

Computer-assisted enumeration of finite geometries related to quantum contextuality

Alain Giorgetti^{1,3}, Axel Muller^{2,3}, Metod Saniga⁴, Henri de Boutray⁵ and Frédéric Holweck^{6,7}

¹ Université de Franche-Comté
² Univ. Bourgogne Franche-Comté
³ Institut FEMTO-ST, DISC department, VESONTIO team
⁴ Astronomical Institute of the Slovak Academy of Sciences
⁵ ColibrITD, France
⁶ Université de Technologie de Belfort-Montbéliard, ICB
⁷ Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA

Journée MASPIN (Mathématiques Appliquées et Sciences Pour l'Ingénieur et du Numérique), 10 novembre 2022

Outline

Background

Quantum computing basics Contextuality Mermin-Peres magic square Contextual geometries Multi-qubit doilies

Contributions

Numbers of multi-qubit doilies Doily generation algorithm Multi-qubit classification

Conclusion

Quantum computing basics

Quantum bit (qubit)

ket notation
$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$
 $|1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$ $|q\rangle = \begin{pmatrix} a\\b \end{pmatrix}$
qubit $|q\rangle = a|0\rangle + b|1\rangle$ $a, b \in \mathbb{C}$ $|a|^2 + |b|^2 = 1$

$$\begin{vmatrix} 1\rangle \\ b \\ \hline - & - \\$$

Single qubit measurement

Measurement of $|q\rangle = a|0\rangle + b|1\rangle$ in the basis ($|0\rangle, |1\rangle$)

$$|q\rangle = \begin{pmatrix} a \\ b \end{pmatrix} \xrightarrow[|b|^2]{|0\rangle} +1$$

encoded by the third Pauli matrix $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Mean value

$$\langle q|Z|q
angle = (\bar{a} \ \bar{b}) \left[egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight] \begin{pmatrix} a \ b \end{pmatrix} = 1.|a|^2 + (-1).|b|^2$$

Measurement in the basis $(|+\rangle, |-\rangle)$ $|q\rangle = a|0\rangle + b|1\rangle$ $|q\rangle = \frac{a+b}{\sqrt{2}}|+\rangle + \frac{a-b}{\sqrt{2}}|-\rangle \xrightarrow[|a+b|^2/2]{|+\rangle} = \frac{|0\rangle+|1\rangle}{\sqrt{2}} \xrightarrow[|a+b|^2/2]{|-\rangle} = \frac{|0\rangle-|1\rangle}{\sqrt{2}} \xrightarrow[|a-b|^2/2]{|-\rangle} = \frac{|0\rangle-|1\rangle}{\sqrt{2}} \xrightarrow[|a+b|^2/2]{|+\rangle} = \frac{|a+b|^2/2}{\sqrt{2}} = \frac{|a+b|^2/2}{\sqrt{2}} \xrightarrow[|a+b|^2/2]{|+\rangle} = \frac{|a+b|^2/2}{\sqrt{2}} \xrightarrow[|a+b|^2/2]{|+\rangle} = \frac{|a+b|^2/2}{\sqrt{2}} \xrightarrow[|a+b|^2/2]{|+\rangle} = \frac{|a+b|^2/2}{\sqrt{$ encoded by the first Pauli matrix $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ eigenvalues 1 -1 eigenvectors $|+\rangle$ $|-\rangle$ Mean value

$$\langle q|X|q\rangle = \bar{a}b + \bar{b}a = 1.|a+b|^2/2 + (-1).|a-b|^2/2$$

since $|a|^2 + |b|^2 = 1$

emto-st

Pauli group

Pauli matrices

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$Y \text{ measures in the } \left(\frac{|0\rangle + i|1\rangle}{\sqrt{2}}, \frac{|0\rangle - i|1\rangle}{\sqrt{2}} \right) \text{ basis}$$

$$\frac{\cdot \left| I & X & Y & Z \\ \hline I & I & X & Y & Z \\ \hline X & X & I & iZ & -iY \\ Y & Y & -iZ & I & iX \\ Z & Z & iY & -iX & I \end{bmatrix}$$

