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Abstract—Recently, the pervasiveness of multimedia contents
raised serious security and privacy concerns, especially with
limited devices such as the ones used in the Multimedia In-
ternet of Things (MIoT), which are constrained in terms of
computations, memory capacity and power consumption. In this
paper, we propose a lightweight format-compliant compression-
selection cipher scheme, which could be adopted with different
types of image compression algorithms (lossless or lossy). The
two proposed cipher variants leverage the compressed data char-
acteristics such as randomness and uniformity, as compared to
uncompressed data; this distinguishes the proposed solution from
the existing ones. Also, the proposed cipher supports configurable
encryption parameters, such as the encryption data rate, to
satisfy the requirements of the different MIoT applications, and
to optimize the trade-off between security and efficiency. The two
proposed variants, which do not require additional operations
to produce a format-compliant code-stream, are based on the
dynamic key approach, and they require a single round of simple
operations. The first variant consists only of one cryptographic
operation, permutation or substitution, while the second variant
consists of two operations, permutation and substitution. The
low number of rounds, combined with simple operations, re-
sult into low computational complexity and consequently, low
energy consumption and latency. The process for updating the
permutation and substitution tables is also lightweight, and
it could be implemented in parallel for each sub-compressed
part (tile or frequency level), which increases the security level
at a minimal computational cost. The proposed substitution,
permutation, and substitution-permutations variants exhibit a
high throughput with an enhancement of at least 311%, 176%,
and 125% compared to the optimized Advanced Encryption
Standard (AES) implementation, respectively.

Index Terms—Lightweight MIoT compression-cipher scheme;
One round selective cipher; dynamic key-dependent crypto-
graphic primitives.

I. INTRODUCTION

The continuous and rapid advancements in information
technology is giving rise to new types of applications, and
new emerging networks such as the Internet of Things
(IoT) [1]. An IoT system connects diverse sorts of physical
objects and devices to the Internet [2]; these devices process
and exchange massive amounts of data and enable a multitude
of applications in various domains. The sheer number of IoT
devices, their heterogeneous types, and the large amounts
of exchanged information impose strict constraints on the
underlying network in terms of security, scalability and
quality of service [3], [4]. Typically, the low-cost IoT devices
are restricted in terms of computational capabilities, memory

capacity and power resources [5].

In this context, the introduction of cheap hardware devices
such as CMOS cameras and microphones, gave rise to the
design of large-scale Multimedia IoT (MIoT) networks [2],
[6] (see Figure 1). Within such networks, numerous MIoT
applications have been developed such as live monitoring and
surveillance that require the transmission of large amounts of
multimedia data including images, audios and/or videos.

Multimedia data is normally compressed to reduce the stor-
age capacity and communication overhead. One main category
of multimedia image compression algorithms is the JPEG
family such as the original JPEG [7] and JPEG 2000 [8] that
can be used in restricted environments such as MIoT.

A. Problem Formulation

The majority of MIoT devices are battery-powered, and
hence, they have limited computational and communication
resources, in addition to limited energy consumption. On
the other hand, MIoT systems suffer from several security
issues when multimedia streams are transmitted over insecure
channels, making them prone to different passive and active
security attacks. Accordingly, in the face of such a challenge,
it is essential to define lightweight security solutions.

Thus, the main issue that the proposed solution addresses
is the design of an efficient and flexible crypto-compression
scheme for limited MIoT devices that handle compressed
images. The solution aims to strike an optimal balance between
the security level and the system performance, that is to
minimize the computational complexity, energy consumption
and thus, the associated delay. The solution significance
and impact stem from enabling secure communications
of MIoT compressed images between MIoT end devices
and application server(s), with fewer computations, and
reduced encryption latency, when compared to existing cipher
solutions such as AES.

Therefore, in this paper, the objective is to propose an
efficient and secure Data Confidentiality (DC) security service
for MIoT systems, which is typically achieved through a
symmetric cipher scheme.
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Figure 1: Example of MIoT system with MIoT devices that connect to the Internet via a Gateway and then to an application
server(s)

For emerging MIoT devices, a data confidentiality scheme
needs to optimize two key points:

1) Minimize the compressed data part to be encrypted
for higher efficiency. However, it is important that the
selected part leads to a high visual degradation to prevent
attackers from recovering useful information from the
visual contents. Such approach of selective encryption
has been presented in [9]. In general, when hard visual
degradation is required, the selected portion represents a
significant part of the compressed data, and the overhead
is proportional to the size of the selected portion.

2) Minimize the computational complexity and required
resources by adopting a lightweight cipher scheme. The
current encryption algorithms, such as the Advanced
Encryption Standard (AES), are based on multiple it-
erations of a round function that includes several oper-
ations such as addition of round key, substitution and
diffusion [10]. The associated delays and consumed
resources depend on the number of rounds r and the
type of operations. Unfortunately, when adopting a static
encryption structure with fixed cryptographic primitives,
there is always a need for a large number of rounds,
the overhead of which cannot be offset by optimized
implementations. Hence, the need for a cipher scheme
with the minimum possible number of rounds, and
operations per round.

Recently, researchers have been targeting the the design of
"Lightweight" cryptographic algorithms [11], [12] through the
design of a simple round function, or the reduction of the
number of rounds, r.

The authors of this paper have been working on the design

of solutions based on the dynamic key approach. In such
schemes, the cryptographic primitives are variable (dynamic)
enabling the reduction of the number of rounds to just
1 or 2 rounds, and thus, leading to minimal latency and
requiring just few resources, while maintaining a high level
of security [13], [14], [15], [16], [17] [18], [19].

Moreover, from an implementation perspective, it would be
more practical to define a generic framework for selective
crypto-compression independent of the underlying multime-
dia compression algorithm. Several encryption solutions were
proposed recently, but they are based on a specific compression
algorithm such as JPEG or JPEG 2000. Moreover, the joint
compression-encryption approaches [20], [21], [22], where
data encryption and compression operations are performed
together cannot ensure such a property. One can choose to
encrypt before or after compression, however, doing so before
compression leads to a non-efficient compression process.
Therefore, it is preferable to apply encryption after compres-
sion to preserve the efficiency of compression algorithms and
to ensure that the encryption scheme is independent of the
compression algorithm.

B. Motivation & Contribution

In this work, we aim to preserve the resources and lifetime
of MIoT devices when protecting their enormous amounts
of data. Given that the encryption process is the most
energy-consuming function [], we propose a lightweight
selective format-compliant cipher scheme, an efficient
crypto-compression solution that accounts for the limitations
of constrained MIoT devices. The scheme leverages the
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randomness and uniformity of the compressed data to reduce
the required iterations and operations, and thus, reducing the
latency and resources overhead.

In the proposed cipher variants, the encryption level
depends on the compressed data structure and can be
performed either at the packet level, if the compressed data
is organized into packets such as JPEG 2000, or at any other
possible level such as the tile level.

The first variant of the proposed one-round cipher scheme
consists of one operation, either permutation or substitution,
whereby the permutation or substitution tables vary at the
different levels. The second variant requires two operations
of permutation and substitution. Both variants do not employ
the addition round key operation, taking advantage of
the randomness and uniformity already introduced by the
compression process of the multimedia contents.

In order to highlight the contribution and originality of this
work, as compared to the authors’ previous works on dynamic
key-dependent ciphers, we list below the main differences:

1) The previous solutions were encryption schemes with
one or two rounds, including multiple operations per
round (permutation, addition round key, matrix diffu-
sion and substitution), and they could be applied to
different data types. The proposed solution is designed
for compressed multimedia contents, and as a proof of
concept, it was tested with different image compression
algorithms such as BMP, JPEG, and JPEG 2000.

2) The proposed solution has two variants that could be
adopted based on the sensitivity of the data; the first vari-
ant is recommended for confidential MIoT compressed
images, while the second variant for highly confidential
images.

3) The cryptographic primitives are variable; they get up-
dated, as configured, for each input packet, tile, or
image.

