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Abstract 

The interior of the synthetic unit cells and their interactions determine the wave properties of 

metamaterials composed of periodic lattices of these cells. While local interactions with the nearest 

neighbors are well appreciated, nonlocal beyond-nearest-neighbor interactions are often considered as a 

nuisance. Here, by introducing a versatile effectively two-dimensional metamaterial platform for airborne 

sound and elastic waves, we exploit nonlocal effects as a powerful design tool. Within a simplified discrete 

model, we analytically show that the lowest band can be engineered by Fourier synthesis, where the 𝑁𝑁-

th order Fourier coefficient is determined by the 𝑁𝑁-th nearest-neighbor interaction strength. Roton-like 

dispersion relations are an example. The results of the discrete model agree well with a refined model 

and with numerical calculations. In addition, we engineer the passage of waves from a local metamaterial 

into a nonlocal metamaterial by carefully tailoring the transition region between the two.  

Keywords: beyond-nearest-neighbor interactions, nonlocality, metamaterials, phonons, acoustic waves, 

elastic waves, roton  
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Introduction 

In the solid-state physics of ordinary crystals, interactions way beyond the nearest atomic neighbors can 

be of crucial importance, for example for the crystal’s ionic binding energy [1]. The Madelung constant [2] 

summarizes the effects of this long-range Coulomb interaction. In electromagnetism and optics, for 

artificial crystals called metamaterials [3, 4], long-range interactions are well known to play an important 

role as well [5, 6]. For example, the dynamic electric dipole-dipole interaction asymptotically decays 

inversely with the distance between dipoles just like the static Coulomb potential [1, 7]. So far, however, 

long-range interactions in electromagnetic or optical metamaterials have mainly been considered as a 

nuisance that complicates the physics rather than as a useful design feature [5].  

In contrast, when conceptually introducing acoustical and optical phonons in ordinary crystals by mass-

and-spring type models [1], the Hooke’s springs emerging from a given mass are usually only connected 

to the immediate neighbors of this mass [8-11]. In few cases, springs between next-nearest neighbors 

have been considered as a correction [12, 13]. For many years, this only-nearest-neighbor spirit has also 

been taken for designing phonon dispersion relations in mechanical or acoustical metamaterials [3, 10, 

14-17]. Few exceptions have discussed the influence of long-range interactions in linear elastic materials 

[18-20] or in phononic crystals [21-23], albeit not in the spirit of a design tool but again rather as a 

correction to ordinary behavior.  

Recently, we showed that suitable metamaterial designs using sufficiently strong 𝑁𝑁-th nearest-neighbor 

interactions with 𝑁𝑁 = 3 , in addition to the usual nearest-neighbors interactions (𝑁𝑁 = 1 ), allow for 

obtaining unusual acoustical-wave dispersion relations [24, 25], which mimic the famous rotons in 

superfluid helium [26-29]. However, the three-dimensional (3D) architectures discussed therein [24, 25, 

30] were restricted in three regards, i)-iii). i) They were limited to tailoring the dispersion relation along 

only a single propagation direction. ii) They were not flexible enough to provide interactions way beyond 

𝑁𝑁 = 3. iii) They could not easily be generalized to support more than just two types of interactions 

(nearest-neighbor and third-nearest-neighbor) simultaneously. 

We note in passing that another recent publication [31] used beyond-nearest-neighbor interactions in 

mechanical metamaterials to design and tailor the properties of higher phonon bands and states with the 

aim of obtaining topological band gaps. This work is not of immediate importance here because we focus 

on the lowest acoustical band. 
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Herein, we introduce and analyze by numerical and analytical calculations a flexible effectively two-

dimensional metamaterial platform that allows for tailoring the lowest acoustical phonon dispersion 

relation for airborne sound by using beyond-nearest-neighbor interactions along two orthogonal 

directions. We design the long-range interactions by a network of cylindrical tubes, which connect cuboid 

compartments in a two-dimensional square array. The numerically calculated phonon bands reveal 

multiple roton-like minima along multiple directions. Through a simplified discrete analytical model for 

the lowest (acoustical) band that is mathematically equivalent to a mass-and-spring model, we show that 

the long-range interactions directly determine the Fourier coefficients of the acoustical-wave dispersion 

relation. Based on the simple model, we further demonstrate interesting negative refraction [32, 33] and 

triple refraction at an interface between two metamaterials with and without beyond-nearest-neighbor 

interactions, respectively. We emphasize the importance of the transition region between an ordinary 

medium and the metamaterial comprising beyond-nearest-neighbor interactions as to which mode in the 

metamaterial the incident wave couples to. These calculations highlight the aspect of nonlocality [20, 31], 

which is due to the beyond-nearest-neighbor interactions. We also propose a refined analytical model 

that can capture the higher bands in the band structure as well. The combination of these aspects shows 

that nonlocal effects are a powerful tool for designing acoustic and elastic metamaterials. 

 

Results and Discussion 

Metamaterial design and numerical calculations. To implement the Fourier-synthesis idea in the simplest 

possible yet practical way, we consider airborne acoustical sound. Here, only longitudinally polarized 

pressure waves occur [34]. We consider the air in tubes with rigid walls as mediator of the interactions. 

In acoustics, such hollow tubes do not lead to a finite minimum (“cut-off”) frequency, below which 

propagating waves do not occur. The behavior of airborne waves can easily be transferred to waterborne 

acoustical waves. In contrast, for waves in general elastic structures, two transverse modes occur in 

addition to the longitudinal modes. The situation would also be more complex for transversely polarized 

electromagnetic waves, for which tubes with walls made of a perfect electrical conductor do lead to a 

finite cut-off frequency [35]. Such finite-frequency cut-off obviously inhibits an “acoustical” mode starting 

from zero frequency at zero wavenumber.  

Figure 1(a) shows one unit cell of the suggested 3D structure of the metamaterial for airborne sound for 

the example of 𝑁𝑁 = 3. Panel (b) illustrates the resulting two-dimensional lattice. Panel (c) shows the unit 
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cell for the fix cases 𝑁𝑁 = 4, 5, 6, 7, 8. In all of these cases, we consider a two-dimensional square lattice of 

hollow compartments with lattice constant 𝑎𝑎. The walls of these compartments are treated as rigid bodies. 

Mathematically, this corresponds to Neumann boundary conditions for the pressure field [34]. Intuitively, 

the compartments can be seen as the “atoms”. Tubes connecting the compartments can be seen as 

mediators of the interactions among the atoms. Four thin tubes with inner radius 𝑟𝑟1 directly connect each 

of these compartments with its four immediate neighbors. The walls of all tubes are treated as Neumann 

boundaries, too. These tubes mediate the nearest-neighbor interactions between the compartments. The 

thicker tubes with inner radius 𝑟𝑟𝑁𝑁 > 𝑟𝑟1 mediate the beyond-nearest-neighbor interactions with 𝑁𝑁 ≥ 2. To 

avoid collision of the tubes along the 𝑥𝑥- and the 𝑦𝑦-direction, respectively, one set of tubes is located above 

the 𝑥𝑥𝑦𝑦-plane spanned by the thin tubes and the other one below. Therefore, the metamaterial structure 

itself has only two-fold rotational symmetry with respect to the 𝑧𝑧-axis. However, the structure exhibits an 

additional rotation-reflection symmetry with respect to the 𝑥𝑥𝑦𝑦-plane. This symmetry ensures that the 

phonon dispersion relation 𝜔𝜔𝑛𝑛(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦), which connects the angular frequency 𝜔𝜔𝑛𝑛 of the band with band 

index 𝑛𝑛 and wave vector 𝐤𝐤 = (𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦), has four-fold rotational symmetry, i.e., wave propagation along 

the 𝑥𝑥- and 𝑦𝑦-direction are strictly equivalent by symmetry. For a given fixed radius of the tubes, the 

maximum possible integer 𝑁𝑁 is clearly limited by geometrical constrains (cf. Fig. 1(c)). For the radii chosen 

in Fig. 1, the maximum possible value is 𝑁𝑁 = 8  as the tubes would overlap for 𝑁𝑁 = 9 . However, 

conceptually, one can consider the limit of 𝑟𝑟1 → 0 at fixed finite ratio 𝑟𝑟𝑁𝑁/𝑟𝑟1. In this limit, integers up to 

𝑁𝑁 → ∞ are possible mathematically.   