$$Pauli \text{ group} \qquad P = (\{1, -1, i, -i\} \times \{I, X, Y, Z\}, .)$$

$$X.I = I.X$$

$$A = I.X$$

$$A = I.X$$

$$A = I.X$$

Multi-qubit

tensor product
$$A \otimes B = \begin{pmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & \ddots & \vdots \\ a_{m,1}B & \dots & a_{m,n}B \end{pmatrix}$$

notation $\begin{cases} A_1A_2 \cdots A_N & \text{for } A_1 \otimes A_2 \otimes \cdots \otimes A_N \\ |01\rangle & \text{for } |0\rangle \otimes |1\rangle, \text{ etc} \end{cases}$
2-qubit $|q\rangle = q_{00} |00\rangle + q_{01} |01\rangle + q_{10} |10\rangle + q_{11} |11\rangle$
N-qubit $|q\rangle = q_{0..0} |0..0\rangle + \dots + q_{1..1} |1..1\rangle \in \mathbb{C}^{2^N}$

Generalized Pauli group

N-qubit Pauli operator $G_1 G_2 \cdots G_N$, with $G_i \in \{I, X, Y, Z\}$ generalized Pauli group $\mathcal{P}_N = (\{1, -1, i, -i\} \times \{I, X, Y, Z\}^N, .)$ commuting pairYX.ZZ = (Y.Z)(X.Z) = (iX)(-iY) = XYZZ.YX = (Z.Y)(Z.X) = (-iX)(iY) = XYanticommuting pairXY.IZ = (X.I)(Y.Z) = iXXIZ.XY = (I.X)(Z.Y) = -iXX

Mutually commuting multi-qubit Pauli operators are compatible observables

Contextuality

Kochen-Specker theorem

No non-contextual hidden-variable theory can reproduce the outcomes predicted by quantum physics.¹

Without loss of generality, a non-contextual hidden-variable (NCHV) theory admits the existence of a function $v : \mathcal{P}_N \rightarrow \{-1, 1\}$ that determines (as v(O)) the result of any measurement with the multi-qubit Pauli observable *O* (among its two eigenvalues -1 and 1) independently of other measurements performed before or after this measurement.

Mermin-Peres square proves Kochen-Specker theorem by describing experiments with nine two-qubit Pauli observables which contradict the NCHV hypothesis.

Contextuality

Mermin-Peres magic square²

Contextuality

Mermin-Peres magic square

Finite geometry with 9 points (two-qubit observables) and 6 lines (collinearity \Leftrightarrow commutation), either positives $(M - \ldots - N)$ or negatives $(M = \ldots = N)$

Contextual geometries

- A contextual geometry³ is a pair (O, C) such that
 - O is a finite set of observables (*points*), i.e. Hermitian operators (*M* = *M*^{*}) of finite dimension;
 - C is a finite set of subsets of O, called *contexts* (or *lines*) such that
 - each observable $M \in O$ satisfies $M^2 = Id$ (eigenvalues in $\{-1, 1\}$),
 - two observables M and N in the same context commute (M.N = N.M), and
 - the product of all observables in the same context is the identity matrix *Id* (*positive line*) or its opposite - *Id* (*negative line*).

→ discover and classify contextual geometries (KS proofs)

Contextual geometries

The two-qubit doily W₂

The *(two-qubit) doily* is the contextual geometry whose points are all the 2-qubit Pauli observables except $I \otimes I$

Multi-qubit doilies

A *N*-qubit doily is a geometry on *N*-qubit Pauli observables with the same point/line structure as the doily W_2

Example of 4-qubit doily

Multi-qubit doilies

Linear and quadratic doilies

A doily is *linear* iff A.B.C = Id for any *unicentric* (one common collinear point) *triad* (3 noncollinear points) $\{A, B, C\}$.

Otherwise, it is quadratic.