4) The proposed scheme has minimal computational com-
plexity as compared to the previous lightweight dynamic
key-dependent ciphers; one variant requires a single
operation, while the second just two operations, which
in turn results into lower latency and required resources.

5) The existing lightweight ciphers can be used as full
encryption schemes, but they do not satisfy the format-
compliant property in a similar manner to the proposed
one.

6) The proposed cipher scheme can be implemented in
a parallel manner, at the packet or tile level, which
further enhances its performance and efficiency.

The characteristics of the proposed scheme allows it to
outperform the existing optimized standard ciphers such as
AES in CTR mode [23], as well as the existing dynamic
cipher schemes [24], [25], [26], [16].

Moreover, the proposed solution has a flexible design
since a configurable percentage of data pr (≥ 5% for JPEG

family) is selected in a random and uniform manner from
the compressed data tiles or packets to be encrypted. The
minimum allowable percent is selected based on the visual
degradation representing the minimum introduced overhead.
Increasing this percentage results in achieving a higher
security level but at the expense of additional computations
and latency.

Another advantage of the proposed scheme is its simple
implementation in software and hardware, since the decryption
process is very similar to encryption, except for using the
inverse permutation and substitution tables, and most impor-
tantly, the error propagation is limited since the avalanche
effect is avoided using the dynamic key approach.

C. Organization

The rest of this paper is organized as follows. Section II
presents the related work of the proposed solution. Then, in
Section III, we present the dynamic key derivation scheme and
cipher primitives construction technique. Next, the two cipher
variants are presented in Section IV. A set of extensive security
tests are discussed in Section V. Then, Section VI analyzes
the encryption ratio threshold for several codecs: BMP, JPEG,
and JPEG2000, and a cryptanalysis discussion is provided in
Section VII. Then, the performance analysis of the proposed
cipher variants is presented in Section VIII. Finally, Section IX
concludes this paper.

II. BACKGROUND

In this section, we describe the concept of image com-
pression algorithms that can be employed with MIoT devices
and the existing crypto-compression schemes. Let us indicated
that the compression parameters will be selected according
to the employed MIoT devices. These parameters will define
the percentage of overhead in terms of computation, energy
consumption and communication delay.

A. Image compression algorithms

The image compression techniques can be divided into two
classes: lossless and lossy (as illustrated in Figure 2). The
lossless compression techniques preserve better the visual
content compared to the lossy ones since the decompressed
image with lossless compression is the same as the original
one. However, the lossless compression results are in
larger compressed data size compared to the lossy one. In
general, the lossy compression is used to reduce better the
communication overhead and delay in existing networks such
as the MIoT one. However, the compression ratio is inversely
proportional to the image quality. Using a low compression
ratio results into a high perceived image quality and vice
versa. Thus, selecting a compression ratio depends on MIoT
applications and hence, different compression parameters can
be used with the different MIoT devices.

The existing lossy compression techniques, that can be
used in the MIoT context, convert data from the spatial
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Figure 2: Taxonomy of multimedia compression algorithms

to the frequency domain by applying a spatial-frequency
transformation such as the Discrete Cosine Transform (DCT2)
used in JPEG [7] or Discrete Wavelet Transform (DWT2)
as in JPEG 2000 [8]. On the other hand, DCT2 is also
used in the well-used lossy video compression standards
such as MPEG 1/2, AVC/H.264, MPEG-4, and HEVC. After
the spatial-frequency transformation, the frequency values are
quantized (according to the frequency level) and ordered, and
then, they get through the Huffman or arithmetic encoding
process. Given that the human eye is able to detect changes
in low frequency regions, while disregarding the changes in
pattern-heavy regions. Moreover, the less important data is
represented by the high frequency components, while the most
important information is represented by the lower frequencies.
Accordingly, a lossy compression scheme tries to eliminate
more data from the high and middle frequency components
than from the low frequency ones, by increasing the compres-
sion ratio. Therefore, the frequency coefficients have different
importance levels and thus, they are quantized according to
their importance and the desired compression ratio. This can
lead to different visual effects. A high compression ratio
means that high and mid-frequency coefficients are quantized
more coarsely compared to low-frequency coefficients. In the
context of MIoT, The produced compressed image contents
(after the source encoding step) are divided into packets, which
are transmitted from MIoT devices to application server(s)
through a gateway that will be connected to the Internet.

On the other hand, the compression ratio and other com-
pression parameters can vary for different MIoT applications,
and hence, for different classes of MIoT devices, as shown
in Figure 3. Besides, increasing the compression ratio will
reduce the size of compressed code-stream, and introduces
a visual degradation. An example that illustrates the trade-off

between the compressed data size and visual quality (measured
by using PSNR and SSIM metrics) is shown in Figure 4 for
the JPEG image compression with two standards images (Lena
and pepper).

B. Existing crypto-compression schemes

In the literature, three main categories of crypto-
compression schemes have been presented, according to the
encryption order, as indicated in [27]:

1) Transform-based schemes: the encryption is applied on
frequency values, after the frequency transformation step
such as discrete cosine transform (dct2) or discrete wave
transform (DWT) [28], [29], [30]. Unfortunately, the
transform-based cipher schemes introduce a compres-
sion overhead [31] and hence, a communication over-
head. Moreover, when using a static key, such schemes
may not provide the required security level [32].
A recent scheme, presented in [20], uses distinct keys
for encrypting different JPEG images to achieve a high
security level. However, the technique is restricted to
a specific image compression algorithm such as JPEG.
Also, its computational overhead, in a similar manner to
the one in [31], is related to all DC and AC values, which
also introduces a large memory overhead. The algorithm
in [20] relates the encryption key to the plain text, which
leads to error propagation, and it uses chaotic maps
(floating computing), which is typically associated with
a high computational when compared to integer-based
schemes. On the other hand, the crypto-compression
scheme in [31] exhibits a high computational overhead
since it requires two rounds of permutation, 8 iterations
of scan for each block, in addition to the virtual decom-
position operation.
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Figure 3: Proposed approach at the MIoT end device

(a) (b)

Figure 4: Variation of PSNR and SSIM versus compression ratio using the JPEG image compression algorithm, for two standard
images Lena and peppers.

2) Coding-based schemes: This kind of schemes consists of coding-based encryption by relating the coding step to
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a secret key. Therefore, encryption and entropy coding
are performed in one step [21], [22]. However, this class
of encryption algorithms requires modifying both the
encoder and the decoder.

3) Package/code-streams-based schemes: the encryption
process is performed on the code-streams, where a
packet consists of a header and a body, as in JPEG 2000,
unlike the case of traditional JPEG. Several approaches
were presented under this class as in [33], [34], [35].
Some of the proposed techniques preserve the format-
compliant property, as in [23]; it is a selective image
encryption scheme that ensures confidentiality by
encrypting only 5.43% of each data packet. In [36],
the AES-128 block cipher standard is used with a
modified Counter (CTR) mode (using a conditional
modular addition instead of Exclusive OR (XOR))
to achieve the format-compliant property. Recently,
an enhancement of the Masoudi et al. approach [23]
was presented by Fawaz et al. [37], where only 4%
of the compressed bytes of each packet are selected
for encryption. The cipher structure is a dynamic key-
dependent block cipher, and it requires only two rounds
of substitution and diffusion operations. Also, the key
is changed for every input image. This enhancement is
based on adaptive cryptographic primitives to preserve
the format-compliant criterion. Using the dynamic
key-dependent cipher structure, the proposed method
achieves a high level of security with reduced number
of rounds. However, the approach requires two rounds
in addition to the use of diffusion matrix operation
for each round, which yields a significant overhead
when compared to a substitution or permutation
operation [16].

On the other hand, the scheme in [38] encrypts the
first 32 bits of every box (the box length Lbox) using
the asymmetric cipher scheme (RSA) for JPEG 2000
images. However, using an asymmetric cipher to just
encrypt the box length is not sufficiently secure since
partial information can be recovered, in addition to a
high associated overhead.

Note that performing encryption before compression
introduces several challenges such as a high encryption rate,
and since an encrypted image follows a uniform distribution
with no redundancy among the pixels, this renders the
compression algorithm inefficient.

