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Abstract

Thermal manipulation has been widely researched due to its potentials in novel functions, such as cloaking,
illusion and sensing. However, thermal manipulation is often realized by metamaterials which entails extreme
material properties. Here, we propose a machine learning based thermal cloak consisting of a finite number
of layers with isotropic materials. An artificial neural network is established to intelligently learn the relation
between each layer’s constitutive properties and the cloaking performances. Optimal material properties
are retrieved so that heat flows can be directed to detour the cloaked object without any invasion, as if the
object is not there. The designed cloak demonstrates both easiness to implement in applications and excellent
performances in thermal invisibility, which are verified by simulations and experiments. The proposed method
can be flexibly extended to other physical fields, like acoustics and electromagnetics, providing inspiration
for metamaterials design in a wide range of communities.
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1. Introduction

Thermal manipulation has recently attracted wide
attention and researches following the pioneering
works of transformed theory [1, 2, 3, 4, 5, 6]. Many
novel thermal meta-devices are created, like invisi-
ble cloaks, sensors and illusion devices [7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17]. Thermal meta-devices
face the challenge of extreme constitutive proper-
ties. Most reported devices are realized by meta-
materials with unconventional thermal conductivity,
i.e., anisotropic and graded. Yet practical applica-
tions desire materials with realistic physical proper-
ties. Researchers have proposed many fruitful strate-
gies to design thermal meta-devices with bulky ma-
terial compositions, such as composite structures de-
sign [8, 18, 19, 20], scattering-cancellation approach
[21, 22, 23, 24] and neutral inclusion method [25, 26,
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27, 28]. However, these design schemes are still not
easy to implement, as they need complex alternat-
ing layer shapes or they have low topological prop-
erty and finite functionalities. Considering that these
direct strategies possess drawbacks in technical re-
alization, researchers have developed inverse design
methodology. Inverse design approach features its
advantage over other methods in that it allows to take
into account various kinds of constraints on solu-
tions including those related to technical realization
[29, 30]. Topology optimization is introduced into
the inverse design of thermal meta-devices, demon-
strating simplified material properties and excellent
performances [31, 32, 33, 34], whereas, topology op-
timization method usually results in complex struc-
tural configuration that imposes difficulties to fabri-
cations. In addition, conventional optimization usu-
ally encounters the local minima problem and needs
a well-defined objective function for accurate design
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[35]. New design schemes are required with the pur-
pose to simplify engineering preparations and reduce
the computational workloads.

In this work, we propose a data driven approach to
design thermal cloaks with bulk isotropic materials.
A multilayered concentric cloak is designed where
each layer is composed of different isotropic mate-
rials. An artificial neural network is proposed and
trained to intelligently learn the intrinsic relation be-
tween input material parameters and their influences
on cloaking performances [35, 36]. The network
proves effective by accurately learning intrinsic rela-
tions from a small number of samples, and is efficient
in significantly reducing computation time by pre-
dicting solutions immediately after the training phase
[35]. By using deep learning we have exploited the
intricate relationship between each layer’s material
properties and general cloaking performances. Op-
timal material properties of each layer are retrieved,
and the optimized thermal cloak not only simplifies
practical fabrication, but demonstrates excellent heat
cloaking effects in both simulations and experiments.

2. Methods and results

2.1. Design scheme

We consider a cylindrical thermal cloak with a
concentric shell configuration. The goal is to ren-
der the object (indicated in white in Fig. 1a) ther-
mally invisible, without disturbing original thermal
profiles. Basically, one can achieve this goal in one
of following ways: preset layer thickness and find
the optimal material properties, or choose shell ma-
terials and determine the optimal layer thickness, or
use both layer thickness and material properties as
design variables. Here we choose the first approach
and build a thermal cloak with four layers where each
layer is made of different materials but with equal
thickness, as illustrated in Fig. 1a. The design space
is characterized by each layer’s thermal conductivity
km, where m is the layer index. Note that the deep
learning model (as shown later) is readily applicable
to thermal cloaks with different number of layers.

The heat conduction equation in cylindrical sys-
tem is expressed as
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where the subscript 0 denote the central region and
m = 1, 2, 3, 4, 5 denote regions from the center to
outermost.

