Yuxuan Wei, and Yue Gao. Deep multi-view
enhancement hashing for image retrieval. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(4):1445–1451, 2020.

[20] Chenggang Yan, Zhisheng Li, Yongbing Zhang, Yutao Liu, Xiangyang
Ji, and Yongdong Zhang. Depth image denoising using nuclear norm
and learning graph model. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 16(4):1–17, 2020.

[21] Chenggang Yan, Tong Teng, Yutao Liu, Yongbing Zhang, Haoqian Wang,
and Xiangyang Ji. Precise no-reference image quality evaluation based
on distortion identification. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 2021.

[22] Chenggang Yan, Yiming Hao, Liang Li, Jian Yin, Anan Liu, Zhendong

17

Mao, Zhenyu Chen, and Xingyu Gao. Task-adaptive attention for image
captioning. IEEE Transactions on Circuits and Systems for Video
Technology, 2021.

[23] Chenggang Yan, Lixuan Meng, Liang Li, Jiehua Zhang, Jian Yin, Jiyong
Zhang, Zhan Wang, Yaoqi Sun, and Bolun Zheng. Age-invariant face
recognition by multi-feature fusion and decomposition with self-attention.
ACM Trans Multimed Comput Commun Appl (TOMM), 2021.

[24] Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi.
The jpeg 2000 still image compression standard. IEEE Signal processing
magazine, 18(5):36–58, 2001.

[25] Umar Albalawi, Saraju P Mohanty, and Elias Kougianos. A hardware
architecture for better portable graphics (bpg) compression encoder. In
2015 IEEE International Symposium on Nanoelectronic and Information
Systems, pages 291–296. IEEE, 2015.

[26] Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan. High efficiency
video coding (hevc). In Integrated circuit and systems, algorithms and
architectures, volume 39, page 40. Springer, 2014.

[27] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra.
Overview of the h. 264/avc video coding standard. IEEE Transactions
on circuits and systems for video technology, 13(7):560–576, 2003.

[28] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning
a deep convolutional network for image super-resolution. In European
conference on computer vision, pages 184–199. Springer, 2014.

[29] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the
super-resolution convolutional neural network. In European conference
on computer vision, pages 391–407. Springer, 2016.

[30] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image
super-resolution using very deep convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 1646–1654, 2016.

[31] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive
convolutional network for image super-resolution. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
1637–1645, 2016.

[32] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via deep
recursive residual network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3147–3155, 2017.

[33] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Memnet: A
persistent memory network for image restoration. In Proceedings of the
IEEE international conference on computer vision, pages 4539–4547,
2017.

[34] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4681–4690, 2017.

[35] Tong Tong, Gen Li, Xiejie Liu, and Qinquan Gao. Image super-resolution
using dense skip connections. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4799–4807, 2017.

[36] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu.
Residual dense network for image super-resolution. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
2472–2481, 2018.

[37] Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. Deep
back-projection networks for super-resolution. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
1664–1673, 2018.

[38] Yucheng Wang, Jialiang Shen, and Jian Zhang. Deep bi-dense networks
for image super-resolution. In 2018 Digital Image Computing: Techniques
and Applications (DICTA), pages 1–8. IEEE, 2018.

[39] Biao Li, Yong Shi, Bo Wang, Zhiquan Qi, and Jiabin Liu. Rgsr: A
two-step lossy jpg image super-resolution based on noise reduction.
Neurocomputing, 419:322–334, 2021.

[40] Han Qiu, Qinkai Zheng, Gerard Memmi, Jialiang Lu, Meikang Qiu, and
Bhavani Thuraisingham. Deep residual learning-based enhanced jpeg
compression in the internet of things. IEEE Transactions on Industrial
Informatics, 17(3):2124–2133, 2020.

[41] N Krishnaraj, Mohamed Elhoseny, M Thenmozhi, Mahmoud M Selim,
and K Shankar. Deep learning model for real-time image compression
in internet of underwater things (iout). Journal of Real-Time Image
Processing, 17(6):2097–2111, 2020.

[42] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, and Daniele
Malitesta. Deep learning-based adaptive image compression system for a
real-world scenario. In 2020 IEEE Conference on Evolving and Adaptive
Intelligent Systems (EAIS), pages 1–8. IEEE, 2020.

[43] Joseph Azar, Abdallah Makhoul, Mahmoud Barhamgi, and Raphaël
Couturier. An energy efficient iot data compression approach for edge
machine learning. Future Generation Computer Systems, 96:168–175,
2019.

[44] Fabian Mentzer, George D Toderici, Michael Tschannen, and Eirikur
Agustsson. High-fidelity generative image compression. Advances in
Neural Information Processing Systems, 33, 2020.

[45] True color kodak images. http://r0k.us/graphics/kodak/, 06 2004.
[46] cszn/kair: Image restoration toolbox pytorch training and testing codes

for usrnet dncnn ffdnet srmd dpsr esrgan. https://github.com/cszn/KAIR,
10 2020.

[47] Krishan Kumar and Deepti D. Shrimankar. F-des: Fast and deep event
summarization. IEEE Transactions on Multimedia, 20(2):323–334, 2018.

[48] Krishan Kumar, Deepti D Shrimankar, and Navjot Singh. Eratosthenes
sieve based key-frame extraction technique for event summarization in
videos. Multimedia Tools and Applications, 77(6):7383–7404, 2018.

[49] Krishan Kumar and Deepti D Shrimankar. Deep event learning boost-up
approach: Delta. Multimedia Tools and Applications, 77(20):26635–
26655, 2018.

[50] Krishan Kumar and Deepti D Shrimankar. Esumm: Event summarization
on scale-free networks. IETE Technical Review, 2018.

[51] Krishan Kumar. Evs-dk: Event video skimming using deep keyframe.
Journal of Visual Communication and Image Representation, 58:345–352,
2019.

[52] Krishan Kumar. Text query based summarized event searching inter-
face system using deep learning over cloud. Multimedia Tools and
Applications, 80(7):11079–11094, 2021.