The existing solutions in the literature are not appropriate
for limited MIoT devices since they typically involve a large
number of iterations (rounds), and/or several complex opera-
tions per round. To address such limitations, it is essential to
adopt an efficient, lightweight, and flexible post-compression
solution for MIoT devices, especially for the tiny devices. Such
a solution needs to minimize the encryption computational
overhead, which in turns reduces the associated latency and
energy consumption, while maintaining an appropriate security
level.

The objective of this work is to propose a simple and
flexible, yet robust selective cipher scheme, for MIoT image
compressed contents, which is either format- or non-format
compliant as per the application requirements. Moreover,
the parallel structure of the proposed cipher variants make
them suitable for a powerful application server, which further
decreases the decryption delay.

The encryption parameters, such as the percentage of
compressed data per packet to encrypt, pr, can be configured
according to the requirements of MIoT devices and
applications. The optimal value of pr depends on the image
compression algorithm, and it is defined as the minimum
percentage of compressed data that should be encrypted while
ensuring a hard visual degradation. Note that the optimal
value, for lossless image compression algorithms, is higher
than the value for lossy algorithms. We quantified the optimal
value of pr for the lossless Bitmap (BMP) algorithm, pr ≥
60%, and for the JPEG and JPEG 2000 algorithms, pr ≥ 5% .

In the following section, we describe the proposed solution
that is based on the dynamic key dependent approach, and
which caters for the limitations of MIoT devices in terms
of computations, resources and delay. Note that to maintain
the file format-compliant property, the header and sub-header
should be kept unenrypted, and the ciphertext should avoid
the range of the header and sub-header to enable decoding
without decryption. For example, the range of header/sub-
header marker vary within the [0xFF90, 0xFFFF] interval for
the JPEG compression family.

III. CIPHER PRIMITIVES GENERATION

The proposed scheme adopts the dynamic structure, and it
can be configured such that the cipher primitives (permutation
and/or substitution tables) vary for each packet, a set of
packets, input image, or a set of input images. Also, the
primitives are updated for each new authenticated session or a
sub-session. As such, the primitives are unknown to attackers.
The frequent update of the cryptographic primitives provides
a higher level of security, yet at the expense of additional
initialization overhead. The primitives are derived from the
dynamic secret key, which has a large key space, and generated
from a secret session key that is exchanged between MIoT
devices and an application server. Note that there are different
mechanisms for session key exchange, as presented in [10],
which are based either on symmetric or asymmetric schemes.

A. Dynamic Key Derivation Scheme

Figure 5 illustrates the key derivation function that is per-
formed at MIoT devices and the application server. It requires
two inputs, a secret session key SK and a nonce No, and it is
updated for each new session. The sender and receiver must
be synchronized to generate the same nonce.

The secret key SK and the nonce No are XORed, and the
output is hashed to generate the dynamic key DK. This leads
to a higher sensitivity against any bit change either in the
nonce or the secret key. The secure hash function (SHA−512)
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Figure 5: Dynamic key generation process, and the components used in the construction of cipher primitives and their update
primitives.

is selected due to its strong resistance against collisions. Next,
the dynamic key, Dk, is split into two sub-keys; the first one
is used to construct the cipher primitives, and the second one
for updating these primitives, as described next.

B. Cipher and Update Cipher Primitives Construction

DK consists of 512 bits, and it is divided into six sub-keys;
the first 4 sub-keys have each a size of 96 bits, and the
remaining two have each a length of 64 bits:
DK = {Kp, Kup, KSL, KuSL, KS , KuS}.

The sub-keys Kp, KSL, and KS are used to generate
the permutation table π, the selection table πSL, and the
substitution table S, respectively. On the other hand, Kup,
KuSL and KuS are used to generate the primitives needed
for the update process, the update permutation table uπ, the
update selection table uπSL, and the update substitution table
uS, respectively).

• Kp and Kup are used as seeds to generate the required
permutation (π) and update permutation (uπ) tables by
using the Modified Key-Scheduling Algorithm (MKSA)
of the Rivest Cipher 4 (RC4), as presented in [16].

• Similarly, KSL and KuSL are used as seeds with MKSA
to produce the selection πSL and update selection (uπSL)
tables, respectively.

• Moreover, as presented in [16], KSA is used with KS

and KuS to produce the substitution (S) and update
substitution (uS) tables.

Note that the sizes of the update primitives are identical to
those of the corresponding cipher primitives.

The selection table πSL is a permutation table of lp
elements, where lp represents the size in bytes of the
compressed data per packet. Hence the values of πSL

vary between 1 and lp. The size of a selected element
depends on pr and the size of the compressed packet length,
l = ceil(pr × lp). As such, only l elements are selected from
each packet/tile, however, as the compression ratio increases,
lp decreases, and l decreases for the same value of pr. The
selected parts of the code-stream to encrypt and the size of
the code-stream can be configured according to the MIoT
application requirements.

On the other hand, the permutation table has l elements
with values between 1 and l. The size of the substitution
table is 255, instead of 256, since the 256th element having
the value 255 is removed to preserve the format compliant
property. Thus, the substitution table and its corresponding
update table contain each 255 elements.

Updating cipher primitives: For each part of the com-
pressed data (packet, tile, or image), the cipher primitives
(selection, permutation, and substitution tables) are updated to
improve the security of the proposed cipher variants. Typically,
regenerating the cipher primitives requires a high overhead. To
simply the updating process, we propose a lightweight update
based on a simple permutation; the permutation table π is
updated by permuting its elements using uπ. Similarly, S is
updated via a permutation using uS, and Sl is updated using
USL.

IV. PROPOSED CIPHER ALGORITHM

The proposed cipher variants can be applied at any MIoT
device and with any image compression algorithm. The nota-
tions used in this work are summarized in Table I.
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Table I: Table of notations

Notation Definition
SK Secret Key
No Nonce
DK Dynamic Key
Ks Substitution sub-key
π Permutation table
π−1 Inverse permutation table
uπ Update permutation table
S Substitution table
S−1 Inverse substitution table
uS Update substitution table
SL Selection table
uSL Update selection table
pi ith packet (compressed data), tile of the compressed image or any other data level
epi ith encrypted packet (compressed data), tile of the compressed image or any other data level by using the proposed cipher variants
Ni Length of the ith packet body(compressed data)/tile
hi Number of bytes selected from the ith packet body/ tile to be encrypted
pr Percentage of selected bytes from the compressed packets/tiles
lp Packet length.
l Length of selection table is dependent of pr, and it is equal to l = ceil(pr × lp) bytes length
Kp Permutation sub-key used to generate a primary permutation table
Ks Substitution sub-key used to generate a primary substitution table
Kup Permutation sub-key used to generate an update permutation table
KSL Selection sub-key used to generate a primary selection table
KuSL Update selection sub-key used to generate an update selection table
KuS Update substitution sub-key used to generate an update substitution table

A. Proposed Selective Format Compliant Scheme

The proposed solution is based on selective encryption and
it is used to protect the original visual contents of a compressed
MIoT image code-stream, excluding the header/sub-header
part. For example, in the case of the JPEG codecs family, all
marker codes have hexadecimal values varying from (FF, 90)
to (FF, FF), and should not appear in the encrypted/decrypted
code-stream. Hence, the encrypted compressed data should
vary between (00, 00) and (FF, 8F).

This is achieved by selecting a compressed byte with a
value less than 0x(FF) along with its consecutive byte. The
permutation process will change the order but not the value,
which keeps the permuted compressed bytes between 0x(00)
and 0x(FE). Also, the substitution process uses a table with
values between 0x(00) and 0x(FE).

The scheme ensures that the produced ciphertext is com-
pliant, without the need for any re-iteration mechanism, as
presented in [39], or via a block cipher having a large number
of rounds and using modulo addition such as AES [23].

B. Proposed cipher variants

The proposed cipher variants are shown in Figure 6 and
Figure 7. The first variant requires only one operation, either
a permutation or a substitution, while the second one requires
both operations. Both variants could be applied onto a packet,
a set of packets or a tile.