So far, we have only considered structures supporting nearest-neighbor interactions and 𝑁𝑁-th nearest-

neighbor interactions with a single specific value of 𝑁𝑁. However, the metamaterial platform in Fig. 1(b) 

can easily be generalized to support several different beyond-nearest-neighbor interactions 

simultaneously. Figure 2 shows as an example a metamaterial structure supporting the three interactions 

with 𝑁𝑁 = 1, 𝑁𝑁 = 3, and 𝑁𝑁 = 5. The 𝑁𝑁 = 3 interactions lie in planes parallel to the 𝑥𝑥𝑦𝑦-plane at different 

𝑧𝑧-positions than the 𝑁𝑁 = 5 interactions. Clearly, for the chosen metamaterial platform, any further values 

of 𝑁𝑁 can be realized at yet different 𝑧𝑧-positions without imposing any geometrical constrains or difficulty 

(not depicted).   

To compute the phonon dispersion relation of airborne acoustical waves propagating in the channel 

system shown in Figs. 1-2, we consider the scalar wave equation for the spatial air-pressure modulation 

𝑃𝑃�𝐤𝐤,𝑖𝑖(𝐫𝐫) on top of a constant background air pressure 𝑃𝑃0 ≫ 𝑃𝑃�𝐤𝐤,𝑖𝑖(𝐫𝐫) at spatial position 𝐫𝐫 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and two-

dimensional wave vector 𝐤𝐤 = (𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦)  [1]. We neglect damping. This assumption is expected to be 
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reasonable if all absolute dimensions are sufficiently large [36]. Furthermore, we have also performed 

calculations including damping (see Supplementary Note 1). The relative differences of the (real part of 

the) eigenfrequencies with respect to the lossless case are smaller than 4% for all cases (cf. Figure 3 and 

Supplementary Figures 1 and 2). The qualitative behavior is not changed at all. In the Fourier-domain, the 

resulting eigenvalue problem [34] reads 

𝛁𝛁 ⋅ �𝛁𝛁𝑃𝑃�𝐤𝐤,𝑛𝑛(𝐫𝐫)� = −
𝜔𝜔𝑛𝑛2(𝐤𝐤)
𝑣𝑣air2

𝑃𝑃�𝐤𝐤,𝑛𝑛(𝐫𝐫). 

The band with index 𝑛𝑛 = 1 corresponds to an acoustical branch, the bands with 𝑛𝑛 ≥ 2 can be seen as 

“optical” phonon bands. We will focus our below design and discussion on the lowest band with 𝑛𝑛 = 1, 

but we will graphically also show several higher-frequency bands for completeness. We choose 𝑣𝑣air =

343 m/s as the constant speed of sound in air. We solve this eigenvalue equation by a finite-element 

method (FEM) implemented in the commercial software Comsol Multiphysics. We assume Bloch periodic 

boundary conditions along the 𝑥𝑥- and the 𝑦𝑦-direction and treat the walls of all compartments and tubes 

as rigid immovable bodies via Neumann boundary conditions [35]. All geometrical parameters of the 

metamaterial architecture are defined and given in Figs. 1-2. As usual, the first 2D Brillouin zone of the 2D 

square lattice is given by the conditions |𝑘𝑘𝑥𝑥| ≤ 𝜋𝜋/𝑎𝑎 and �𝑘𝑘𝑦𝑦� ≤ 𝜋𝜋/𝑎𝑎. 

Examples of calculated band structures are given in Figs. 3-5. Figure 3 shows the band structure of the 

metamaterial depicted in Fig. 1. It contains beyond-nearest-neighbor interactions with 𝑁𝑁 = 3. These 2D 

band structures can be compared with our previous quasi-1D band structures [24]. Figure 3(a) shows the 

angular frequency for the usual tour through the 2D Brillouin zone (also see inset). Figure 3(b) represents 

the same results in 2D 𝐤𝐤-space. It can be seen that we obtain local minima of the dispersion relation of 

the lowest acoustical band along the (𝑘𝑘𝑥𝑥, 0) direction and the equivalent (0,𝑘𝑘𝑦𝑦) direction. These local 

minima resemble the roton-like dispersion relations discussed in detail previously [24]. In addition, we 

find four further (roton-like) local minima along the diagonals. As expected from the symmetry of the 

metamaterial structure (see above), the dispersion relation 𝜔𝜔1(𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦 ) exhibits four-fold rotational 

symmetry. However, it is clearly not isotropic. The depth of the minima can be tailored by the effective 

strength of the beyond-nearest-neighbor interaction compared to the nearest-neighbor interactions, i.e., 

by the ratio of the tube radii 𝑟𝑟3/𝑟𝑟1 (not depicted). The minimum is absent for 𝑟𝑟3/𝑟𝑟1 > 0, becomes deeper 

for increasing ratio 𝑟𝑟3/𝑟𝑟1 = 0, and touches zero angular frequency, 𝜔𝜔1 = 0, in the limit of 𝑟𝑟3/𝑟𝑟1 → ∞. 
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Figure 4 shows the same as Fig. 3(a), but for different values of 𝑁𝑁  instead of 𝑁𝑁 = 3 . These results 

correspond to the metamaterial unit cells shown in Fig. 1. We find that the number of oscillations versus 

wave number within the first Brillouin zone increases with increasing 𝑁𝑁. This behavior already suggests a 

connection between the integer 𝑁𝑁 and the corresponding Fourier component. We will come back to this 

aspect in more detail in the following section.  

Figure 5 is as Fig. 4 (where 𝑁𝑁 = 3 only), but for two different orders of long-range interaction in parallel, 

namely (a) 𝑁𝑁 = 4 in addition to 𝑁𝑁 = 3, (b) 𝑁𝑁 = 5 in addition to 𝑁𝑁 = 3, and (c) 𝑁𝑁 = 6 in addition to 𝑁𝑁 =

3. The corresponding metamaterial unit cells have already been shown in Fig. 2. Again, the angular 

frequency of the lowest acoustical band exhibits an oscillatory behavior versus wave number 𝐤𝐤, however, 

now with two different Fourier components superimposed. We will come back to this aspect in more 

detail in the following section. 

 

Mass-and-spring model. To obtain a more intuitive as well as an approximate analytical understanding 

for the findings of the previous section, we now consider a simple discrete analytical model. This model 

shows that the acoustical dispersion relation of the metamaterial structures shown in Figs. 1-2 can be 

tailored in the sense of Fourier synthesis. The beyond-nearest-neighbor interactions determine the 

Fourier coefficients.  

We consider the mass-and-spring model shown in Fig. 6. We show that Newton’s equation of motion for 

the masses in this 2D lattice is mathematically equivalent to the approximate equation of motion for the 

air mass in the cuboid compartments shown in yellow in Fig. 1(b). The hollow tubes connecting these 

compartments correspond to Hooke’s springs. This ansatz follows our previous reasoning [24, 25] and is 

consistent with the numerically calculated air-pressure fields. An example referring to the parameters 

used in Figure 3 is depicted in Supplementary Figure 3. We emphasize that this simple model accounts for 

the lowest (acoustical) band with 𝑛𝑛 = 1 only, as the model contains only one degree of freedom (the 

position of the single mass in the unit cell). We will expand the analytical modelling to also include the 

higher bands with 𝑛𝑛 ≥ 2 in the following section. Let us now derive the discrete model with a discrete set 

of equations of motion for the metamaterial structures illustrated in Figs. 1-2. 