Background

Quantum computing basics Contextuality Mermin-Peres magic square Contextual geometries Multi-qubit doilies

Contributions

Numbers of multi-qubit doilies Doily generation algorithm Multi-qubit classification

Conclusion

Numbers of multi-qubit doilies

Closed formulas

Numbers D(N) (resp. $D_l(N)$, $D_q(N)$) of (resp. linear, quadratic) N-qubit doilies

$$D(N) = D_{l}(N) + D_{q}(N)$$

$$\begin{bmatrix} \binom{n}{k}_{q} = \prod_{i=1}^{k} \frac{q^{n-k+i}-1}{q^{i-1}} \\ \prod_{i=1}^{k} \binom{2N}{q^{i-1}} = \prod_{i=1}^{k} \binom{q^{n-k+i}-1}{q^{i-1}} \\ \prod_{i=1}^{k} \binom{2N-1}{q^{i-1}} = \prod_{i=1}^{k} \binom{2N-1}{q^{i-1}} \\ D_{q}(N) = 16 \left(\binom{2N}{5}_{2} - \binom{N}{5}_{2} \prod_{i=1}^{5} \binom{2N+1-i}{1} + 1 \right) - 15 \binom{N}{4}_{2} 2^{2N-8} \prod_{i=1}^{4} \binom{2N+1-i}{1} + 1 \right) / 3$$

F 7

N	$D_I(N)$	$D_q(N)$	D(N)
2	1	_	1
3	336	1 008	1 344
4	91 392	1 370 880	1 462 272
5	23 744 512	1 495 904 256	1 519 648 768
6	6 100 942 848	1 555 740 426 240	1 561 841 369 088
7	1 563 272 675 328	1 599 227 946 860 544	1 600 791 219 535 872
8	400 289 425 260 544	1 639 185 196 441 927 680	1 639 585 485 867 188 224
9	102 479 956 839 235 584	1 678 929 132 897 196 572 672	1 679 031 612 854 035 808 256
10	26 235 244 249 381 601 280	1 719 326 731 883 223 239 884 800	1 719 352 967 127 472 621 486 080

Goal: generate all *N*-qubit doilies for a given *N*, in order to classify them and check various properties about them Binary encoding

 $I \leftrightarrow (0,0)$ $X \leftrightarrow (0,1)$ $Y \leftrightarrow (1,1)$ $Z \leftrightarrow (1,0)$

The *N*-qubit observable $G_1 G_2 \cdots G_N$ is encoded by the bitvector $(g_1 g_2 \dots g_{2N})_2$, with $G_j \leftrightarrow (g_j, g_{j+N})$ for $j \in \{1, 2, \dots, N\}$

Operations

Product of observables \rightsquigarrow exclusive or (the phase p is ignored)

 $ZZZZ.XYZI = 11110000_2 \oplus 01101100_2 = 10011100_2 = p.YXIZ$

Symplectic product (for collinearity) \rightsquigarrow conjunctions and parity check

 $\langle a,b\rangle = a_1b_{N+1} + a_{N+1}b_1 + a_2b_{N+2} + a_{N+2}b_2 + \dots + a_Nb_{2N} + a_{2N}b_N$

Representation of a multi-qubit doily

Each *N*-qubit doily is an injective labeling of the W_2 doily \rightsquigarrow we use the binary representation of two-qubit observables as array indices

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
bv	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
W_2	11	IX	XI	XX	IZ	IY	XZ	XY	ZI	ZX	YI	YX	ZZ	ZY	YZ	YY
doily	Ø	ZYXI	IIIX	ZYXX	ZIYI	IYZI	ZIYX	IYZX	ZZYZ	IXZZ	ZZYY	IXZY	IZIZ	ZXXZ	IZIY	ZXXY

Algorithm steps

Doily generation algorithm

for each ovoid $O = \{o_1, o_2, o_3, o_4, o_5\}$ in W_N , with $o_1 < o_2 < o_3 < o_4 < o_5$ do $f(IX) \leftarrow o_1 \parallel f(IZ) \leftarrow o_2 \parallel f(XY) \leftarrow o_3 \parallel f(ZY) \leftarrow o_4 \parallel f(YY) \leftarrow o_5$ for each center c of $\{o_1, o_2, o_3\}$ in W_N that anticommutes with o_4 and o_5 do $f(XI) \leftarrow c$ for each line (p, q, r) in the order of the sequence S do $f(r) \leftarrow |f(p).f(q)|$ end for if O is not the smallest ovoid of f then discard f end if \dots \triangleright Classification of fend for end for