A compressed MIoT image, D, is divided into packets or
tiles, depending on the compression capability. The scheme
can process in parallel several packets, pi, each with lp bytes,
and where l bytes out of lp are selected for encryption. The
value of l, and accordingly the percentage pr depend on
the application and/or the sensitivity of image contents, as
well as the available memory space. However, the minimum

acceptable value of pr has to be 5 according to [37]. Similarly,
in case the compressed input image is divided into tiles, the
same steps are applied at the tile level.

First, the input packets are sorted based on their encryption
parameters, and they are stored in a single buffer in ascending
order {p1, p2, . . . , pn}, followed by the selection process,
as shown in Figure 3. The bytes to be encrypted are selected
using the table SL, and they form a vector to be either
permuted or substituted in the case of the first cipher variant
(see Figure 6). However, for the second variant (see Figure 7
and 8), the selected bytes are first permuted using π, and
then substituted using S. The output values constitute the
compressed ciphertext.

The cipher variants consists of two main functions,
BytesSelection, and a RoundFunction (f ) that consists of a
single operation, either ByteSubstitution or BytePermutation
for the first variant, and both operations for the second variant.
Algorithm 1 summarizes the encryption scheme of the second
variant.

Algorithm 1 The proposed second cipher variant with an input
data part pi)

1: procedure SECOND_VARIANT_ENCRYPTION(pi, SL, π, S)
2: temp← Selection(pi, SL)
3: temp← Permutation(temp, π)
4: ci ← Substitution(temp, S)
5: epi[SL]← ci
6: return epi

After processing a packet or a set of packets, the cryp-
tographic primitives are updated according to Algorithm 2.
The update process is simple and uses only a permutation
operation.
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Figure 6: The first selective encryption variant that uses either a substitution or a permutation operation, and that can be applied
at the packet or at any other data level.

Figure 7: Architecture of the second cipher variant that can be applied at the packet or any other data level.

C. Decryption Algorithm

At the application server, the original image contents are
recovered by applying the decryption algorithm on the selected
encrypted packets, as illustrated in Figure 8 for the second
cipher variant.

The receiver buffering model sorts the packets, in ascending
order, according to their encryption parameters, and stores

them in a single buffer. The decryption process, shown in
Algorithm 3, for the second variant, is similar to encryption,
but it is applied in reverse order and using the inverse
substitution operation, followed by the inverse permutation.
The inverse permutation and substitution tables are described
in the following sub-sections.
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Figure 8: Architecture of the inverse cipher scheme of the second variant

Algorithm 2 The proposed Update cipher primitive algorithm.
1: procedure UP_CIPHER_PRIMITIVES(π, πup, S, uS,

SL, uSL)
2: π ← Permutation(π, πup)
3: S ← Permutation(S, uS)
4: SL← Permutation(SL, uSL)
5: return (π, S and SL)

Output: Updated SL, S, π cipher primitives

Algorithm 3 The corresponding decryption algorithm of the
proposed second variant)

1: procedure SECOND_VARIANT_DECRYPTION(epi, SL,
π−1, S−1)

2: temp← Selection(epi, SL)
3: temp← Substitution(temp, S−1)
4: di ← Permutation(temp, π−1)
5: pi[SL]← di
6: return pi

1) Inverse Byte Substitution S−1: The substitution table
S is bijective and its corresponding inverse substitution table
S−1 can be obtained from S by applying the following
equation:

S−1[S[j]] = j,where j and S(j) ∈ {0, ..., 254}. (1)

2) Inverse Byte Permutation: The permutation table π is
also bijective, and its corresponding inverse permutation table
is obtained by using the following equation:

P−1(P (j)) = j ; where j and P (j) ∈ {1, . . . , N}. (2)

V. SECURITY ANALYSIS

In this section, we analyze and evaluate the cryptographic
properties of the proposed selective crypto-compression
scheme, and the update process of cryptographic primitives.
We assess cryptographic properties such as uniformity and
randomness, in addition to the sensitivity of the cipher-text and
the dynamic cipher primitives. These metrics are commonly
used to quantify the cryptographic properties and security of
new cipher algorithms [15], [17], [40], [16].

In the following experiments, the encryption is performed
at the packet level, and we set the number of iterations to
1, 000. As a proof of concept, we apply the proposed scheme
to JPEG and JPEG 2000 image compression algorithms. Note
that, for other codecs, minor modifications are required such as
the start of the compressed data, and the minimum acceptable
percentage of data to encrypt.

A. Cryptographic Primitives Tests

To ensure a high level of security in the proposed cipher
variants, the permutation and substitution tables should be
changed pseudo-randomly and independently, as compared to
future or previous ones. the tests of Recurrence and correlation
coefficient ρ are used to assess the randomness of the permu-
tation and substitution tables for different input packets [41],
[42]. The tests were carried out on a set of 1, 000 random
dynamic keys.

1) Recurrence Test: The recurrence test analyzes the vari-
ations in a data sequence to determine its randomness de-
gree, and thus, it captures the correlation between the data
sequence xi = x(i,1), x(i,2), x(i,3), . . . , x(i,m), and
another vector with a delay t ≥ 1 given by xi(t) =
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(a) (b)

(c) (d)

Figure 9: (a) The recurrence plot of a basic permutation table generated at random, (b) The correlation coefficient of recurrence
for the generated permutation tables, (c) the correlation coefficient between a permutation table and its updated version, and
(d) the correlation coefficient between two successive permutation tables, for 1,000 times.

x(i,t), x(i,2t), x(i,3t), . . . , x(i,mt). The correlation coefficient
rxy between two vectors x and y is computed using the
formula:

rxy =
cov(x, y)√
D(x)×D(y)

(3)

where

Ex =
1

N
×

N∑
i=1

xi

Dx =
1

N
×

N∑
i=1

(xi − E(x))2

cov(x, y) =
1

N
×

N∑
i=1

(xi − E(x))(yi − E(y))

Figure 9-a shows the recurrence of the permutation
table elements, generated using a random dynamic sub-key.
The permutation table, as can be observed, has a random

recurrence map and not a linear one.

Furthermore, Figure 9-b displays the Probability Distri-
bution (PD) of the correlation coefficients between the re-
currence of the permuted index (of permutation table) for
1,000 random dynamic keys (for l = 256, the same length
of the substitution table). Since the recurrence correlation is
close to zero, with the majority of correlation values varying
between {−0.2, 0.2}, the generated permutation tables, using
the MKSA, exhibit a high degree of randomness.

Figure 9-c displays the PD of the correlation coefficients
between the original P-box and the updated one as a function
of the number of iterations. These obtained correlation
coefficients vary between −0.15 and 0.15 (range close to
zero). This indicates that the original and updated P-boxes
are uncorrelated and independent.

Furthermore, the PD of the correlation coefficients between
two successively updated P-boxes for 1,000 iterations is
shown in Figure 9-d. The correlation coefficients approach
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Table II: Statistical results for the proposed update (permutation) cipher primitives scheme for 1,000 iterations

Coefficient Correlation Tests Min Mean Max Standard Deviation
ρ of the recurrence of produced dynamic permutation tables -0.3040 -0.0041 0.2184 0.0628
ρ between the modified version (permuted version) of the primary
permutation table and the original one

-0.2393 0.0009 0.2441 0.0622

ρ between two successive permutation tables -0.2651 0.0017 0.2364 0.0631

(a) Lenna
50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(b) ratio=0.5%
50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(c) ratio=1.5%
50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(d) ratio=5% (e) ratio=7.5%
50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(f) ratio=10%

(g) Pepper
50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(h) ratio=0.5%
50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(i) ratio=1.5%
50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(j) ratio=5%
50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(k) ratio=7.5%
50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

(l) ratio=10%

Figure 10: Visual results of the proposed solution with the JPEG compression algorithm: Original compressed Lenna (a) and
pepper (g), the corresponding encrypted images (b)-(f) and (h)-(l), respectively, for various encryption ratios
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Figure 11: Encrypted compressed (JPEG 2000) Lenna image for one tile (a)-(e) and for 16 tiles (f)-(j), for different encryption
ratios.

the ideal value of zero since they vary between {−0.2, 0.2}).
This confirms that any two produced P-boxes are unrelated
(independent). These results are also supported by the
statistical analysis results presented in Table II. The standard
deviation is around 0 for all three cases in the table, and
hence, most correlation coefficient values are very close to
the mean value of zero.