Within the cuboid air compartment with volume 𝑉𝑉c at the 2D lattice site defined by the pair of integers 

(𝑚𝑚,𝑛𝑛), the air pressure 𝑃𝑃𝑚𝑚𝑛𝑛 = 𝑃𝑃0 + 𝑃𝑃�𝑚𝑚𝑛𝑛 shall be approximated by the constant mean pressure in that 

compartment. The air pressure directly translates into the number of air molecules 𝑁𝑁𝑚𝑚𝑛𝑛 = 𝑁𝑁0 + 𝑁𝑁�𝑚𝑚𝑛𝑛 in 
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one compartment. 𝑁𝑁0 is the number of air molecules in the compartment at fixed room temperature 𝑇𝑇, 

corresponding to the background pressure 𝑃𝑃0. The ideal-gas equation becomes 𝑃𝑃𝑚𝑚𝑛𝑛 = 𝑁𝑁𝑚𝑚𝑛𝑛𝑘𝑘B𝑇𝑇/𝑉𝑉c  or 

𝑃𝑃�𝑚𝑚𝑛𝑛 = 𝑁𝑁�𝑚𝑚𝑛𝑛𝑘𝑘B𝑇𝑇/𝑉𝑉c , with the Boltzmann constant 𝑘𝑘B . Furthermore, in each 𝑁𝑁 th-nearest-neighbor 

horizontal and vertical tube with radius 𝑟𝑟𝑁𝑁  (see above), hence cross section 𝜋𝜋𝑟𝑟𝑁𝑁2 , and length 𝐿𝐿𝑁𝑁 , we 

approximate the air velocity along the tube axis as being constant throughout that tube. We define the 

corresponding velocities in the horizontal (𝑥𝑥-direction) tubes, ℎ𝑚𝑚𝑛𝑛
(𝑁𝑁), and those in the vertical (𝑦𝑦-direction) 

tubes, 𝑣𝑣𝑖𝑖𝑖𝑖
(𝑁𝑁), mediating the 𝑁𝑁-th order interaction. The mass density, 𝜌𝜌0, within all tubes is approximated 

as being constant, with 𝜌𝜌0 = 𝑚𝑚0𝑃𝑃0/(𝑘𝑘B𝑇𝑇) , where 𝑚𝑚0  is the mass of one air molecule. With these 

definitions, the continuity equation applied to compartment (𝑚𝑚,𝑛𝑛) describes the in- and out-flux of air 

molecules from the tubes into the compartment and reads  

 d
d𝑡𝑡
𝑚𝑚0𝑁𝑁𝑚𝑚𝑛𝑛 = d

d𝑡𝑡
𝑚𝑚0𝑁𝑁�𝑚𝑚𝑛𝑛 = ∑ −𝜌𝜌0𝜋𝜋𝑟𝑟𝑁𝑁2 ��ℎ𝑚𝑚𝑛𝑛

(𝑁𝑁) − ℎ𝑚𝑚−𝑁𝑁,𝑛𝑛
(𝑁𝑁) � + �𝑣𝑣𝑚𝑚𝑛𝑛

(𝑁𝑁) − 𝑣𝑣𝑚𝑚,𝑛𝑛−𝑁𝑁
(𝑁𝑁) ��∞

𝑁𝑁=1 . (1) 

The acceleration d
d𝑡𝑡
ℎ𝑚𝑚𝑛𝑛

(𝑁𝑁) in the 𝑁𝑁th-order horizontal tubes results from the net force corresponding to the 

pressure difference between the two ends of the tube with length 𝐿𝐿𝑁𝑁, i.e., from 

 𝜌𝜌0
d
d𝑡𝑡
ℎ𝑚𝑚𝑛𝑛

(𝑁𝑁) = −𝑃𝑃�𝑚𝑚+𝑁𝑁,𝑛𝑛−𝑃𝑃�𝑚𝑚𝑛𝑛
𝐿𝐿𝑁𝑁

 , (2) 

and likewise for the 𝑁𝑁th-order vertical tubes 

 𝜌𝜌0
d
d𝑡𝑡
𝑣𝑣𝑚𝑚𝑛𝑛

(𝑁𝑁) = −𝑃𝑃�𝑚𝑚,𝑛𝑛+𝑁𝑁−𝑃𝑃�𝑚𝑚𝑛𝑛
𝐿𝐿𝑁𝑁

 . (3) 

Taking the time derivative of Eq. (1), inserting Eqs. (2) and (3) into Eq. (1), and replacing 𝑁𝑁�𝑚𝑚𝑛𝑛 = 𝜌𝜌0𝑉𝑉c
𝑀𝑀𝑃𝑃0

𝑃𝑃�𝑚𝑚𝑛𝑛 

leads to 

 𝑀𝑀 d2

d𝑡𝑡2
𝑃𝑃�𝑚𝑚𝑛𝑛 = ∑ 𝐾𝐾𝑁𝑁 ��𝑃𝑃�𝑚𝑚−𝑁𝑁,𝑛𝑛 − 2𝑃𝑃�𝑚𝑚𝑛𝑛 + 𝑃𝑃�𝑚𝑚+𝑁𝑁,𝑛𝑛� + �𝑃𝑃�𝑚𝑚,𝑛𝑛−𝑁𝑁 − 2𝑃𝑃�𝑚𝑚𝑛𝑛 + 𝑃𝑃�𝑚𝑚,𝑛𝑛+𝑁𝑁��∞

𝑁𝑁=1 , (4) 

where we have introduced the two abbreviations 

 𝑀𝑀 = 𝜌𝜌0𝑉𝑉c (5) 

and 

 𝐾𝐾𝑁𝑁 = 𝑃𝑃0
𝜋𝜋𝑟𝑟𝑁𝑁

2

𝐿𝐿𝑁𝑁
. (6) 
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Equation (4) is identical to Newton’s equation for the mass-and-spring model shown in Fig. 6 if the 

pressure variation 𝑃𝑃�𝑚𝑚,𝑛𝑛 in Eq. (4) is replaced by the out-of-plane displacement. 𝑀𝑀 in Eq. (4) is the air mass 

in one compartment. It is the same for all lattice sites at this point. Below, when addressing interfaces, 

we will consider different values of 𝑀𝑀 at different locations. According to Eq. (5), the mass 𝑀𝑀 can be varied 

in practice by changing the volume of the compartment 𝑉𝑉c. 𝐾𝐾𝑁𝑁 is the effective Hooke’s spring constant for 

the 𝑁𝑁th order interaction. According to Eq. (6), it can be tailored by the radius of the 𝑁𝑁th order tube, 𝑟𝑟𝑁𝑁. 

Obviously, at fixed tube radius 𝑟𝑟𝑁𝑁, the effective spring constant 𝐾𝐾𝑁𝑁 decreases inversely versus increasing 

order 𝑁𝑁 of the interaction, hence with increasing length 𝐿𝐿𝑁𝑁 ≈ 𝑁𝑁𝐿𝐿1 of the tube for 𝑁𝑁 ≥ 2. This behavior 

is perfectly analogous to that of an ordinary elastic Hooke’s spring. As the tube diameter 2𝑟𝑟𝑁𝑁  is 

geometrically constrained in size from above (cf. Fig. 1), and must eventually decrease with increasing 𝑁𝑁, 

the effective relative strength of the 𝑁𝑁th-order interaction eventually tends to zero inversely proportional 

to the order 𝑁𝑁, or stronger than that. In the previous section, we have seen that values up to 𝑁𝑁 = 8 can 

be achieved in practice.  

Making a plane-wave ansatz for Eq. (4) according to 

 𝑃𝑃�𝑚𝑚𝑛𝑛 = 𝑃𝑃� exp�i(𝑚𝑚𝑘𝑘𝑥𝑥𝑎𝑎 + 𝑛𝑛𝑘𝑘𝑦𝑦𝑎𝑎 − 𝜔𝜔𝜔𝜔)�, (7) 

with constant amplitude prefactor 𝑃𝑃�, we obtain the dispersion relation for acoustical pressure waves with 

band index 𝑛𝑛 = 1 in the discrete model 

 𝜔𝜔12�𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦� = ∑ 𝐹𝐹𝑁𝑁 cos(𝑁𝑁𝑘𝑘𝑥𝑥𝑎𝑎)∞
𝑁𝑁=0 + ∑ 𝐹𝐹𝑁𝑁 cos�𝑁𝑁𝑘𝑘𝑦𝑦𝑎𝑎�∞

𝑁𝑁=0 . (8) 

This expression is central to our paper. We see that, for 𝑁𝑁 ≥ 1, the Fourier coefficient 𝐹𝐹𝑁𝑁  in the two 

Fourier series on the right-hand side is directly connected to the 𝑁𝑁th nearest-neighbor effective Hooke’s 

spring constant 𝐾𝐾𝑁𝑁 and is given by 

 𝐹𝐹𝑁𝑁 = −2𝐾𝐾𝑁𝑁/𝑀𝑀. (9) 

The constant 0th-order term of the Fourier series with 

 𝐹𝐹0 = ∑ 2𝐾𝐾𝑁𝑁′/𝑀𝑀
∞
𝑁𝑁′=1  (10) 

guarantees that the dispersion relation Eq. (7) starts according to 

 𝜔𝜔1(𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦) ∝ |𝐤𝐤| (11) 
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in the limit |𝐤𝐤| → 0. This is equivalent to saying that we restrict ourselves to “acoustical” dispersion 

relations. In the Fourier series on the right-hand side of Eq. (8), only cosine terms appear as sine terms 

would generally violate the reciprocity condition 𝜔𝜔(−𝐤𝐤) = 𝜔𝜔(𝐤𝐤).  