S is (XI, IX, XX), (XI, IZ, XZ), (XI, XY, IY), (ZY, XX, YZ), (ZY, XZ, YX), (ZY, IY, ZI), (YY, XX, ZZ), (YY, XZ, ZX), (YY, IY, YI)

Doily generation program

Implemented in C language for

- quick execution
- parallelization (with OpenMP), here when choosing the first observable o₁ of the ovoid (4^N - 1 processes)

Execution time (Intel® Core™ i7-8665U CPU @ 1.90 GHz, 8 cores)

- 4 qubits: 1 462 272 doilies in 0.5 seconds, 1.4 Mb RAM
- 5 qubits: 1519648768 doilies in 12 minutes, 1.8 Mb RAM

Multi-qubit classification

Classification criteria

- Signature: numbers of Is in the observables (A for N 1 Is, B for N – 2 Is, C for N – 3 Is, etc)
- Nature ν of the doily (*l*inear or *q*uadratic)
- Configuration of the negative lines

Classification results

95 types for 4 qubits

Туре	Α	В	С	D	ν	3	4	5	6	7A	7B	8A	8B	9	10	11	12
1	0	3	0	12	q	216				648				648			
2	0	4	0	11	q				3888			3888					
3	0	5	0	10	q	972		1944		4860	1944			1944			
4	1	0	5	9	q	648								648			
5	3	0	3	9	1	144											
6	0	6	0	9	q		1296		5184								
7	0	1	6	8	q	972				3888						972	
8	1	1	5	8	q				7776								
9	2	1	4	8	q	1944		1944									
10	2	1	4	8	1	972					972						
11	0	7	0	8	q			1944		972							
12	0	2	6	7	q				15552			11664	19440				
13	1	2	5	7	q	7776		13608			15552			1944			
14	1	2	5	7	1	3888					7776						
15	2	2	4	7	q		11664						3888				
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
95	6	9	0	0	1	6											

Classification results

447 types for 5 qubits

Observables							Configuration of negative lines											
Туре	A	В	CL	Ε	ν	3	4	5	6	7A	7B	8Å	8B	9	10	11	12	
1	0	0	15	9	q						58 320			19440				
2	1	0	05	i 9	q				12960									
3	0	1	14	9	q		58 320		233 280				233 280		116640		19440	
4	0	2	13	9	q	68 040		174 960		116640	466 560			262 440		116640		
5	1	2	03	9	q				12960									
6	0	3	12	2 9	q		116640		421 200			116640	174 960		116640			
7	0	4	11	9	q			29160		58 320	29160							
8	0	5	10	9	q				9720									
9	0	0	07	8	q				19 4 4 0			58 320						
10	0	1	06	6 8	q			58 320		238 140	247 860			145 800				
11	0	0	25	6 8	q				291 600			233 280	233 280		58 320			
12	1	0	15	i 8	q			58 320			58 320							
13	0	2	05	6 8	q		116 640		291 600			174960	233 280		116640			
14	0	1	24	8	q	58 320		349 920		495 720	787 320			816 480		58 320		
15	1	1	14	8	q		58 320		233 280				58 320					
1 :	:	1	: :	1:	:	1 :	:	:	1 :	:	:	:	1	:	:	:	:	
446	0	15	00	0	q	360												
447	6	9	00	0	İ	10												

Conclusion

Summary of (a significant part of) a recent publication⁴

Results available at https://quantcert.github.io/doilies

Perspectives

- Extend the algorithm and the C program to other contextual geometries
- Formal proofs of the discovered properties

Questions?

Fundings

- Agence Nationale de la Recherche, Plan France 2030, ANR-22-PETQ-0007
- EIPHI Graduate School, contract ANR-17-EURE-0002
- Slovak VEGA Grant Agency, Project # 2/0004/20