Since the generated permutation tables have high degrees
of dynamicity and uniqueness, the proposed cipher variants

can resist eavesdropping, prevent unauthorized users from
obtaining any relevant information, and prevent cryptanalysis.
The produced dynamic substitution boxes show similar results
to the permutation boxes, with distinct and uncorrelated sub-
stitution tables.

The cryptographic primitives are updated frequently and
pseudo-randomly, as shown in Algorithm 2. Thus, each input
packet, tile or any other data unit, will be encrypted using
a different set of selection tables, as well as different cryp-
tographic primitives (permutation and/or substitution tables).
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Figure 12: Encrypted compressed pepper image (JPEG 2000) for different encryption percentages, for one tile (a)-(e) and for
16 tiles (f)-(j).
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Figure 13: Recurrence plot of the compressed bytes for Lenna
with (a) JPEG, and (b) JPEG 2000, and their corresponding
PDF (c) and (d), respectively.

This obscures the original packet/tile and ensures that different
ciphertexts will be obtained for the same original input, if
encrypted again. This mitigates the threats posed by chosen-
plaintext and chosen-ciphertext attacks.

B. Data Related Tests

To guard against statistical attacks, the encrypted com-
pressed image should exhibit a high level of randomness and
uniformity. Visual Results of the encrypted images with JPEG
and JPEG 2000 image compression algorithms are presented
in Figure 10 Figure 11, and Figure 12 for different encryption
percentages. In fact, the compressed data exhibits already a
certain degree of randomness and uniformity, which depends
on the compression codec. The proposed variants leverage
the compression characteristics to achieve efficiently a high
security level, by relying on a single round. In the following,
we detail the randomness and uniformity tests results.

1) Uniformity Test: The recurrence of the compressed
bytes (code-stream) of the compressed Lenna image with
JPEG and JPEG 2000 are shown in Figure 13-(a) and (b),
respectively. Moreover, the distribution of the compressed
bytes of Lenna with JPEG and JPEG 2000 are shown in
Figure 13-(c) and (d), respectively. The results confirm that the
compressed bytes with JPEG and JPEG 2000 have a uniform
distribution and a random recurrence. Hence, with a single
round and one operation, the first cipher variant achieves the
desirable statistical properties, after the compression process.

The first variant uses the permutation operation to change
the order of the selected bytes, and hence, the same
distribution (uniform) is preserved. Figure 13 shows that the
random recurrence property is also preserved. Similarly, the
first variant using substitution instead of permutation, also
preserves the uniformity and randomness properties. Also,
the second variant preserves these properties since it is based
on substitution and permutation operations.

In fact, the uniformity and the randomness properties of
the compressed data must be preserved to prevent statistical
attacks. This condition is achieved with the proposed ci-
pher variants. For the first variant, the permutation-encryption
scheme preserves the values with random order, which indi-
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Figure 14: Variation of the entropy values of compressed Lenna for (a) JPEG quality factors, and (b) JPEG 2000 compression
ratio.
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Figure 15: Percentage bit difference between original and encrypted decompressed images versus encryption percentage, for
1,000 random keys with (a) JPEG 2000 codec and (b) the corresponding values for encryption percentage of 5%(b).

cates that the contents of the code-stream and its corresponding
encrypted stream still have a uniform distribution and random
recurrence.

In Figure 13-(c) and (d), it can be observed that both
histograms are very close to a uniform distribution.

We apply another test to verify the uniformity at the block
level, by applying the information entropy concept as shown
below:

H(S) =

k−1∑
i=0

p(si)× log2(p(si)) (4)

Where k is the number of levels (here 256), and si is the
i− th symbol (here, it varies between 0 and 254 since the 255
value is eliminated). The obtained values for the information

entropy are very close to 8, as shown in Figure 14, which is the
maximum value of the entropy log2(256) = 8, for a uniform
distribution. These results illustrate the variation of the entropy
values, which were measured for the compressed bytes of the
Lenna image with JPEG (a) versus the image quality (inverse
of the compression ratio), in addition to the entropy values
that were measured for compressed data with JPEG 2000
codec (b) versus the compression ratio. The entropy values for
both codecs are always close to the desired value of 8. This
confirms that the compressed data, for both image compression
algorithms, have a sufficient level of uniformity.
Hence, the compressed data behaves as being generated from
random sources, and having a uniform distribution. Conse-
quently, this test ensures that the proposed encryption process



15

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

(a) JPEG

0 5 10
0

0.2

0.4

0.6

0.8

1
Peppers

Lenna

(b) JPEG 2000

Figure 16: Variation of the SSIM mean versus encryption ratio percentage for (a) JPEG and (b) JPEG 2000.
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Figure 17: SSIM mean variation between the encrypted and
original decompressed images (JPEG 2000) versus the com-
pression ratio, for 1,000 random dynamic keys and encryption
percentage of 6%.

does not impact the uniformity property of the compressed
data. Therefore, the encryption process, with the first or second
variant, does not introduce any degradation to the randomness
and uniformity properties.

2) Independence Test: The encrypted image should exhibit
a high independence level from the original image. In order to
quantify this, the difference percentage between the original
and encrypted decompressed images, at the bit level, should
be close to 50%. Figure 15-a) shows the difference between
the original and encrypted images (decompressed Lenna and
pepper images with JPEG 2000) versus the encryption percent-
age pr. Also, the same difference tests were applied for 1, 000
random keys with encryption percentage equals to 5%, and the
obtained results are shown in Figure 15-b). Similar results are
obtained with the original JPEG, which confirm that the cipher
schemes (first or second) achieve the required independence

property between the original and encrypted decompressed
images.

3) Visual Degradation: Visual degradation quantifies the
visual distortion between the original decompressed image
and its corresponding encrypted one. The structural similarity
(SSIM) criteria is widely used as a metric for this crite-
rion [43]. Thus, a high visual degradation can be achieved
with JPEG and JPEG 2000 codecs for encryption percentage
above 5% since the SSIM becomes very low, close to zero. The
results, illustrated in Figure 16-a) and b), clearly show a hard
visual degradation for JPEG and JPEG 2000. In Figure 17,
we show the mean variation of SSIM between encrypted and
original decompressed standard images (JPEG 2000) versus
the compression ratio, for 1,000 random dynamic keys, and
for encryption percentage of 6%. The results show that when
encrypting a small percentage of the compressed image, and
for any compression ratio, the proposed scheme produces hard
visual degradation.

C. Sensitivity Tests

The sensitivity tests aim to validate the avalanche effect
of the plaintext and key. These tests measure the difference
percentages between the resulting encrypted images, when one
bit differs in the original image, or in the secret or dynamic
key; the desired value is a 50% difference at the bit level.

1) Key Sensitivity: This test measures the change in the
ciphertext, after flipping one bit in the secret key SK, or the
nonce. In the proposed scheme, such a single bit change results
into a different dynamic key, and thus, different cipher and
update cipher primitives (substitution and permutation tables).
For 1,000 random keys, the sensitivity of the dynamic key
DK is computed using the percent Hamming distance:

KSw =

∑Tb
k=1 Cw ⊕ C ′

w⊕
T

× 100% (5)

=

∑T
k=1 EDKw

(P )⊕ EDK′
w
(P )

T
× 100%
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Figure 18: Key sensitivity over 1,000 random dynamic keys: (a) percentage variation versus percentage encryption, and (b)
the corresponding values for encryption percentage of 6%.