For suitable parameters, the above simple 2D discrete model again exhibits roton-like dispersion relations 

along multiple directions (see Supplementary Note 2 and Supplementary Figure 4). To allow for a direct 

comparison with the above numerical calculations, we plot the calculated dispersion relations of this 

model (red dots) together with those of the numerical calculations (gray curves) in Fig. 3 and Fig. 4. For 

the lowest band, the overall agreement is excellent for all values of 𝑁𝑁. This especially holds true for the 

principal direction 𝚪𝚪𝚪𝚪. Quantitative discrepancies occur for other directions, but the agreement is still 

qualitatively good. Note, however, that we have taken the freedom to use fitted ratios 𝐾𝐾𝑁𝑁/𝑀𝑀. In principle, 

these ratios could be calculated from Eqs. (5) and (6) and from the known geometrical parameters therein. 

The fitting procedure gives us freedom to correct for the simplicity of the mass-and-spring model. We will 

come back to a more stringent treatment in the following section.  

Before we get there, we now apply the mass-and-spring model to treating metamaterials that are not 

infinitely extended, but that rather contain interfaces. The treatment of such configurations would be 

computationally very expensive on the level of the complete numerical calculations. 

As a representative example, we consider only nearest-neighbor interactions and third-nearest-neighbor 

interactions (𝑁𝑁 = 3). In such a system [24], the dispersion relation does not monotonically increase but 

features a region of backward waves, with negative scalar product of the phase and group velocity vectors, 

and a roton-like [26, 28] local minimum in the dispersion relation. We expect interesting wave behavior, 

including negative refraction and triple refraction, which we shall study in the remainder of this section. 

The considered interface and excitation configuration is illustrated in Fig. 7. In the region above the 

interface, we consider a discrete system simultaneously with nearest-neighbor interactions and third-

nearest-neighbor interactions (𝑁𝑁 = 3 ). In the region below the interface, we assume only nearest-

neighbor interactions. We force displacements of masses located on the indicated black line according to 

cos(2𝜋𝜋𝑓𝑓c𝜔𝜔)exp(−(𝜋𝜋𝑓𝑓c𝜔𝜔/50)2)exp (−((𝑥𝑥 − 𝑥𝑥c)2 + (𝑦𝑦 − 𝑦𝑦c)2)/37.52) , with 𝑥𝑥c = −100 , 𝑦𝑦c = −130 

being the coordinate of the middle point of the line in units of the lattice constant 𝑎𝑎, and 𝑓𝑓c being the 

carrier frequency of the temporally Gaussian excitation signal. This excitation launches a spatially 

Gaussian wave packet towards the interface at an oblique angle of 45o. We have chosen this particular 

angle just as an example to illustrate the principle. The temporal Gaussian envelope contains about 50 
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oscillation cycles (see Fig. 7(c)), corresponding to a fairly narrow spread in the frequency domain (see Fig. 

7(d)). 

Due to the mismatch of interaction orders between the two regions at the interface, one of the Hooke’s 

springs that mediate the third-nearest-neighbor interactions for the first three masses above the interface 

(see Fig. 7(b)) is truncated by the interface. Therefore, the connections at the interface are modified 

slightly (see Fig. 7(b)). These modifications in the transition region between the two media will turn out 

to be crucial for controlling the transmitted and reflected partial waves. As shown in the below simulations, 

which are based on a trial-and error procedure for the design and for the parameters of the transition 

layer, we can even achieve nearly 100% transmission for each of the three possible modes individually 

by fine-tuning the indicated interface parameters, including the two mass parameters, 𝑀𝑀01 and 𝑀𝑀02, and 

three spring constants, 𝐾𝐾01, 𝐾𝐾02 and 𝐾𝐾03 in Fig. 7. Alternatively, the parameters for the transition region 

can be chosen such that an incident wave couples to all three refracted modes simultaneously (see 

Supplementary Figure 7). 

We note in passing that an explicit and rational construction procedure for the transition layer between 

a local and a non-local medium and its parameters is presently elusive to our knowledge. Defining such a 

procedure beyond a trial-and-error approach is beyond the scope of our present paper. 

In Figure 8, we first demonstrate negative refraction at the interface. For the incidence region, we choose 

the parameters 𝑀𝑀/𝑀𝑀0 = 1.0,𝐾𝐾1/𝐾𝐾0 = 1.2 , and 𝐾𝐾3/𝐾𝐾0 = 0 . Here, 𝑀𝑀0  and 𝐾𝐾0  are not relevant to the 

results and can take any constant reference values. In Fig. 8(a), red (blue) solids lines represent iso-

frequency contours for the discrete system in the incidence (transmission) region at carrier frequency (= 

center frequency) 𝜔𝜔/𝜔𝜔0 = 0.7 of the Gaussian wave packed used in the numerical simulation. Dashed 

lines correspond to a slightly larger frequency. From two nearby iso-frequency contours, we can identify 

the group velocity vector 𝐯𝐯g. From Snell’s law, one negatively refracted mode with wave vector 𝐤𝐤t and 

group velocity 𝐯𝐯g is expected. A snapshot of the simulated displacement fields at one instant in time, 

𝜔𝜔/𝑇𝑇c = 150, is shown in Fig. 8(b). The interface parameters, as indicated in the figure, are tuned to achieve 

a nearly zero reflected partial wave. As expected, the refracted waves exactly move along the direction of 

the predicted group velocity 𝐯𝐯g. The phase fronts of the refracted waves move along the wave vector 𝐤𝐤t. 

The dashed lines are guides to the eye for the wave propagation trajectory. The negative refraction can 

be seen yet more clearly in the Supplementary Movie 1.  
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Next, we demonstrate triple refraction. In this case, we choose different parameters for the incidence 

region, namely 𝑀𝑀/𝑀𝑀0 = 0.44,𝐾𝐾1/𝐾𝐾0 = 2.3 , and 𝐾𝐾3/𝐾𝐾0 = 0 . The carrier frequency of the Gaussian 

packet is chosen as 𝜔𝜔c/𝜔𝜔0 = 0.9. Iso-frequency contours are depicted in Fig. 9 the same manner as in Fig. 

8(a). For this case, there are three possible refracted modes, with the wave vectors and the group 

velocities, 𝐤𝐤t1  and 𝐯𝐯g1 , 𝐤𝐤t2  and 𝐯𝐯g2 , and 𝐤𝐤t3  and 𝐯𝐯g3 , respectively, instead of a single mode as in the 

previous example. The third mode is again a backward wave with 𝐤𝐤t3 ⋅ 𝐯𝐯g3 < 0. The importance of the 

interface parameters becomes evident from the three different calculations shown in Fig. 10(a)-(c). In 

each of the three cases, one of the three different modes is excited almost exclusively. This means that 

one can select a wanted mode by appropriately choosing the parameters of the transition region between 

the two media. For all three cases, we further illustrate the behavior by the Supplementary Movies 2-4.  

We note in passing that the rich physics of the transition region can likely also be captured by generalizing 

the effective-medium approximation of the mass-and-spring model in terms of a generalized wave 

equation for homogeneous non-local media, as introduced in [25], to the case of heterogeneous non-local 

elastic media. However, this aspect goes well beyond the scope of the present paper. 

 

Refined analytical model. In this section, we present a refined analytical model, which captures not only 

the behavior of the lowest band but also that of the higher bands for the proposed metamaterials. We 

make the following two assumptions: i) The acoustic pressure in the cuboid compartments in Fig. 1 is 

approximated as being constant within. ii) The pressure modes in all tubes are the fundamental 

waveguide mode, i.e., at a given position along the tubes, the pressure is constant over the cross section 

[34]. These two assumptions are expected to be valid for low-frequency sound, for which the wavelength 

in air is much larger than the unit cell size. 

