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Abstract

In this work, we demonstrate that three-dimensional chiral mechanical metamaterials are able to self-twist
and control their global rotation. We also discuss the possibility of adjusting the extent of the global rotation
manifested by the system in a programmable manner. In addition, we show that the effect of the global rotation
can be observed both for small systems composed of a single structural unit as well as more complex structures
incorporating several structural elements connected to each other. Finally, it is discussed that the results presented
in this work are very promising from the point of view of potential applications such as satellites or telescopes in
space, where appropriately designed mechanical metamaterials could be used for the attitude control as well as
other systems where the control of the rotational motion is required.

1 Introduction

Mechanical metamaterials [1, 2, 3, 4] are a class of novel materials that exhibit their effective properties due to
their rational design rather than the chemical composition. Based on their structure, these systems can exhibit
counterintuitive mechanical properties such as negative Poisson’s ratio (auxetic behaviour) [1, 2, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14], negative stiffness [15, 16, 17, 18, 19, 20] or negative compressibility [21, 22, 23, 24, 25]. In recent
years, a continuous growth of the metamaterials research field led to their implementation in the case of superior
biomedical [26, 27] and protective devices [28, 29]. A lot of attention has been also devoted to the search of new ways
of controlling the deformation and resulting mechanical properties of such materials in a programmable manner. To
this aim, researchers have incorporated a number of approaches including the use of elastic[30, 31, 32], magnetic and
other interactions [33, 34, 19] which allow to control the response of the system in the case of a specific application.

Despite numerous directions of studies related to mechanical metamaterials, there are still different types of
mechanical behaviour which remain to be discovered. A very promising example of a new type of behaviour which
has been recently reported [35, 36] corresponds to the potential of mechanical metamaterials with the appropriate
mass distribution to induce and control their own global rotational motion, i.e. the rotation of the entire system with
respect to its centre of mass (see Concept section). It is important to note that this effect is very different from other
types of commonly studied types of mechanical behaviour such as the rotation of materials’ subunits [37] or twisting
of the entire system [38, 39, 40, 41, 42] induced by the application of external forces. In terms of its origin, the
concept of the self-induced global rotation of mechanical metamaterials was first proposed in the case of the so-called
rotating square system with an uneven mass distribution [35]. More specifically, in this study, it was reported that
the deformation of the structure corresponding to the rotation of its components having different masses may result
in the generation of the non-zero net angular momentum (see Mass assignment subsection). This, in turn, leads to
the global rotation of the entire system, which effect stems from the conservation of angular momentum. In another
work [36], this concept was also confirmed experimentally for the same type of the system. It is also interesting to
note that the basic principle of the self-induced global rotation is the same as in the case of the so-called reaction
wheels [43, 44] which are commonly used in the case of satellites and other devices employed in space to ensure their
attitude control. Thus, mechanical metamaterials manifesting this phenomenon may be potentially applied in similar
applications related to the control of the rotational motion of satellites and telescopes where they could replace or
significantly improve the efficiency of the currently used devices.

The concept of the self-induced global rotation of mechanical metamaterials is not limited to a specific geometry
of the system. In fact, one can use an arbitrary type of a structure to achieve this effect given that its internal
deformation would result in the non-zero net angular momentum. This particular observation was reported in the
recent publication by Dudek et al. [45] where it was shown that this effect can be observed for a number of different
structures composed of rigid rotating structural units where the appropriate selection of the structure and mass
distribution allow to maximise the extent of the global rotation. Particularly interesting in this regard are chiral
systems [46, 47, 48, 49, 50, 51] as they were reported [45] to be able to manifest a superior extent of the self-induced
global rotation in comparison to other structures where different groups of subunits rotate in opposite directions. In
another recent study [52], this observation was confirmed experimentally where it was also identified which of the
two-dimensional chiral mechanical metamaterials can exhibit the largest extent of the global rotation. However, it
is important to note that all of these studies related to the concept of the self-induced and self-controlled global

1



rotation of mechanical metamaterials were only focused on two-dimensional systems and similar studies have never
been conducted for three-dimensional mechanical metamaterials.