The encrypted images, corresponding to DKw and DK ′
w,

are Cw and C ′
w, respectively. Note that all bits of DK ′

w are
equal to those of DKw, except for a single bit. Actually,
SK and No ensure the key sensitivity since they are mixed
and hashed to produce the dynamic key, and then, the hash
function ensures the avalanche effect.

Figure 18-a) shows the sensitivity of the dynamic key versus
1,000 random keys by using the JPEG 2000 compression
versus the encryption ratio for the Lenna image. The results
show that the proposed scheme satisfies the desired key
sensitivity, for an encryption percentage above 5%. Moreover,
Figure 18-b) shows that the majority of the dynamic key
sensitivity samples, for an encryption ratio of 5%, are close
to the optimal value of 50% at the bit level. Table III shows
their minimum, maximum, average, and standard deviation. As
such, the dynamic key approach achieves a higher resistance
against chosen/known plain-text/cipher-text attacks. Similar
results were obtained with the JPEG compression.

Table III: Statistical results of the key sensitivity and entropy
tests for 1000 iterations.

%KS H

min 48.4 3.5
max 51.5 4
Avg 50.015 3.9425
STD 0.062 0.0824

2) Plain-text Sensitivity Test: In the proposed cipher, the
dynamic key changes for each input compressed image. More-
over, the cipher primitives are updated for each input packet or
tile. As a result, the same compressed image is encrypted using
different cipher primitives, resulting in different encrypted
compressed images with a difference close to 50%, as seen in
Figure 18. This confirms the plain-text sensitivity (avalanche

effect) of the dynamic key approach.

VI. ENCRYPTION RATIO THRESHOLD

In this section, we present the optimal minimum encryption
percentage (rate) that ensures a hard visual degradation; this
minimizes the computations and the resources overhead for
MIoT devices. We consider the original standard images
of Lenna and pepper, compressed with JPEG and JPEG
2000. The corresponding encrypted images versus different
encryption percentages are shown in Figure 10 and Figure 11,
respectively. On the other hand, the results of the compressed
Lenna and pepper, with an encryption percentage of 100%,
versus the compression ratio are shown in Figure 19.
According to the obtained results of SSIM and Peak Signal-
to-Noise Ratio (PSNR) in Figure 16-a) and b), a minimum
of 5% of the compressed bytes (selected in a pseudo-random
manner) is required for the JPEG and JPEG 2000 compressed
images to protect their visual contents.

VII. CRYPTANALYSIS

The proposed cipher variants follow the dynamic key-
dependent structure; the cipher primitives can be updated for
each packet, tile, or input image, depending on the con-
figuration. The permutation and substitution operations are
performed in a variable manner, where the compressed data
has a random order if the permutation operation is used,
or modified values in case of substitution. This leads to an
important visual degradation due to the decompression effect.
Also, the compressed images exhibit good uniformity and
randomness levels as seen in Figure 13, 14, and 15. Hence,
statistical attacks on the ciphertext are unable to retrieve any
relevant information.

Moreover, according to Figure 15, the independence of the
original and encrypted compressed images has been verified.
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(a) Lenna (b) ratio=5% (c) ratio=10% (d) ratio=30% (e) ratio=50% (f) ratio=70% (g) ratio=100%

(h) Pepper (i) ratio=5% (j) ratio=10% (k) ratio=30% (l) ratio=50% (m) ratio=70% (n) ratio=100%

Figure 19: Full encryption results: Original Lenna (a) and pepper (h) and their corresponding encrypted decompressed images
with JPEG 2000 (b)-(g) and (i)-(n), respectively, versus different compression ratios, where all compressed data are encrypted.

(a) RPI0 (b) RPI3

(c) RPI4

Figure 20: Throughput variation (MB/s) versus message size (in bytes) for the proposed cipher variants in function of plaintext
length (bytes) on: (a) RPI0, (b) RPI3, and (c) RPI4.
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The proposed cipher scheme applies different substitution
and/or permutation tables for an input compressed image. The
use of the update cipher primitives complicates the relationship
between original and encrypted compressed images. Accord-
ing to Figure 18, the secret key sensitivity is satisfied, as well
as the strong resistance to collision, with the probability of
producing the same dynamic being 1

2512 , which makes key-
related attacks extremely difficult to execute. Also, differen-
tial attacks are not feasible since the dynamic cryptographic
primitives are modified for each input packet, tile, or image,
resulting into a high level of unpredictability, uniformity, and
key sensitivity.

Note that analytic attacks are designed to break ciphers with
static primitives, which is not the case with the proposed cipher
variants. Finally, the secret key of the proposed cipher variants
can have a size of 128, 196, or 256 bits, while both the nonce
and dynamic key have a size 512 bits, which is sufficiently
large to make brute-force attacks impractical.

Thus, we conclude that the proposed cipher variants provide
a high security level with low overhead for MIoT devices; they
require a single round and one operation for the first variant,
and two operations for the second variant.

VIII. PERFORMANCE ANALYSIS

In this section, the performance of the proposed crypto-
compression variants is analyzed towards quantifying their
effectiveness. Two important metrics, the effect of error
propagation and the associated computational complexity and
throughput, are discussed.

A. Error Propagation

Error propagation is considered as one of the most important
performance criteria for any practical cipher [16], [15]. Techni-
cally, a one-bit error, on the receiving side, is the flipping of a
bit from ’0’ to ’1’, or vice-versa. The proposed cipher variants
exhibit a low rate of error propagation since the bit error(s) in
the decrypted compressed data occur at the same bit position(s)
as in the erroneous ciphertext, in the case of permutation and
substitution, which covers the three variants. Hence, the cipher
variants restrict the errors to their corresponding bytes, and
prevent their propagation to other bytes.

B. Computational Delay

In this section, we assess the computational delay of the
proposed cipher variants. Note that the objective of the pro-
posed scheme is to provide a high degree of security with the
least possible number of operations and rounds, which in turn
decreases the associated delay. To that end, we define several
delay components to compute the total delay:

1) TS denotes the time required for the byte substitution of
a block of h bytes.

2) TD represents the delay of the AES diffusion mix-
column operation (for all 4 columns), which is the
highest among all AES operations.

3) Txor denotes the time required to perform logical XOR
between two blocks of h bytes.

4) TSR represents the delay for the AES permutation
"Shift-rows" operation, and r represents the number of
rounds.

The total computational delay to encrypt a block of 16 bytes,
with the AES standard [36], is:

CDAES = rTS + (r + 1)Txor + (r − 1)TD + rTSR (6)

The minimum value of r in AES is 10 for a 128-bit secret
key. Hence, the minimum AES computational delay is given
by:

CDAES(r=10) = 10TS + 11Txor + 9TD + 10TSR (7)

The total Computational Delay (CD) of the proposed
scheme to encrypt one block for the first and the second variant
are:

CDV 1 = TS or Tπ (8)

CDV 2 = TS + Tπ (9)

where Tπ denotes the required time to permute an input
block of h bytes.

On the other hand, the Delays (CD) associated with the
update process, for the first and second variants, are:

CDUpdateV 1 = Tπ (10)

CDUpdateV 2 = 2× Tπ (11)

C. Experimental Throughput

The execution time is a very important factor, especially
for tiny devices when huge amounts of data are transmitted in
multimedia real-time applications. The existing cryptographic
algorithms, such as AES, exhibit a large execution time due to
the relatively large number of rounds when compared to the
proposed scheme.
Theoretically, the first proposed cipher variant requires only
one operation (substitution or permutation), while two simple
operations are required for the second variant. An additional
overhead is associated with the update process, which consists
of a single permutation operation. This overhead is minimized
when the update process is applied for each new input image.