On this basis, we derive the metamaterial dispersion relations analytically based on the Floquet-Bloch 

theorem [1]. As an ansatz, the acoustic pressure modulation at the lattice site defined by the pair of 

integers (𝑚𝑚,𝑛𝑛) is given by 𝑃𝑃�𝑚𝑚𝑛𝑛 = 𝑃𝑃� exp�i(𝑘𝑘𝑥𝑥𝑚𝑚𝑎𝑎 + 𝑘𝑘𝑦𝑦𝑛𝑛𝑎𝑎 − 𝜔𝜔𝜔𝜔)�, with 𝑃𝑃� being a constant prefactor as in 

Eq. (7). The key point to derive the dispersion relation is to analyze acoustic pressure wave propagation 

in the tubes. As one example, we consider the tube that connects the cuboid compartment at site (𝑚𝑚,𝑛𝑛) 

to its 𝑁𝑁th nearest neighbor along 𝑥𝑥-direction at site (𝑚𝑚 + 𝑁𝑁,𝑛𝑛). The pressure field inside the tube is 

composed of a forward waveguide mode, from the cuboid at site (𝑚𝑚,𝑛𝑛) to that at site (𝑚𝑚 + 𝑁𝑁,𝑛𝑛), and a 

corresponding backward waveguide mode 



12 

 𝑝𝑝(𝑠𝑠) = �𝐴𝐴+ exp �i 𝜔𝜔
𝑣𝑣air

𝑠𝑠� + 𝐴𝐴− exp �−i 𝜔𝜔
𝑣𝑣air

𝑠𝑠�� exp(−i𝜔𝜔𝜔𝜔). (12) 

Herein, 𝑠𝑠 indicates the distance along the central axis of the tube, with 𝑠𝑠 = 0 corresponding to one end 

of the tube, where it connects the cuboid at site (𝑚𝑚,𝑛𝑛). We further have 𝑠𝑠 = 𝐿𝐿𝑁𝑁, with 𝐿𝐿𝑁𝑁 = 𝑑𝑑 − 𝑤𝑤 +

2ℎ𝑁𝑁 + √𝑑𝑑2 + 𝑁𝑁2𝑎𝑎2  being the tube length, representing the other end. 𝐴𝐴+  and 𝐴𝐴−  are two unknown 

amplitude coefficients. The corresponding particle velocity is derived as 

 𝑣𝑣(𝑠𝑠) = 1
i𝜔𝜔𝜌𝜌0

∂𝑝𝑝
𝜕𝜕𝜕𝜕

= 1
𝜌𝜌0𝑣𝑣air

�𝐴𝐴+ exp �i 𝜔𝜔
𝑣𝑣air

𝑠𝑠� − 𝐴𝐴− exp �−i 𝜔𝜔
𝑣𝑣air

𝑠𝑠�� exp(−i𝜔𝜔𝜔𝜔), (13) 

with 𝜌𝜌0 representing the average air density as previously. Due to continuity, the acoustic pressure at the 

two ends of the tube must be the same as in the corresponding cuboids [34] 

 𝑝𝑝(0) = 𝑃𝑃� exp�i𝑘𝑘𝑥𝑥𝑚𝑚𝑎𝑎 + i𝑘𝑘𝑦𝑦𝑛𝑛𝑎𝑎 − i𝜔𝜔𝜔𝜔�, (14) 

 𝑝𝑝(𝐿𝐿𝑁𝑁) = 𝑃𝑃�exp (i𝑘𝑘𝑥𝑥(𝑚𝑚 + 𝑁𝑁)𝑎𝑎 + i𝑘𝑘𝑦𝑦𝑛𝑛𝑎𝑎 − 𝑖𝑖𝜔𝜔𝜔𝜔). (15) 

The two amplitude coefficients, 𝐴𝐴+ and 𝐴𝐴−, result from 

  𝐴𝐴+ = 𝑃𝑃�

2𝑖𝑖
exp�i𝑘𝑘𝑥𝑥𝑚𝑚𝑎𝑎 + i𝑘𝑘𝑦𝑦𝑛𝑛𝑎𝑎� csc �𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
� �exp(i𝑘𝑘𝑥𝑥𝑁𝑁𝑎𝑎) − exp(−i 𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
)�, (16) 

 𝐴𝐴− = 𝑃𝑃�

2𝑖𝑖
exp�i𝑘𝑘𝑥𝑥𝑚𝑚𝑎𝑎 + i𝑘𝑘𝑦𝑦𝑛𝑛𝑎𝑎� csc �𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
� �−exp(i𝑘𝑘𝑥𝑥𝑁𝑁𝑎𝑎) + exp(i 𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
)�. (17) 

Substitution of the above two equations into Eq. (13) leads to the particle velocity 

 𝑣𝑣(𝑠𝑠) = i 𝑃𝑃�

𝜌𝜌0𝑣𝑣air
csc �𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
� exp�i𝑘𝑘𝑥𝑥𝑚𝑚𝑎𝑎 + i𝑘𝑘𝑦𝑦𝑛𝑛𝑎𝑎 − 𝑖𝑖𝜔𝜔𝜔𝜔� �cos �𝜔𝜔𝜕𝜕−𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
� − cos � 𝜔𝜔𝜕𝜕

𝑣𝑣air
� exp(i𝑘𝑘𝑥𝑥𝑁𝑁𝑎𝑎)�. (18) 

From this expression, the total air mass flowing away from the cuboid at lattice site (𝑚𝑚,𝑛𝑛) through the 

above tube is given by 

 𝑄𝑄𝑚𝑚+𝑁𝑁,𝑛𝑛 = 𝜌𝜌0𝑆𝑆𝑁𝑁𝑣𝑣(0) = i 𝑆𝑆𝑁𝑁𝑃𝑃
�𝑚𝑚𝑛𝑛

𝑣𝑣air
csc �𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
�  �cos �𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
� − exp(i𝑘𝑘𝑥𝑥𝑁𝑁𝑎𝑎)�. (19) 

Here, the area 𝑆𝑆𝑁𝑁 = 𝜋𝜋𝑅𝑅𝑁𝑁2  represents the cross section of the tube and 𝑣𝑣(0) the particle velocity at one 

end of the tube. Similarly, we derive the average mass flow away from the cuboid at lattice site 

(𝑚𝑚,𝑛𝑛) through the tube that connects the two cuboids at sites (𝑚𝑚,𝑛𝑛) and (𝑚𝑚,𝑛𝑛 + 𝑁𝑁) as 

 𝑄𝑄𝑚𝑚,𝑛𝑛+𝑁𝑁 = i 𝑆𝑆𝑁𝑁𝑃𝑃
�𝑚𝑚𝑛𝑛

𝑣𝑣air
csc �𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
�  �cos �𝜔𝜔𝐿𝐿𝑁𝑁

𝑣𝑣air
� − exp�i𝑘𝑘𝑦𝑦𝑁𝑁𝑎𝑎��. (20) 
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With the conservation law for the air mass inside the cuboid compartment at site (𝑚𝑚,𝑛𝑛), we have [34] 

 i 𝜔𝜔
𝑣𝑣air
2 𝑉𝑉c𝑃𝑃�𝑚𝑚𝑛𝑛 = ∑ �𝑄𝑄𝑚𝑚+𝑁𝑁,𝑛𝑛 + 𝑄𝑄𝑚𝑚−𝑁𝑁,𝑛𝑛 + 𝑄𝑄𝑚𝑚,𝑛𝑛+𝑁𝑁 + 𝑄𝑄𝑚𝑚,𝑛𝑛−𝑁𝑁�∞

𝑁𝑁=1 . (21) 

𝑄𝑄𝑚𝑚−𝑁𝑁,𝑛𝑛 is the mass flow through the tube that connects the two cuboids at sites (𝑚𝑚,𝑛𝑛) and (𝑚𝑚−𝑁𝑁,𝑛𝑛). 