In this work, we analyse a particular three-dimensional mechanical metamaterial with a non-uniform mass dis-
tribution in order to assess its potential to induce its own global rotational motion. An attempt will be made to
verify whether the factors such as the variation in the mass distribution can be used to control the extent of this
phenomenon. Finally, we will analyse the possibility of achieving such control in a programmable manner.

2 Concept

It is known that mechanical metamaterials can deform in an abundance of different ways depending on their design
and the way how the external forces are being applied to them. However, such structures can also deform as a result
of the application of internal forces, e.g. forces originating from elastic properties of structural elements. In the latter
case, as reported in the recent studies [45, 52], the mechanical deformation can lead to the global rotation of the
entire system with respect to its centre of mass. However, the observation of this effect is not possible for an arbitrary
mechanical metamaterial. As explained in detail in [35, 36], in order for the self-induced global rotation to occur,
the considered mechanical metamaterial must be designed in a way where the net angular momentum associated
with all structural elements assumes the value different than zero as the structure is being deformed. Then, due to
the conservation of angular momentum principle, the entire system must rotate with respect to its centre of mass in
the direction opposite to that corresponding to the net angular momentum. As discussed in [35, 36], to design the
structure in a manner enabling it to exhibit the self-induced global rotation one can consider a number of different
approaches including a non-uniform mass distribution as is the case for the model proposed in this study. On the
other hand, it is also worth to note that the considered effect of the self-induced global rotation can be also observed
for structures other than mechanical metamaterials. One such example can be reaction wheels[43, 44] which based on
the effect described above are capable of controlling the rotational motion of satellites.

3 Model

3.1 Geometry and interactions

In this work, we analyse a particular three-dimensional mechanical metamaterial that is shown schematically in
Fig.1(a). We assume that the considered system consists of two identical in terms of their geometry hexagonal planes.
These planes are constituted by points located at their vertices and centres where different points are connected to
each other by means of rigid rods as shown schematically in Fig.1. It is also assumed that points within the system
are assigned with different masses in a manner so that in the top layer of the structure there is one point having a
mass m1 and six points having a mass m2 (see Fig. 1(a)). Similarly, in the bottom layer of the system, there is one
point having a mass m3 and the remaining six points are assigned the mass m4. Based on Fig. 1(a), one can also
note that the linear dimension corresponding to hexagons formed by these points is denoted as la. Furthermore, the
two adjacent hexagonal planes are connected to each other through rigid bonds having their length governed by the
two-body harmonic potential. The equilibrium length of such bonds is denoted as l and due to their rigidity it remains
approximately unchanged during the deformation process.

The deformation process of the considered system is induced by the bond connecting centres of the two hexagonal
planes constituting the structure. The length of this bond is governed by the harmonic potential associated with the
stiffness constant k1 and the equilibrium length denoted as heq. At the beginning of the deformation process, the
bond is assumed to be stretched so that its length is equal to h, where h > heq (see Fig. 1(a)). Thus, there is a force
originating from the presence of this spring-like bond that acts on both of the hexagonal planes constituting the system
and in terms of magnitude is the same for both surfaces. However, it is important to note that the application of such
forces does not result solely in the translational motion of the considered planes along the z-axis. More specifically,
due to the presence of the oblique bonds, the translational motion is accompanied by the rotational motion of both
of these surfaces with respect to their centres of mass.

In order to ensure that the behaviour of the system could represent the way how similar structures act in real life,
it is assumed that its deformation corresponds to a certain resistance induced by bonded interactions between points
constituting the system. More specifically, such resistance originates from three-body bonded interactions responsible
for hinging between bonds connecting different pairs of points and four-body bonded interactions corresponding to the
torsional motion within the structure (see Fig.1(c)). It should be also noted that the three-body bonded interactions
grant the stability of the system and allow to ensure that the two hexagonal planes remain planar and parallel with
respect to each other.