Considering the symmetry of boundary condi-
tions, the temperature distributions in different re-
gions can be expressed as

T0 = A0 + B0r cos θ + C0r−1 cos θ, (3)

Tm = A0 + Bmr cos θ + Cmr−1 cos θ, (4)

where A0 is the known temperature of the central
point, B0, Bm and Cm are unknown coefficients to be
determined.

Boundary continuity conditions of temperature
and normal heat flux require Tm−1
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Combining Eq. (4) and Eq. (5), we obtain the sim-
plified form{
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Generally, a thermal cloak should accomplish fol-
lowing goals: (a) guiding heat flows to detour with-
out invading the object; (b) directing heat flows to
return to their original paths without disturbing ex-
ternal thermal profiles. Considering perfect thermal
neutrality effects (no perturbations to external ther-
mal field), we have C0 = C5 = 0, and B5 can be
easily obtained by the applied uniform thermal gra-
dient. We now have nine unknown coefficients to be
determined but have ten equations, which will result
in a matching condition between material properties
k0, km and geometry parameters ri (see the supporting
information). Thermal cloaking effects are achieved
if all the material properties and structural parame-
ters completely match this criterion. In theory, we
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Fig. 1. Framework of the deep learning model for the design of thermal cloaks. (a) The design scheme. (b) The artificial neural
network.

can find the analytical expression of Eq. (6). How-
ever, it may be tough to determine the material prop-
erties that simultaneously achieve undisturbed exter-
nal fields and zero temperature variations in the cen-
tral region, especially in the case of large number
of layers, more complicated shapes or under mate-
rial property constraints. Besides, the material prop-
erties are associated with each other and there may
exist multiple potential solutions. The influences of
material properties km on thermal cloaking perfor-
mances can be revealed intuitively by Eq. (6). A
practical implementation may demand flexibility in
the design due to external perturbation, i.e., unavail-
ability of material properties. For a given object and
predefined geometry, the analytical solution may be
not well-satisfied due to such external perturbations,
hence a local optimal solution is indeed needed. We
notice that there exists a mapping relation between
each layer’s materials properties and the cloaking
performances. Hence we turn the inverse problem
into an optimization problem and reversely design
the material properties that results in thermal cloak-
ing effects.

To quantitatively demonstrate the thermal cloak-
ing effects, two objective functions are defined, one
to characterize the thermal difference within the ob-

ject domain:

∆T =
∣∣∣Tx=r1 − Tx=−r1

∣∣∣ , (7)

and the other to characterize thermal neutrality of the
cloak:

MV =

∫
Ω
|T (x, y, z) − Tr(x, y, z)| dΩ∫

Ω
dΩ

, (8)

where Ω represents the probe domain of external
fields r > r5, and Tr denotes the reference thermal
field of a homogeneous plate as Tr = TH −

TH−TL
L (x +

L
2 ).

In our design, thermal properties of the central re-
gion and background region are respectively k0 =

394 Wm−1K−1 and k5 = 77.6 Wm−1K−1, the side-
length is L = 0.125 m, the inner radius is r1 =

0.025 m and the outer radius r5 = 0.05 m. Consider-
ing fabrication easiness and availability, we have de-
fined ranges of the design parameters as 0.15 < k1 <
27, 360 < k2 < 394, 0.15 < k3 < 27, 360 < k4 <
394 in units of Wm−1K−1 [8]. We mention by pass-
ing that broader ranges may decrease the prediction
efficiency, but this can be compensated by building
more data samples. We denote the original design
space by the symbol D0 = {k1, k2, k3, k4}. The goal
is to find an optimal set of parameters km within the
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constraint design space D0 = {k1, k2, k3, k4}. Gener-
ally, the optimization objective should be illustrated
as:

min MV

min ∆T

S.t. km ∈ D0.

(9)

Perfect cloaking performances are achieved when
optimized design parameters yield zero MV and ∆T .
However, we notice that MV and ∆T may achieve
minimal values at different points, rendering no so-
lutions to Eq. (9). Therefore, the objective is accom-
plished in following two steps.

First, we obtain a design space D∗ within which
the samples have values of MV infinitely approach
the minimal value, which can be illustrated as:

MV → Mmin
V

S.t. km ∈ D0.
(10)

where Mmin
V denotes the minimum value within the

samples space D0.
Then we search for the optimal design parameters

that yields minimum ∆T within the design space D∗,
which can be illustrated as:

min ∆T
S.t. km ∈ D∗.