𝑄𝑄𝑚𝑚,𝑛𝑛−𝑁𝑁  is defined analogously. After some mathematical simplifications, we arrive at the following 

expression for the dispersion relation 

 𝜔𝜔
𝑣𝑣air

𝑉𝑉𝑐𝑐 = ∑ �𝜋𝜋𝑅𝑅𝑁𝑁2 csc �𝜔𝜔𝐿𝐿𝑁𝑁
𝑣𝑣air

� �4 cos �𝜔𝜔𝐿𝐿𝑁𝑁
𝑣𝑣air

� − 2 cos(𝑘𝑘𝑥𝑥𝑁𝑁𝑎𝑎) − 2cos (𝑘𝑘𝑦𝑦𝑁𝑁𝑎𝑎)��∞
𝑁𝑁=1 . (22) 

𝑉𝑉c represents the volume of the compartment. This equation connects the angular frequency 𝜔𝜔 with 𝑘𝑘𝑥𝑥 

and 𝑘𝑘𝑦𝑦 . For a given Bloch wave vector 𝐤𝐤 = (𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦), the implicit formula Eq. (22) provides multiple 

solutions for 𝜔𝜔. These solutions correspond to the different bands. Compared to the previous section, the 

price we pay for the refined modelling in the present section is that we do not obtain a closed explicit 

expression for the angular frequency 𝜔𝜔 as a function of the Bloch wave vector. However, the implicit Eq. 

(22) can easily be solved numerically. Results are shown by the blue dots in Figs. 3 and 4. They agree well 

with the numerical FEM calculations (gray curves) regarding the lowest bands as well as the higher bands. 

For the case of two different orders of long-range interaction in parallel shown in Fig. 5(a)-(c), the 

qualitative agreement for the lowest bands is again good, but quantitative differences occur, especially 

along the 𝚪𝚪𝐌𝐌 direction. The differences are yet more pronounced for the higher bands. We assign these 

differences to the fact that the vertical parts of the tubes for different 𝑁𝑁 partially overlap (cf. Fig. 2, part 

with height ℎ3), leading to interference of the respective partial waves. The refined model neglects these 

interferences. However, we recall that the focus of this study lies on the lowest bands. For these, the 

refined model generally performs better than the simple discrete model in Figs. 3-5. 

 

Elastic waves instead of airborne sound. So far, we have exclusively discussed longitudinally polarized 

airborne sound waves. It is interesting to investigate whether we can translate the overall approach of 

the metamaterial platform illustrated in Figs. 1 and 2 to elastic waves, for which three modes emerge 

from the 𝚪𝚪 point rather than just a single mode for airborne sound. For elastic waves, the structures in 

Figs. 1 and 2 should be interpreted as being composed of a single ordinary elastic material (e.g., a polymer, 

see Supplementary Note 3) rather than as air channels. Supplementary Figure 8 provides numerically 

calculated example band structures for 𝑵𝑵 = 𝟑𝟑,  𝟒𝟒, and 𝟓𝟓, that can be compared with Fig.4 (a)-(c). Clearly, 



14 

the overall behavior of the lowest elastic band is closely similar to that of the lowest band for airborne 

sound. Specifically, the number of extrema of 𝝎𝝎(𝐤𝐤), with 𝐤𝐤 = (𝒌𝒌,𝟎𝟎) or 𝐤𝐤 = (𝟎𝟎,𝒌𝒌), versus 𝒌𝒌 in the interval 

𝒌𝒌 ∈ [𝟎𝟎,𝝅𝝅/𝒂𝒂] is equal to 𝑵𝑵 – in agreement with the Fourier synthesis idea presented above.  

It is presently not clear whether this idea can also be translated to experimentally accessible metamaterial 

structures for yet other types of waves, such as, e.g., surface water waves, microwaves or light waves. We 

hope that our work stimulates future experiments and further design studies in this direction. 
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Figures and Captions 

 