In terms of the mathematical formalism, bonds connecting different pairs of points which correspond to two-body
bonded interactions have their length governed by the harmonic potential defined as 1

2k1 (li − li,eq)
2

where li and
li,eq represent the current and the equilibrium length of a specific i-th bond respectively. Similarly, the three-body

bonded interactions are associated with the potential defined as 1
2k2 (θijk − θijk,eq)

2
where k2 is a constant. Finally,

the potential corresponding to four-body bonded interactions can be defined as 1
2k3 (θijkl − θijkl,eq)

2
. In this case, the

angle θijkl corresponds to the angle between two vectors formed by pairs of points denoted as i, j and k, l as shown in
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Figure 1: Panels show: (a) 3D graphical representation of the considered system having a potential to exhibit the
global rotation with respect to the vertical axis parallel to the spring inducing the deformation of the system, (b)
graphical representation of the second system analysed in this work which corresponds to two structures shown on
panel (a) connected together by means of the purple rod-like bonds passing through centres of oblique ligaments. Panel
(c) shows an example of how different interactions between points within the system are defined. The transparent
hexagonal shape shown on panel (a) having its vertices defined by centres of a specific set of bonds within the system
is used in order to determine the extent of the global rotation exhibited the structure during the deformation process.

Fig.1(c). It is also worth to note that in order to determine the force acting on points within the system as a result of
the presence of bonded interactions listed above, it is sufficient to calculate the gradient of a given potential associated
with a specific point with respect to its position vector.

3.2 Mass assignment

In order to observe the self-induced global rotation of a mechanical metamaterial it is necessary to construct it in a
way so that the rotational motion of its constituents results in a non-zero net angular momentum. This in turn may
prove to be difficult for certain systems and requires a very careful mass distribution. In the case of the considered
model, the easiest method to achieve it seems to be the distribution of mass that allows both surfaces to exhibit
translational motion at the same speed (in terms of magnitude). As a result, due to the presence of oblique bonds (see
Fig.1), both planes would rotate with the same in terms of magnitude but directed in the opposite direction angular
velocity. In such a case, if the planes were to have a different moment of inertia, then both of them would also have a
different angular momentum. Thus, it would be possible to observe a non-zero net angular momentum which would
have to be compensated by the angular momentum associated with the global rotation of the entire system in order
to satisfy the conservation of angular momentum principle.

In the considered model, the two hexagonal planes constituting the system have a mass which can be described
as m1 + 6m2 (top layer) and m3 + 6m4 (bottom layer). Thus, in order to satisfy the first of the aforementioned
conditions corresponding to both planes moving vertically with the same in terms of magnitude but opposite speed,
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m1 + 6m2 must be equal to m3 + 6m4. It is also worth to note that this condition is not required to observe the
self-induced global rotation but significantly simplifies the analysis of the extent of this effect. Furthermore, in order
to ensure that the moment of inertia of both planes is different, one can note that only masses denoted as m2 and
m4 make a non-zero contribution to the moment of inertia of a given plane as masses m1 and m3 are defined on the
axis of rotation. In other words, to potentially observe the effect of the self-induced global rotation, it is sufficient to
ensure that m2 6= m4. In view of this, in the further part of this work, the analysed results are generated for systems
corresponding to m2/m4 = 1, 2, 5 where the mass of both planes is always the same and is equal to 0.5 kg.

3.3 Modeling and Parameters

The considered systems are analysed through the use of Molecular Dynamics (MD) simulations utilising the fourth
order Runge-Kutta algorithm [53] for a constant time-step ∆t = 10−6 s. It is also assumed that there are not any
external forces acting on the analysed structures. Thus, all forces acting on the system originate from bonded inter-
actions. Furthermore, to generate the results presented in this study, different potentials governing the deformation
mechanism are defined uniquely depending on the position of a given bond within the system. More specifically, upon
taking two-body bonded interactions into consideration, the value of k1 is set to be equal to 240 N/m in the case of
the vertical bond inducing the deformation of the entire system. On the other hand, this constant is set to be equal
to 2 · 108 N/m for bonds forming hexagonal planes (see Fig.1) as these planes are supposed to be rigid throughout the
deformation. In addition to this, constant k1 is set to be equal to 2 ·109 N/m for oblique bonds causing the rotation of
hexagonal planes as the entire system is being deformed. Furthermore, it is assumed that the initial and equilibrium
length of each of the two-body bonds was the same within the entire system with exception for the vertical bond as
discussed above. More specifically, heq = 0.18 m, h = 0.3 m and la = 0.2 m.