We implemented, using the C language, the cipher variants
on different Raspberry Pi device classes (RPI0, RPI3, RPI4),
and for different sizes of the plaintext. The experiments are
repeated for 10,000 times, and the average throughput results
are compared against AES (OpenSSL implementation with
CTR operation mode), as shown in Figure 20. Note that
the AES OpenSSL implementation code is well optimized in
assembly language. The results show that the proposed cipher
variants outperform AES on all RPIs. The numerical results of
the throughput ratio are shown in Table IV, for the different
Raspberry Pi classes. The best performance over AES is
achieved with RPI0. The performance is slightly reduced with
RPI3 and RPI4 due to the optimized OpenSSL implementation
in assembly. In summary, considering RPI0, the throughput of
the proposed cipher variants is higher compared to AES, and
a significant gain can be achieved, in the case of RPI3 and
RPI4, by optimizing the cipher variants using assembly as in
AES.
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(a) RPI0 (b) RPI3

(c) RPI4

Figure 21: Throughput ratio of the cipher variant with substitution process versus message size (in bytes) against the other
proposed variants (Permutation, Substitution-Permutation) and AES-CTR on: (a) RPI0, (b) RPI3, and (c) RPI4.

Table IV: Statistical throughput Ratio results of the proposed cipher variants compared to the optimized OpenSSL AES-CTR.

Cipher variant Min Mean Max Std

RPI0
First variant with substitution 6.36 16.24 42.33 13.49
First variant with permutation 3.86 11.9 29.15 9.32
Second variant 2.69 8.67 21.95 7.12

RPI3
First variant with substitution 4.11 9.17 27.27 9.05
First variant with permutation 2.76 6.37 19.15 6.39
Second variant 2.25 5.24 15.81 5.29

RPI4
First variant with substitution 5.51 20.89 65.43 22.38
First variant with permutation 4.56 15.19 45.93 15.45
Second variant 2.93 10.71 33.43 11.415

On the other hand, the first variant exhibits a better through-
put compared to the second variant, and the first variant with
substitution achieves the maximum throughout, and thus, the
minimum delay.

Figure 21 shows the ratio of the throughput results of the
first variant with substitution operation compared to the other
variants and AES-CTR, for the different Raspberry Pi classes.
the results confirm that AES-CTR requires a larger execution

time than the proposed cipher variants.
In the case of RPI0, the first variant with substitution

achieves a throughput enhancement of at least 536% as
compared to AES, 58.14% compared to the second variant, and
13.7% compared to the first variant with permutation. As for
RPI4, the enhancement is at least 451% as compared to AES,
87% compared to the second variant, and 42.39% compared
to the first variant with permutation.



20

Table V: Energy consumption results of proposed solutions versus AES for message length of 4096 bytes

Hardware A Volts Algorithm Energy consumption (W/S) Ratio compared to V1 (Substitution)

RPI0 0.18 5

First variant with Substitution 2.611e-05 -
First variant with permutation 4.297e-05 1.645
Second variant 6.17e-05 2.36
AES-CTR 1.66e-04 6.35

RPI3 0.375 5

First variant with Substitution 3.899e-05 -
First variant with permutation 5.803e-05 1.488
Second variant 7.109e-05 1.82
AES-CTR 1.61e-04 4.13

RPI4 0.61 5

First variant with Substitution 1.29e-05 -
First variant with permutation 1.68e-05 1.30
Second variant 2.53e-05 1.96
AES-CTR 1.49e-04 11.55

On the other hand, the energy consumption of the proposed
variants was compared to the one of AES-CTR in Table V, for
different RPI devices (RPI0, RPI3, RPI4). The results show
that the energy consumption of proposed solutions is less than
that of AES-CTR, and for the different RPI devices, which
make them more suitable for limited MIoT devices. Also,
the results show that the second variant requires more energy
consumption than the first variant with either substitution
or permutation, which is expected since the second variant
includes the two operations. The first variant, with the
substitution operation, requires lower energy consumption
compared to the first variant with the permutation operation.

Based on these results, the first variant is recommended
for very limited MIoT devices. when compared to AES-CTR,
the energy consumption is reduced by approximately 75 %
when using substitution, and 65% when using permutation.
On the other hand, the second variant reduces the energy
consumption by approximately 55% as compared to AES-
CTR.

The energy consumption results can be further confirmed
based on the execution time (throughput) results, which show
that second variant requires more execution time, which
translates into additional energy consumption compared to
the first variant.

Note that there is a trade-off between the performance and
compression ratio. The energy consumption could be further
reduced by increasing the compression ratio, which reduces
the size of the data to be encrypted and communicated.
However, this would require the application of a denoising
technique at the application server, to reduce the visual
degradation introduced by the compression algorithm. On
the other hand, the size of the input image affects the
compression execution time, compressed data size, and as
such, the required energy consumption. Therefore, reducing
the size of the input image (down-sampling) would reduce
the compression/decompression time, communication delay
and the energy consumption.

In summary, the results show that the first variant with
substitution is better suited for constrained devices and for
real-time applications. The second variant provides a higher
security level at the cost of an additional delay and energy

consumption.

Note that a parallel implementation of the proposed variants
enhances further the throughput, and reduces the associated
delay. When increasing the number of threads, the execution
time decreases at the expense of additional memory consump-
tion, which is not an issue for the application server(s).

IX. CONCLUSION

In contrast to the existing selective cipher schemes that are
applied after a compression operation, the proposed solutions
benefit from the randomness and uniformity level of the
compressed image data. They adopt the dynamic cryptographic
approach to provide a simple, yet highly secure, cipher design
that meets the requirements of limited multimedia IoT devices,
and the stringent quality requirements of real-time applica-
tions. The proposed cipher variants require a single round
and a maximum of two operations, for the second variant
(permutation and substitutions). A dynamic key is generated
for each input and used to produce a set of cryptographic
primitives and the corresponding update primitives. The update
process can be configured to be applied at different levels
such as a packet, tile, or input image; it is done via a simple
permutation operation. Furthermore, a set of the compressed
data (packets or tiles) is selected based on a dynamic selection
table. The compression ratio and encryption data rate are
defined according to the requirements of the MIoT applica-
tion and/or desired security level. Both cipher variants are
efficient, and the produced cipher-texts satisfy the uniformity
and randomness properties. The experimental results proved
that the proposed solutions, with one round and one or two
operations, achieve the data confidentiality security service
between MIoT devices and application server(s) with fewer
computations and resources compared to the existing solutions
that require multiple rounds.

ACKNOWLEDGMENT

This work has been funded by the EIPHI Graduate School
(contract "ANR-17-EURE-0002").

REFERENCES

[1] Shalini Sharma Goel, Anubhav Goel, Mohit Kumar, and Germán Moltó.
A review of internet of things: qualifying technologies and boundless
horizon. Journal of Reliable Intelligent Environments, pages 1–11, 2021.



21

[2] Qin Wang, Yanxiao Zhao, Wei Wang, Daniel Minoli, Kazem Sohraby,
Hongbo Zhu, and Ben Occhiogrosso. Multimedia iot systems and
applications. In 2017 Global Internet of Things Summit (GIoTS), pages
1–6. IEEE, 2017.

[3] Jean-Paul A Yaacoub, Mohamad Noura, Hassan N Noura, Ola Salman,
Elias Yaacoub, Raphaël Couturier, and Ali Chehab. Securing internet of
medical things systems: limitations, issues and recommendations. Future
Generation Computer Systems, 105:581–606, 2020.

[4] Hamad Naeem, Farhan Ullah, Muhammad Rashid Naeem, Shehzad
Khalid, Danish Vasan, Sohail Jabbar, and Saqib Saeed. Malware detec-
tion in industrial internet of things based on hybrid image visualization
and deep learning model. Ad Hoc Networks, 105:102154, 2020.

[5] Sudeep Tanwar, Sudhanshu Tyagi, and Neeraj Kumar. Multimedia
big data computing for IoT applications: Concepts, paradigms and
solutions, volume 163. Springer, 2019.

[6] Ali Nauman, Yazdan Ahmad Qadri, Muhammad Amjad, Yousaf Bin
Zikria, Muhammad Khalil Afzal, and Sung Won Kim. Multimedia
internet of things: A comprehensive survey. IEEE Access, 8:8202–8250,
2020.

[7] Gregory K Wallace. The jpeg still picture compression standard. IEEE
transactions on consumer electronics, 38(1):xviii–xxxiv, 1992.