(11)

2.2. Artificial neural network
We propose an artificial neural network to learn

the intrinsic relations between the design parameters
and the thermal cloaking performances (see Fig. 1b).
The forward neural network maps the design space
[k1, k2, k3, k4] (the input layer) to the results space
[MV , ∆T ] (the output layer). For the hidden layer,
the number of layer nodes is determined by an em-
pirical formula:

N =
√

n1 + n2 + δ, (12)

where n1 and n2 are the number of layer nodes for
the input layer and output layer, respectively, δ is an
empirical constant. We obtain the number of layer
nodes N = 6 following Eq. 12. Details about the
structure of the artificial neural network can be found
in the supporting information.

Optimal Latin hypercube sampling technique is
used to obtain 1000 sample control points. The
created sample points spread evenly in the design
space, which adds more prediction accuracy to the
deep learning model. We solved the direct problem
[k1, k2, k3, k4] numerically by the commercial soft-
ware COMSOL Multiphysics and got corresponding
values of MV and ∆T for the control points. We
train the artificial neural network with the relation
from each layer’s material properties to the cloaking
performances using the obtained samples, which are
split into three sets: for training (70%), for validation
(15%) and for final testing (15%), respectively. The
input data are normalized and then fed into the net-
work to expedite the convergence of the algorithm.
Mean square error (MSE) is used as the loss function
between the predicted and desired output. However,
we notice that it is impossible to build an effective
prediction model between the input parameters and
the two output index (see the supporting informa-
tion). This is physically explained by the fact that
there does not exist a well-predicted intrinsic rela-
tion between each layer’s material properties km and
thermal difference ∆T . Therefore, we instead estab-
lish the artificial neutral network only predicting the
dependence of thermal neutrality of MV on material
properties km. Levenberg-Marquardt algorithm is se-
lected as the training algorithm. The loss functions
of training , validation and testing set vary with the
number of iterations as shown in Fig. 2a. The loss
function converges gradually after 400 epochs, im-
plying completion of the training phase. The three
loss function match well with each other, indicating
that the artificial neural network is smooth without
overfitting. Mean relative errors (MRE) on the sam-
ples are shown in Fig. 2(b-d) and listed in the in-
set table, where we observe that all the three sets of
MREs are less than 2.3%. These results demonstrate
high prediction accuracy and reliability of the artifi-
cial neural network on single output layer MV .

We then turn to consider the output parameter ∆T .
In practice, feasible material parameters are often de-
sired with least temperature differences ∆T . Yet it
is ineffective here to directly train the proposed arti-
ficial neural network in an inverse direction, either
to derive a set of optimal design parameters D =

[k1, k2, k3, k4] from the target functions R = [∆T,MV]
4



Fig. 2. Artificial neural network learning process. (a) The learning curves as a function of training epochs. (b) Histogram of relative
errors for the testing samples.

by an inverse-mapping. To avoid such a pitfall, we
generate a new set of 10000 design samples as the in-
put of the network, using the relation we have estab-
lished between MV and km. Note that MV of the 1000
original samples are got by finite element method,
while for the 10000 new samples, the objective func-
tion MV are obtained by the network directly. The
process of searching for the optimal values is com-
pleted in the 10000 new samples. Considering that
∆T is not well-predictable by the artificial network,
we first filter out the 1% samples that result in least
MV values and finally obtain the particular set of pa-
rameter that yields minimal ∆T from the selected 1%
samples. We note by passing that it takes 76 seconds
to generate the 10000 new samples by the network,
whereas finite element analysis requires around 13
minutes.

We obtain one set of optimal design parameters as
k1 = 23.11, k2 = 386.58, k3 = 5.91 and k4 = 394
in units of Wm−1K−1. To verify the design method
effective, we establish a thermal cloak of which each
layer is constituted by the optimal material proper-
ties. We conduct numerical simulations and com-
pare the results with the ideal cloak, the bare obstacle
case and the homogeneous plate (see Fig. 3). Note

that the ideal cloak here refers to a thermal cloak
designed by transformation thermotics theory [1, 4].
It is observed that the optimized thermal cloak suc-
cessfully guides heat flows to pass around the ob-
ject and return to their original paths. For the opti-
mized cloak, the temperature field in probe domain
Ω shows few perturbations and are analogous to the
field generated by the homogeneous plate. By con-
trast, the thermal field are drastically distorted in the
case of a bare object. In addition, the optimized ther-
mal cloak closely mimics the ideal cloak and sig-
nificantly reduces the temperature differences in the
inner domain, validating effectiveness of the design.
We conduct quantitative analysis and show the calcu-
lated objective functions for different cases, as shown
in Tab. 1. The results clearly show that the designed
cloak significantly reduces the heat flux that invades
the object and demonstrates excellent neutrality per-
formances.