Similarly to two-body bonded interactions, the constant k2 associated with three-body bonded interactions is also
set to assume different values depending on the position of a given bond within the system. For all of the three-body
bonds like the one shown in Fig.1(c), k2 is assumed to be equal to 2 J rad−2. On the other hand, three-body bonds
governed by the harmonic potential are also used between points forming hexagonal planes to ensure their rigidity
should two-body bonds prove to be insufficient. In this case, k2 = 1 J rad−2. Such bonds are also used in order to
ensure that both of the hexagonal planes remain parallel with respect to each other in which case k2 assumes the value
of 2000 J rad−2. Finally, it is important to mention that within the system there is only one type of four-body bonds
where all of the bonds are resembling the bond shown schematically in Fig.1(c). In this case, the value of k3 used in
the definition of the harmonic potential is equal to 0.5 J rad−2. It is also important to emphasise the fact that the
equilibrium angles related to all three-body and four-body bonds present within the system are matching the initial
configuration of the system.

4 Results and discussion

In this work, in order to assess the possible extent of the self-induced global rotation of the system shown in Fig.1(a)(see
Appendix A to find an information about the way how the extent of the global rotation is caluclated), we analyse
several variations of this structure with each of them having a different mass distribution. However, as discussed in
more detail in the Model section, the top and the bottom plane of each of these systems have exactly the same mass
which should make it possible to measure the extent of the self-induced global rotation in the aforementioned manner.
Thus, before analysing the possibility of observing the considered phenomenon, it is important to first verify whether
this condition related to both planes moving with the same in terms of magnitude but opposite speed is satisfied.
Based on Fig. 2(b), one can note that for all of the considered systems corresponding to m2/m4 mass ratios equal
to 1,2 and 5, this behaviour can be indeed observed. More specifically, in all of these cases, the top and bottom
plane of the specific structure move along the z-axis approximately with the same speed but in opposite directions.
One can also note that for all of the considered cases, the extent of translation of the hexagonal planes is the same,
i.e. |∆h| reaches approximately the same maximum value for all configurations. The only difference corresponds to
the fact that |∆h| changes at a different rate for each mass arrangement. This in turn stems from the fact that the
difference in the mass distribution results in a different moment of inertia associated with planes constituting each of
the structures.

Based on Fig.2(c), one can note that the difference in the mass distribution results in a very different extent
of the global rotation manifested by considered systems. In fact, for the first of the structures corresponding to
m2/m4 = 1, there is no global rotation. This stems from the fact that in this particular case, both the top and
bottom hexagonal planes have exactly the same moment of inertia. Hence, both planes have the same in terms of
magnitude but opposite angular momentum and the structure cannot exhibit the global rotation as it would violate
conservation laws. Furthermore, one can note that this is clearly not the case for structures where m2/m4 = 2 and
5. More specifically, in both of these cases, the non-zero global rotation can be observed where the maximum extent
of this effect is approximately equal to 4.47◦ and 8.95◦ respectively (the graphical representation of the mechanical
deformation of the system corresponding to the m2/m4 = 5 ratio is shown in Fig.2(d-e)). One can also note that
in general, upon increasing the value of the m2/m4 ratio, it is possible to increase the extent of the global rotation.
The reason for that is the fact that the larger the m2/m4 coefficient the larger the difference in the moment of inertia
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Figure 2: Panels show: (a) 3D diagram portraying the deformation mechanism leading to the global rotation, (b) the
absolute value of the translation of the top and bottom layer of the system along the z-axis during the deformation
process, (c) variation in the extent of the global rotation for different types of the mass distribution, (d) projection
of the evolution of the system with m2/m4 = 5 in the xy plane and (e) the same process as on panel (d) portrayed
in 3D. On panels (d) and (e) the auxiliary black and red solid lines indicate the initial and final orientation of the
system respectively.

associated with the two hexagonal planes. Thus, due to the fact that they rotate with the same angular velocity, the
net angular momentum which must be compensated by the global rotation becomes increased.