[8] Charilaos Christopoulos, Athanassios Skodras, and Touradj Ebrahimi.
The jpeg2000 still image coding system: an overview. IEEE Transactions
on Consumer Electronics, 46(4):1103–1127, 2000.

[9] Howard Cheng and Xiaobo Li. Partial encryption of compressed images
and videos. Signal Processing, IEEE Transactions on, 48(8):2439–2451,
2000.

[10] William Stallings. Cryptography and network security: principles and
practice. Pearson Upper Saddle River, NJ, 2017.

[11] Kerry A McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky
Mouha. Report on lightweight cryptography. NIST DRAFT NISTIR,
8114, 2016.

[12] Axel York Poschmann. Lightweight cryptography: cryptographic engi-
neering for a pervasive world. In PH. D. THESIS. Citeseer, 2009.

[13] Hassan Noura, Lama Sleem, Mohamad Noura, Mohammad M. Mansour,
Ali Chehab, and Raphaël Couturier. A new efficient lightweight and
secure image cipher scheme. Multimedia Tools and Applications, Sep
2017.

[14] H. Noura and D. Courousse. Method of encryption with dynamic
diffusion and confusion layers, June 9 2016. WO Patent App.
PCT/EP2015/078,372.

[15] Hassan Noura, Ali Chehab, Mohamad Noura, Raphaël Couturier, and
Mohammad M Mansour. Lightweight, Dynamic and Efficient Image
Encryption Scheme. Multimedia Tools and Applications, pages 1–35,
2018.

[16] Hassan Noura, Ali Chehab, Lama Sleem, Mohamad Noura, Raphaël
Couturier, and Mohammad M Mansour. One round cipher algo-
rithm for multimedia iot devices. Multimedia tools and applications,
77(14):18383–18413, 2018.

[17] Hassan N Noura, Mohamad Noura, Ali Chehab, Mohammad M Man-
sour, and Raphaël Couturier. Efficient and Secure Cipher Scheme for
Multimedia Contents. Multimedia Tools and Applications, pages 1–30,
2018.

[18] Hassan N Noura, Ali Chehab, and Raphaël Couturier. Overview of
efficient symmetric cryptography: dynamic vs static approaches. In 2020
8th International Symposium on Digital Forensics and Security (ISDFS),
pages 1–6. IEEE, 2020.

[19] Hassan N Noura, Ola Salman, Nesrine Kaaniche, Nicolas Sklavos, Ali
Chehab, and Raphaël Couturier. Tresc: Towards redesigning existing
symmetric ciphers. Microprocessors and Microsystems, page 103478,
2020.

[20] Junhui He, Shuhao Huang, Shaohua Tang, and Jiwu Huang. Jpeg image
encryption with improved format compatibility and file size preservation.
IEEE Transactions on Multimedia, 20(10):2645–2658, 2018.

[21] Marco Grangetto, Enrico Magli, and Gabriella Olmo. Multimedia selec-
tive encryption by means of randomized arithmetic coding. Multimedia,
IEEE Transactions on, 8(5):905–917, 2006.

[22] Jiang-Lung Liu. Efficient selective encryption for jpeg 2000 images
using private initial table. Pattern Recognition, 39(8):1509–1517, 2006.

[23] Ayoub Massoudi, Frédéric Lefebvre, Christophe De Vleeschouwer, and
François-Olivier Devaux. Secure and low cost selective encryption for
jpeg2000. In ISM, pages 31–38, 2008.

[24] Hassan N. Noura, Ola Salman, Raphaël Couturier, and Ali Chehab.
Lorca: Lightweight round block and stream cipher algorithms for iov
systems. Vehicular Communications, page 100416, 2021.

[25] Hassan Noura, Raphaël Couturier, Congduc Pham, and Ali Chehab.
Lightweight stream cipher scheme for resource-constrained iot devices.
In 2019 International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), pages 1–8. IEEE, 2019.

[26] Hassan N Noura, Ali Chehab, and Raphael Couturier. Efficient & secure
cipher scheme with dynamic key-dependent mode of operation. Signal
processing: Image communication, 78:448–464, 2019.

[27] Tao Xiang, Chenyun Yu, and Fei Chen. Secure mq coder: An efficient
way to protect jpeg 2000 images in wireless multimedia sensor networks.
Signal Processing: Image Communication, 29(9):1015–1027, 2014.

[28] Jeffrey Ting, KokSheik Wong, and Simying Ong. Format-compliant
perceptual encryption method for jpeg xt. In 2019 IEEE International
Conference on Image Processing (ICIP), pages 4559–4563. IEEE, 2019.

[29] Dominik Engel and Andreas Uhl. Secret wavelet packet decompositions
for jpeg 2000 lightweight encryption. In Acoustics, Speech and Signal
Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference on, volume 5, pages V–V. IEEE, 2006.

[30] Dominik Engel and Andreas Uhl. An evaluation of lightweight jpeg2000
encryption with anisotropic wavelet packets. In Electronic Imaging
2007, pages 65051S–65051S. International Society for Optics and
Photonics, 2007.

[31] SimYing Ong, KokSheik Wong, Xiaojun Qi, and Kiyoshi Tanaka.
Beyond format-compliant encryption for jpeg image. Signal Processing:
Image Communication, 31:47–60, 2015.

[32] Dominik Engel, Thomas Stütz, and Andreas Uhl. Assessing jpeg2000
encryption with key-dependent wavelet packets. EURASIP Journal on
Information Security, 2012(1):1–16, 2012.

[33] Hongjun Wu and Di Ma. Efficient and secure encryption schemes
for jpeg2000. In Acoustics, Speech, and Signal Processing, 2004.
Proceedings.(ICASSP’04). IEEE International Conference on, volume 5,
pages V–869. IEEE, 2004.

[34] Yongdong Wu and Robert H Deng. Compliant encryption of jpeg2000
codestreams. In Image Processing, 2004. ICIP’04. 2004 International
Conference on, volume 5, pages 3439–3442. IEEE, 2004.

[35] Osamu Watanabe, Akiko Nakazaki, and Hitoshi Kiya. A scalable
encryption method allowing backward compatibility with jpeg2000
images. In Circuits and Systems, 2005. ISCAS 2005. IEEE International
Symposium on, pages 6324–6327. IEEE, 2005.

[36] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business Media,
2013.

[37] Zeinab Fawaz, Hassan Noura, and Ahmed Mostefaoui. Securing
jpeg-2000 images in constrained environments: a dynamic approach.
Multimedia Systems, 24(6):669–694, Nov 2018.

[38] Med Karim Abdmouleh, Hedi Amri, Ali Khalfallah, and Med Salim
Bouhlel. A fast jpeg2000 based crypto-compression algorithm: Applica-
tion to the security for transmission of medical images. In International
workshop soft computing applications, pages 164–175. Springer, 2016.

[39] Yongdong Wu and R.-H. Deng. Compliant encryption of jpeg2000
codestreams. In Image Processing, 2004. ICIP ’04. 2004 International
Conference on, volume 5, pages 3439–3442 Vol. 5, Oct 2004.

[40] Hassan Noura, Lama Sleem, Mohamad Noura, Mohammad M Mansour,
Ali Chehab, and Raphaël Couturier. A New Efficient Lightweight and
Secure Image Cipher Scheme. Multimedia Tools and Applications,
77(12):15457–15484, 2018.

[41] Hassan N. Noura, Reem Melki, Mohammad Malli, and Ali Chehab.
Design and realization of efficient & secure multi-homed systems based
on random linear network coding. Computer Networks, 163:106886,
2019.

[42] Hassan Noura, Steven Martin, Khaldoun Al Agha, and Khaled Chahine.
Erss-rlnc: Efficient and robust secure scheme for random linear network
coding. Computer Networks, 75:99 – 112, 2014.

[43] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale structural simi-
larity for image quality assessment. In Signals, Systems and Computers,
2004. Conference Record of the Thirty-Seventh Asilomar Conference on,
volume 2, pages 1398–1402 Vol.2, Nov 2003.