3. Experimental validation

The material properties of each layer and the back-
ground medium are not readily available by naturally
existing materials. To obtain desired thermal con-
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Fig. 3. Thermal profile for (a) the bare obstacle, (b) ideal thermal cloak, (c) the homogeneous plate and (d) the optimized cloak; (e)
corresponding temperature profile along the observed line y = 0.

Table 1
Comparison of cloaking performances for different cloaks.

Ideal cloak Homogeneous plate Bare obstacle Optimized cloak

MV (K) 4.9×10−7 7.6×10−10 1.3 0.1
∆T (K) 0 20 7.2 1.5

ductivity, we design composite structures by drilling
holes into the copper plate (thermal conductivity kc =

394 Wm−1K−1, thickness 2 mm) and filling them
with polydimethylsiloxane (PDMS, thermal conduc-
tivity kp = 0.15 Wm−1K−1) [8]. For example, back-
ground heat conductivity k5 is achieved by building
holes array (holes diameter 1.8 mm) with equal space
(2 mm). The holes array parameters are obtained fol-
lowing Maxwell-Garnett theory which is expressed

k5 = kc

[
1 +

2(kp−kc) f

kp+kc−(kp−kc) f

]
, where f denotes holes

area fraction. The sample is manufactured by CNC
machining technique, as shown in Fig. 4. Note that
refined circular discretization of each layer can better
approximate the required thermal properties, but at
the same time results in more fabrication complexity.
We have fabricated a thermal cloak with finite holes
or arc grooves shown in Fig. 4c as a good trade-off.

In Fig. 4, we show the experimental system used
to verify the performances of the designed thermal
cloak. An infrared thermal camera (FLIR A6702sc)

is used to capture thermal images via Planck ther-
mal emission. The hot and cold ends are realized by
thermostat water bath, remaining sides are left open
and covered with PDMS layer of thickness around
1 mm. Heat convection between the samples and the
surroundings are significantly reduced by this PDMS
layer.

In Fig. 5, we show the numerical and experimen-
tal results for the proposed thermal cloak. It is ob-
served that the thermal cloak successfully fulfills its
task in that heat flux are guided to pass around the
central region without invasion. The heat density are
reduced in the central region than its surroundings.
Furthermore, the temperature field outside of the de-
vice are almost not affected, as if nothing was there.
Quantitative results plotted in Tab. 2 further verified
the effectiveness of our designed cloak, where both
temperatures difference in the central region and ex-
ternal temperature perturbations are minimized. The
experimental results agree well with simulation re-
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Fig. 4. The experimental system. (a) An infrared thermal camera is used to capture thermal images. The designed thermal cloak:
(a) the numerical model and (b) the photograph.

sults, indicating the accuracy of the artificial neural
network enabled design approach. We note slight
discrepancies between simulations (see Tab. 1) and
experimental results (see Tab. 2). The difference is
mainly caused by fabrication errors and inaccuracy
in temperature controlling systems.

Table 2
Experimental results of the cloaking performances, with the
bare obstacle case as reference.

Bare obstacle Ideal cloak
MV (K) 1.38 0.11
∆T (K) 5.4 2.2

4. Conclusion

We have proposed the design method of a multi-
layered thermal cloak with core-shell configuration
driven by deep learning. In particular, we estab-
lish an artificial neural network to predict the cloak-
ing responses for given material properties. Opti-
mal material properties are retrieved for target cloak-
ing effects. We implement an optimized thermal
cloak with bulk isotropic materials and verify excel-
lent heat cloaking performances by both simulations
and experiments, validating the effectiveness of our
design method. The proposed method can be ex-
tended to other static physical fields, such as acoustic

Fig. 5. Simulated and measured temperature distributions: (a)
simulated results for a bare obstacle; (b) Experimental results
for a bare obstacle; (c) simulated results for the designed cloak;
(d) Experimental results for a bare obstacle. The white lines
denote iso-temperature lines. The object and cloak are outlined
by black dash lines.

waves and electromagnetic field, suggesting an effi-
cient route to design cloaks and related meta-devices.
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