Upon having a closer look at the results provided in Fig.2(c) one can note that the direction of the manifested
global rotation matches predictions that one should make based on the way how the model is defined. In other words,
the direction of the global rotation is opposite to the direction of rotation of a heavier hexagonal plane corresponding
to masses m2 located at its vertices. This in turn is essential in order to satisfy the conservation of angular momentum
principle. Furthermore, it is also possible to note that despite the fact that during the initial part of the deformation
process the extent of the global rotation |∆θ1| seems to be constantly increasing at one point this trend changes and
|∆θ1| starts decreasing for each system where m2/m4 6= 1 (i.e. the system where all masses are the same). This
stems from the fact that the deformation is induced by the elastic spring-like bond which must overcome a gradually
growing resistance originating from different bonded interactions described in the Model section in order to deform the
system. Thus, it is obvious that at certain point the system must start deforming back towards the initial configuration
similarly to what would be the case for the initially stretched and released rubber band. At this point, it is also worth
to note that in addition to the mass distribution, another factor that can affect the extent of the self-induced global
rotation is the length of oblique ligaments (having the length l in Fig.1) and by extension, the height of the system h
(see Appendix B).

After determining that it is possible for the system shown in Fig.1(a) to induce its own global rotational motion,
it is also interesting to check whether such effect could be observed for larger structures which are composed of more
than one structural unit. To do this, in this work, we analyse the behaviour of the structure shown in Fig.1(b) where
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as discussed in the Model section, the only difference between this and the former system is the presence of two
identical structural units instead of one where these structural units are connected to each other by means of the
appropriately defined three-body interactions (see Fig.1(b)). In fact, the only reason to use such additional bonds,
which are represented graphically by means of a purple rod in Fig.1(b), is to ensure that both cylindrical parts of the
structure would rotate together should the internal interactions induce such motion.

Figure 3: Panels: (a) diagram portraying different types of rotation induced during the deformation process, (b)
variation in the extent of the global rotation for structures corresponding to a different separation distance d between
centres of its structural elements and (c) graphical representation of the deformation of the system from the perspective
of the projection in the xy plane. The black dashed auxiliary line represents the initial orientation of the undeformed
system where the solid red lines defines the orientation of the system at the time when ∆θ1 assumes the maximum
value.

As shown in Fig.3(b), the deformation of the system portrayed in Fig.1(b) which consists of the two structural
elements with the mass ratio m2/m4 = 5 leads to the global rotation of the entire system occurring with respect to
its centre of mass. However, unlike in the case of the structure composed of only one structural unit, in this case,
the centre of mass is not located within any of these structural elements. Instead, it is located between the structural
units at the distance d/2 from their respective centres of mass (measured in the xy plane). One can also note that the
direction of the manifested global rotation, which is graphically represented in Fig.3(c), is opposite to the direction
of rotation of hexagonal planes associated with masses m2. This in turn, as discussed during the analysis of results
presented in Fig.2, is in agreement with theoretical predictions.

In addition to the fact that the self-induced global rotation can be observed for the system shown in Fig.1(b) given
the appropriate mass distribution, it is also important to analyse the extent of this effect. According to Fig.3(b),
the maximum extent of the global rotation for the system composed of two structural units is significantly smaller
than is the case for the structure consisting of one structural unit. More specifically, for the best performing of the
analysed examples, the maximum extent of the global rotation is approximately equal to 3.12◦ which result is almost
three times smaller than is the case for the system composed of one structural unit associated with the same mass
distribution. Such a significant decrease in the extent of the global rotation in the case of the structure portrayed
in Fig.3(a) stems from the fact that masses are moved significantly further away from the axis of global rotation in
comparison to the system constituted by one structural unit. Hence, the corresponding moment of inertia related to
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the global rotational motion is also significantly larger. Furthermore, one can note that upon increasing the value of
the separation distance between the two structural units, the extent of the global rotation becomes gradually smaller.
This behaviour, similarly to the previous observation, can be also explained by the fact that the increase in the value
of d increases the moment of inertia associated with the global rotation.