Fig. 1. Considered metamaterial platform supporting beyond-nearest-neighbor interactions along two 
orthogonal directions. (a) Scheme of a single unit cell for 𝑁𝑁 = 3. (b) 2D square lattice with lattice constant 
𝑎𝑎 built from this unit cell. The colors are for illustration only. The colored regions form a channel system 
that is bounded by rigid walls (not shown for clarity). The cuboid compartments (yellow) are connected to 
their four immediate neighbors along the 𝑥𝑥- and 𝑦𝑦-direction by tubes (yellow) with radius 𝑟𝑟1. They are 
further connected to their 𝑁𝑁th nearest neighbors by tubes (blue) with radius 𝑟𝑟𝑁𝑁. The tubes along the 𝑥𝑥-
direction (𝑦𝑦-direction) are located above (below) the 𝑥𝑥𝑦𝑦-plane spanned by the yellow tubes. (c) gallery of 
unit cells for 𝑁𝑁 = 4 to 𝑁𝑁 = 8 as indicated. For our calculations, we use the following fixed geometrical 
parameters: 𝑟𝑟1/𝑎𝑎 = 0.03 , 𝑟𝑟𝑁𝑁/𝑎𝑎 = 0.05 , 𝑤𝑤/𝑎𝑎 = 0.30,ℎ/𝑎𝑎 = 0.80,ℎ0/𝑎𝑎 = 0.24,ℎ𝑁𝑁/𝑎𝑎 = 0.25,  and 𝑑𝑑/
𝑎𝑎 = 0.86. We choose 𝑎𝑎 = 10 cm for the metamaterials supporting airborne sound and 𝑎𝑎 = 100 μm for 
the elastic metamaterials.  
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Fig. 2. Same as Fig.1, but tubes (red) mediating the fifth-nearest-neighbor interactions (𝑵𝑵 = 𝟓𝟓)  are 
added as an example. (a) Single metamaterial unit cell. (b) 2D square lattice composed thereof. Clearly, 
yet further values of 𝑁𝑁 could easily be implemented in other planes parallel to the 𝑥𝑥𝑦𝑦-plane at other 𝑧𝑧-
positions below and above the plane spanned by the yellow tubes (𝑁𝑁 = 1 ). Again, due a rotation-
reflection symmetry of the overall structure, wave propagation along the 𝑥𝑥- and 𝑦𝑦-direction is equivalent. 
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Fig. 3. Calculated phonon dispersion relation for the metamaterial structure shown in Fig. 1, i.e., for 𝑵𝑵 =
𝟑𝟑 beyond-nearest-neighbor interactions only. (a) Tour through the first Brillouin zone (see inset) of the 
2D square lattice with lattice constant 𝑎𝑎. The gray curve is obtained by numerical finite-element-method 
(FEM) calculations. The analytical results of the simple discrete model are shown by the red curve. Here, 
only the lowest band occurs. The results of the refined analytical model are shown by the blue dots. These 
almost completely overlap with the numerical calculations. The agreement with the simple discrete model 
is qualitatively very good, especially for the principal directions. The parameters for the gray and blue data 
are given in Fig. 1. The used parameters for the simple discrete model are: 𝑀𝑀 = 𝜌𝜌𝑉𝑉c = 9.3 × 10−5g,𝐾𝐾1 =
27.9 N m−1 , and 𝐾𝐾3 = 17.7 N m−1 . (b) Frequency as obtained from the numerical finite-element 
calculations represented on a false-color scale versus wavenumber 𝑘𝑘𝑥𝑥  and 𝑘𝑘𝑦𝑦  within the first Brillouin 
zone of the square lattice. 
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Fig. 4. Dispersion relations as in Fig. 3(a), but for different orders 𝑵𝑵  of beyond-nearest-neighbor 
interactions in addition to the nearest-neighbor interactions. (a) 𝑁𝑁 = 3. (b) 𝑁𝑁 = 4. (c) 𝑁𝑁 = 5. (d) 𝑁𝑁 = 6. 
(e) 𝑁𝑁 = 7. (f) 𝑁𝑁 = 8. The corresponding metamaterial structures are depicted in Fig. 1(c). 
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Fig. 5. Calculated phonon dispersion relations for metamaterial structures as shown in Fig. 2. Compared 
to the dispersion relations shown in Fig. 3, two different beyond-nearest-neighbor interactions are present 
simultaneously here. (a) - (c) correspond to 𝑁𝑁 = 3  and 𝑁𝑁 = 4  simultaneously, 𝑁𝑁 = 3  and 𝑁𝑁 = 5 
simultaneously, and 𝑁𝑁 = 3  and 𝑁𝑁 = 6  simultaneously, respectively. Results from the numerical 
calculations (gray), the simple discrete model (red), and the refined analytical model (blue) are compared. 
(d) - (f) False-color representations of frequency versus wavenumber 𝑘𝑘𝑥𝑥  and 𝑘𝑘𝑦𝑦  from the numerical 
calculations. The behavior is due to the combined action of two different beyond-nearest-neighbor 
interactions. 
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Fig. 6. The shown 2D mass-and-spring model is mathematically equivalent to an approximate discrete 
model of the 2D metamaterial lattice shown in Fig. 1(b). To allow for comparison, the color of the masses 
(yellow) corresponds to that of the cuboid compartments in Fig. 1(b). Likewise, the nearest-neighbor 
Hooke’s springs (yellow) correspond to the nearest-neighbor tubes in Fig. 1(b). The beyond-nearest-
neighbor Hooke’s springs with spring constants 𝐾𝐾𝑁𝑁 , exemplified here for the case of 𝑁𝑁 = 3 , are 
schematically illustrated by the blue lines. For clarity, they are only depicted for a single mass in the lattice. 
All masses 𝑀𝑀  in the square lattice with lattice constant 𝑎𝑎  are identical. Analytical dispersion relations 
obtained from this model are shown by the red dots in Figs. 3 and 4 (also see Supplementary Figure 4). By 
virtue of the good agreement to the complete numerical calculations, the simple discrete model allows 
for discussing the highly unusual wave behavior at interfaces with reasonable effort (see Figs. 8-10). 
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Fig. 7. Simulation setup of wave refraction at interface. (a) Wave transmission at an interface between a 
local system with only nearest-neighbor interactions (bottom, gray) and a nonlocal system additionally 
including third-nearest-neighbor interactions, 𝐾𝐾3 ≠ 0 (top, yellow). The incident wave impinges under an 
angle of 45° onto the interface. (b) Due to the mismatch of interaction orders between the two regions, 
some of the third-order Hooke’s springs are cut away near the interface (dashed horizontal line) within 
the nonlocal region. To control the transmission of the incident waves, we fine-tune the mass parameters, 
𝑀𝑀01 and 𝑀𝑀02, and three Hooke’s spring constants, 𝐾𝐾01, 𝐾𝐾02, and 𝐾𝐾03, at the interface. To avoid reflection 
of the partial waves at the boundaries of the simulation domain, we choose a much larger simulation 
domain than the one shown. A wave packet that is Gaussian in space and time is launched by prescribing 
the pressure in Eq. (4) on the black lines according tocos(2𝜋𝜋𝑓𝑓c𝜔𝜔)exp(−(𝜋𝜋𝑓𝑓c𝜔𝜔/50)2)exp (−((𝑥𝑥 − 𝑥𝑥c)2 +
(𝑦𝑦 − 𝑦𝑦c)2)/37.52). (c) Temporal profile of the launched pulse, containing about 50 oscillation cycles. (d) 
Corresponding Fourier transform (absolute value). 
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Fig. 8. Negative refraction at an interface as illustrated in Fig. 7. (a) Iso-frequency curves for the nonlocal 
system, with the same parameters as in Supplementary Figure 4, and the local system, with parameters 
𝑀𝑀/𝑀𝑀0 = 1,𝐾𝐾1/𝐾𝐾0 = 1.2, and 𝐾𝐾3/𝐾𝐾0 = 0. The solid lines correspond to the carrier frequency 𝜔𝜔c/𝜔𝜔0 =
0.7 of the Gaussian pulse. The blue arrow represents the incident wave vector, 𝐤𝐤i. From Snell’s law, a 
single negatively refracted mode with wave vector, 𝐤𝐤t , and group velocity vector, 𝐯𝐯g , is possible. (b) 
Snapshot of simulated pressure fields at 𝜔𝜔/𝜔𝜔c = 150, with 𝜔𝜔c = 2𝜋𝜋/𝜔𝜔c. The interface parameters (cf. Fig. 
7) are 𝑀𝑀01/𝑀𝑀0 = 0.5,𝑀𝑀02/𝑀𝑀0 = 1.0, 𝐾𝐾01/𝐾𝐾0 = 1.0, 𝐾𝐾02/𝐾𝐾0 = 1.0 , and 𝐾𝐾03/𝐾𝐾0 = 1.0 . The black 
dashed straight lines indicate the propagation path of the incident and the refracted wave. In the nonlocal 
region, the wave propagation direction agrees well with the group velocity vector as derived in panel (a). 
An animated version of (b) is provided in the Supplementary Movie 1. The displacement component 𝑢𝑢𝑧𝑧 
for the two cuts perpendicular to the propagation direction at positions A (brown) and B (blue), 
respectively, is shown in Supplementary Figure 5. 
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Fig. 9. Triple refraction at an interface as illustrated in Fig. 7. Iso-frequency contours for the nonlocal 
system, with the same parameters as in Supplementary Figure 4, and the local system, with parameters 
𝑀𝑀/𝑀𝑀0 = 0.44,𝐾𝐾1/𝐾𝐾0 = 2.3, and 𝐾𝐾3/𝐾𝐾0 = 0. The solid lines correspond to the carrier frequency 𝜔𝜔c/𝜔𝜔0 =
0.9 of the excited Gaussian wave packet. By using Snell’s law, triple refraction with wave vectors, 𝐤𝐤t1, 𝐤𝐤t2 
and 𝐤𝐤t3, and corresponding group velocity vectors, 𝐯𝐯g1, 𝐯𝐯g2 and 𝐯𝐯g3, becomes possible. The partial wave 
with wave vector 𝐤𝐤t3 and group velocity vector 𝐯𝐯g3 is a backward wave with 𝐤𝐤t3 ⋅ 𝐯𝐯g3 < 0. 
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Fig. 10. Relative amplitude control of the three refracted modes at the interface between a nonlocal 
system and a local system by tuning the interface parameters illustrated in Fig. 7(b).  (a) Snapshot of 
simulated pressure fields with the interface parameters, 𝑀𝑀01/𝑀𝑀0 = 0.5 , 𝑀𝑀02/𝑀𝑀0 = 1.0 , 𝐾𝐾01/𝐾𝐾0 = 6.0 , 
𝐾𝐾02/𝐾𝐾0 = 1.0, and 𝐾𝐾03/𝐾𝐾0 = 1.0, respectively. In this case, only the refracted mode with the wave vector 
𝐤𝐤t1 and group velocity vector 𝐯𝐯g1 occurs. The dashed lines indicate the propagation path of the incident 
and refracted waves. (b), (c) Same as (a), but with interface parameters 𝑀𝑀01/𝑀𝑀0 = 0.8, 𝑀𝑀02/𝑀𝑀0 = 0.5, 
𝐾𝐾01/𝐾𝐾0 = 2.0 , 𝐾𝐾02/𝐾𝐾0 = 0.2 , 𝐾𝐾03/𝐾𝐾0 = 6.0 , and 𝑀𝑀01/𝑀𝑀0 = 1.0 , 𝑀𝑀02/𝑀𝑀0 = 0.6 , 𝐾𝐾01/𝐾𝐾0 = 1.0 , 𝐾𝐾02/
𝐾𝐾0 = 1.0, and 𝐾𝐾03/𝐾𝐾0 = 4.0, respectively. Animated versions of the three scenarios are provided in the 
Supplementary Movies 2-4. The displacement component 𝑢𝑢𝑧𝑧  for the cuts perpendicular to the 
propagation direction at the positions A (brown) and B (blue) in panels (a)-(c) is shown in Supplementary 
Figure 6. 
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Supplementary Note 1: Impact of damping effect. Supplementary Figure 1 exhibits the numerically 

calculated phonon dispersion relations for the metamaterial structure as in Fig. 3 (no damping), but 

accounting for damping. Panels (a) and (b) show the real and imaginary part of the eigenfrequencies, 

respectively. For comparison, results without damping are reproduced by the gray solid lines. In the 

numerical simulations, we include damping through the setting of “narrow region acoustics” in COMSOL 

Multiphysics. As for the case of zero damping, we employ the usual Bloch periodic boundary conditions. 