At this point, it is important to note that there is one limitation of the considered model. Namely, each of
the analysed systems can induce its global rotational motion only as long as it is deforming in a specific direction
which process corresponds to the specific direction of rotation of its constituents. The change in the direction of the
deformation process, e.g. the extension of the system after it was initially being compressed, would lead to the opposite
direction of the global rotation. As a matter of fact, such behaviour is captured in Fig.2(c) and Fig.3(b) where once the
structure starts deforming back towards the initial configuration, the system commences the rotation in the opposite
direction to what was initially the case. It is also necessary to remember that in many real-life situations, we would
want to have an opportunity to observe the global rotation to the desired (sometimes large) extent which is not limited
by geometric constraints. This can be achieved should one for example incorporate magnets and electromagnets in the
analysed system in a manner shown schematically in Fig.4. More specifically, in the case of the structure with mobile
magnets being able to slide along rigid bars as shown in Fig.4, it is possible to conveniently make the moment of
inertia of the two hexagonal planes to be different by adjusting magnets’ positions along such bars in a programmable
manner. This can be done by means of the appropriately located electromagnets that can either repel or attract
unconstrained magnets up to the point where they would assume an expected position along the bar. Thus, during
the deformation process, the two hexagonal planes having a significantly different moment of inertia could generate the
non-zero net angular momentum which would lead to the global rotation. In addition to this, should the system stop
deforming in a specific direction due to reaching its geometric limit, positions of sliding magnets could be changed.
Then, upon reversing the moment of inertia of the two hexagonal planes by changing the type of interaction between
magnetic inclusions, it would be possible to continue the global rotation in the same direction as was the case before
reaching the geometric constraint even though the direction of the mechanical deformation would be reversed. This
way, in theory, it would be possible to attain an arbitrary angle of the global rotation. Finally, it is very important
to emphasise the fact that the condition proposed in this study related to the rigidity of rods constituting the system
is very significant. This stems from the fact that if this condition was not satisfied, the rods constituting the system
would be prone to buckle during the deformation process which would likely minimise the extent of rotation of the
hexagonal planes constituting the system and by extension would result in the negligible extent of the global rotation.

Figure 4: Diagram showing the concept of the system with fixed electromagnets and magnets moving along rigid bars.
In this case, mobile magnets may move either towards the outer or central electromagnets depending on their mutual
orientation. The global rotation corresponding to the depicted deformation process is not presented for the sake of
the clarity.

All of this is very important as in this work it is shown that the considered 3D mechanical metamaterial can induce
its own global rotational motion. It is also discussed that the extent of the global rotation can be controlled via the
variation in the mass distribution within the system. In addition to this, it is discussed how the system considered in
this study can be modified in order to make it possible to observe the self-induced global rotation to an arbitrary extent
(see Fig.4). Furthermore, it is also shown that the effect studied in this work is not limited only to one structural unit
and can be extended to larger structures incorporating a number of such structural elements connected together (see
Fig.3). All of these results offer several advantages in comparison to two-dimensional mechanical metamaterials that
had been studied from the point of view of the considered phenomenon. First of all, the considered 3D structures do
not need to change the surface of rotating planes constituting the structure during the deformation process. This in
turn could prove to be very important in the case of applications such as the control over the rotational motion of
the satellite or other object employed in space where available space is very limited. Furthermore, the extent of the
self-induced global rotation of the 3D structures can be relatively large in comparison to a majority of two-dimensional
systems upon comparing a single deformation cycle. All of these features make the systems discussed in this work to
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be suitable to be implemented in the case of a variety of applications including satellites and telescopes employed in
space. They can also prove to be very useful in the design of novel robots which could utilise the concept proposed in
this work to improve their mobility.

5 Conclusion

In this work, it is shown that three-dimensional mechanical metamaterials can induce their own global rotational
motion. It is also shown that the extent of such rotation can be controlled via the variation in the mass distribution
within the system. Furthermore, it is discussed that such control over the rotational motion of the structure can
be potentially achieved in the programmable manner should one for example decide to utilise appropriately located
magnetic inclusions. In addition to this, it is discussed that the concept of the self-induced global rotation can be
observed both for small structures composed of a single structural unit as well as larger systems incorporating several
structural elements. All of these results are very promising from the point of view of a variety of applications as they
indicate that the concept presented in this work could be used in the case of satellites, telescopes employed in space
and many others devices that require the control over their rotational motion.
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Appendix A: Calculation of the extent of the global rotation