This choice leads to purely real-valued wave vectors. The material parameters chosen for air are: heat 

capacity 𝐶𝐶p = 1.01 × 103 J kg−1 K−1 , thermal conductivity 𝜅𝜅 = 2.57 × 10−2 W m−1 K−1 , ratio of 

specific heats 𝛾𝛾 = 1.4, and dynamic viscosity 𝜂𝜂 = 1.81 × 10−5 Pa ⋅ s, respectively. The mass density and 

the speed of sound for air are the same as in the main text. The real part of the eigenfrequencies changes 

by less than 4% when considering damping. The imaginary part is nearly two orders of magnitude smaller 

than the real part. Most importantly, the overall qualitative behavior is not changed in the presence of 

damping and roton-like dispersion relations are still obtained. An example for a frequency contour plot 

versus wave numbers 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 is shown in Supplementary Figure 2. The real part in panel (b) can be 

directly compared with Fig. 3(b). These calculations justify the assumption of zero damping that we use 

throughout the entire main paper.  

 

 

Supplementary Figure 1. Comparison between numerically calculated phonon dispersion relations for 
the metamaterial as in Figure 3 without damping and with damping. (a) Real and (b) imaginary part of 
the calculated eigenfrequencies, respectively. The solid gray curves refer to zero damping, the dotted 
curves to finite damping. Note that the imaginary part in panel (b) is nearly two orders of magnitude 
smaller than the real part in panel (a). 

 



 

Supplementary Figure 2. 2D Frequency contour plots versus the wavenumbers 𝑘𝑘𝒙𝒙  and 𝑘𝑘𝒚𝒚  for the 
metamaterial as in Figure 3, but accounting for damping. (a) Real part. The frequency contour is in very 
good qualitative agreement with the results shown in Fig. 3(b) for zero damping. (b) Imaginary part. Be 
aware of the two different false-color scales.  

 

 

Supplementary Figure 3. False-color representation of the acoustic pressure field (normalized) of the 
Bloch eigenstate for the metamaterial structure shown in Fig. 1 corresponding to a wave vector 𝒌𝒌 =
(0.5 𝜋𝜋/𝑎𝑎,  0). For clarity, an array of 4 × 1 unit cells is depicted. It can be seen that the pressure is nearly 
constant within the compartments but exhibits a gradient along the axes of the tubes. This gradient can 
be interpreted in terms of an effective force, hence in terms of a Hooke’s spring constant of the tube. 

 

 

Supplementary Note 2: Simple discrete model (mass-and-spring model). Supplementary Figure 4 shows 

an exemplary analytically calculated dispersion relation of the 2D simple discrete model according to Eq. 

(8). The chosen parameters are given in the figure caption. In panel (b), we have highlighted selected iso-

frequency contours to ease the discussion in the main text. 



 

Supplementary Figure 4. Example dispersion relation of the 2D mass-and-spring system in Fig. 6. Here, 
we only include nearest-neighbor interactions and third-nearest-neighbor interactions (cf. Fig. 3). (a) 
Dispersion relation for the usual tour through the first Brillouin zone of the square lattice. Roton-like 
minima occur along both, the 𝚪𝚪𝚪𝚪 and the 𝚪𝚪𝚪𝚪 direction. (b) 2D Frequency contour plot, 𝜔𝜔/𝜔𝜔0, versus the 
wavenumbers 𝑘𝑘𝑥𝑥  and 𝑘𝑘𝑦𝑦 . We choose the parameters 𝑀𝑀/𝑀𝑀0 = 1.0  and 𝐾𝐾1/𝐾𝐾0 = 𝐾𝐾3/𝐾𝐾0 = 1.0 . The 
reference frequency is 𝜔𝜔0 = �10𝐾𝐾0/𝑀𝑀0. This reference frequency is also used in the calculations shown 
in Figs. 8-10. 

 

 

 

Supplementary Figure 5. Calculated displacement (normalized) versus perpendicular coordinate at the 
marked positions A and B for the negative refraction in Fig. 8. The displacement for position A is extracted 
at 𝑡𝑡/𝑇𝑇c = 0 while for position B is 𝑡𝑡/𝑇𝑇c = 150.  

 

 



 
Supplementary Figure 6. Similar to Supplementary Figure 6 but for the triple refractions demonstrated 
in Fig. 10. (a) (b) (c) Cross-sectional displacement profile plots correspond to 10 (a), (b), and (c), 
respectively. The displacement for position A is extracted at 𝑡𝑡/𝑇𝑇c = 0, that for position B at 𝑡𝑡/𝑇𝑇c = 190.  

 

 

Supplementary Figure 7. As Fig. 10, but with a different set of interface parameters for exciting three 
refracted modes simultaneously. The interface parameters are indicated in the figure. 



Supplementary Note 3: Metamaterials for elastic waves rather than airborne sound. We investigate 

whether the metamaterial platform including beyond-nearest-neighbor interactions along two 

orthogonal directions suggested in Fig. 1 for airborne (longitudinal) pressure waves can also serve to 

realize corresponding elastic metamaterials. In this case, all rods and cuboids are massive (rather than 

hollow) and made from only a single constituent material. We choose typical polymer parameters with 

𝐸𝐸 = 4.19 GPa for the Young’s modulus, 𝜈𝜈 = 0.4 for the Poisson’s ratio, and 𝜌𝜌 = 1140 kg m−3  for the 

mass density  [1]. Floquet-Bloch periodic boundary conditions are applied to the four sides of the unit cell 

shown in Fig. 1, while all other boundaries are treated as stress free. We solve the band structure by using 

the built-in Solid Mechanics Module in COMSOL Multiphysics. The geometry is meshed with around 80 

thousand tetrahedral to ensure convergence. 

In Supplementary Figure 8 (a)-(c), we plot the calculated phonon band structure for the example of third-

nearest-neighbor (𝑁𝑁 = 3) , forth-nearest-neighbor (𝑁𝑁 = 4) , and fifth-nearest-neighbor (𝑁𝑁 = 5) 

interactions, respectively. In order to increase the beyond-nearest-neighbor interactions, we choose 

slightly different rod diameters than above here, i.e., 𝑟𝑟1/𝑎𝑎 = 0.02 and 𝑟𝑟𝑁𝑁/𝑎𝑎 = 0.06. With the latter, we 

can obtain a maximum of 𝑁𝑁 = 6 , i.e., for 𝑁𝑁 ≥ 7  the rods overlap. For the plate-like 2D metamaterial 

structure, as expected, three bands originate from the 𝚪𝚪 point. The one starting quadratically from the 𝚪𝚪 

point (marked in blue) corresponds to an out-of-plane flexure wave. This mode is similar to an out-of-

plane vibration. We find minima in the dispersion relation along both, the 𝚪𝚪𝚪𝚪 and the 𝚪𝚪𝚪𝚪 directions. As 

for the case of airborne sound waves (cf. Fig. 4), the number of oscillations on this band increases with 

increasing 𝑁𝑁. This behavior is in agreement with the discussion on the mass-and-spring model in section 

3. The other two modes start linearly at the 𝚪𝚪 point. The one with larger (smaller) phase velocity is an in-

plane longitudinal (shear) wave. The shear band exhibits roton-like minima of the dispersion relation along 

multiple directions, while the longitudinal band strongly interacts with higher bands, leading to a more 

complicated behavior. 

  



 

Supplementary Figure 8. Phonon dispersion relation for the same geometry as shown in Fig. 1, but for 
an elastic metamaterial instead of an acoustical metamaterial. The colors in Fig. 1 are for illustration only; 
the cuboids and cylinders are made from the same constitutive elastic material. (a) – (c) Phonon band 
structures for the cases 𝑁𝑁 = 3,  4, and 5, respectively. The lowest (flexural) band is highlighted in blue, all 
other bands are gray. The cylinder radii are 𝑟𝑟1/𝑎𝑎 = 0.02  and 𝑟𝑟𝑁𝑁/𝑎𝑎 = 0.06 , respectively. All other 
parameters are the same as in Fig. 1. For the constituent material, we choose 𝐸𝐸 = 4.19 GPa  for the 
Young’s modulus, 𝜈𝜈 = 0.4  for the Poisson’s ratio, and 𝜌𝜌 = 1140 kg m−3  for the mass density. These 
parameters correspond to a typical polymer amenable to 3D laser micro-printing. 
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