In this work, we analyse two systems shown in Fig.1(a) and Fig.1(b). It is possible to note that while discussing the
geometry of the system, we only focused on the structure shown in Fig.1(a) as the system presented in Fig.1(b) is
almost identical. More specifically, it consists of two structures like the one shown in Fig.1(a) which are connected to
each other by means of the additional rod passing through centres of oblique ligaments as shown in Fig.1(b).
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Figure A1: The diagram showing how the extent of the global rotation was calculated for the system composed of a
single structural cell.
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For the systems shown in Fig.1(a), the extent of the global rotation is evaluated by means of the rotation of the
auxiliary hexagonal plane which is marked by the light green colour. The vertices of this auxiliary plane correspond
to centres of oblique ligaments. Furthermore, due to the fact that both, the top and bottom surface of the structure
move with the same in terms of magnitude but opposite velocity and angular velocity, positions of centres of oblique
bonds would be fixed in space if the system does not exhibit a global rotational motion. This means that the extent
of the global rotation can be also interpreted as a net rotation of the top and bottom plane of the system. This stems
from the fact that if there was no global rotation, then the combination of the rotation of the top and bottom planes
would be equal to zero. Thus, as shown in Fig. A1, if one was to define the initial orientation (in the xy plane)
of the aforementioned green hexagonal surface by means of the vector −→r i and its final orientation as the vector −→r f

(once the system is deformed), then the extent of the global rotation could be calculated by means of the following

expression: |∆θ1| = arccos
( −→r i·−→r f

|−→r i||−→r f |

)
. However, at this point it is also important to emphasise the fact that should

one consider the system where top and bottom planes have different masses then the approach described above could
not be implemented.

The second system considered in this work (see Fig.1(b)) exhibits the global rotation in a very different manner
than is the case for the structure shown in Fig.1(a). This stems from the fact that for the first structure, it is easy
to confuse the extent of the global rotation with rotation of individual planes as both of these rotational motions
occur with respect to the same axis. However, for the second analysed system, it is very simple to identify the global
rotation manifested by the structure as it occurs with respect to the vertical axis located between the two structural
elements constituting the system (see Fig.1(b)). More specifically, one can determine it by means of the extent of
rotation of an auxiliary vector connecting centres of two topmost (or bottommost) hexagonal surfaces measured in
the xy plane. Finally, it should be noted that for all of the structures considered in this work, the global rotation will
be denoted as ∆θ1.

Appendix B: Parametric analysis of the behaviour of the single-cell struc-
ture

At this point, it is also worth to note that in addition to the mass distribution, another factor that can affect the
extent of the self-induced global rotation is the length of oblique ligaments (having the length l in Fig.1) and by
extension, the height of the system h. In Fig. B1 (a), it is shown that for relatively small extents of the mechanical
deformation, structures corresponding to the relatively large value of h can exhibit a slightly larger extent of the
global rotation than their shorter counterparts. On the other hand, very tall structures (large value of h) correspond
to oblique ligaments having an almost vertical orientation which from the practical point of view makes it difficult
to induce the deformation. Furthermore, for such structures, it would be difficult to retain the rigidity of oblique
ligaments which is essential to observe the considered effect. Of course, this does not mean that from the point of
view of future prototypes one should consider structures corresponding to very small values of h. This stems from
the fact that the extent of the global rotation of such systems would be insignificant as the mechanical deformation
corresponding to the compression of the system along the z-axis (vertical dimension) would result in the very small
magnitude of rotation of the two hexagonal planes constituting the system.

Figure B1: Panels show: a) the variation in the extent of the global rotation for systems corresponding to a different
initial height h and b) the change in the extent of the global rotation plotted against the corresponding change in the
height of the structure for systems associated with different values of the mass ratio m2/m4. All results shown on
panel (a) were generated for the same mass ratio m2/m4 = 5.

In the main text, in Fig. 2(c), it is shown how does the extent of the global rotation change in time for different
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types of the mass distribution. In addition, in Fig. 2(b), it is presented how does the height of the system change for
each of the deformation processes portrayed in Fig. 2(c). However, it would be very interesting to combine these two
graphs in order to show quantitatively how does the extent of the global rotation change with respect to the extent
of the vertical compression measured along the z-axis (change in h). This result is provided in Fig.B1(b), where it
is shown that for the similar extent of the mechanical compression along the z-axis, the largest extent of the global
rotation can be observed for the structure with the largest m2/m4 mass ratio as expected based on the discussion
included in the main text.
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