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Abstract

Data confidentiality is one of the most critical security services. Many
encryption algorithms are currently used to provide data confidential-
ity. That is why there are continuous research efforts on the design and
implementation of efficient cipher schemes. For this purpose, different
lightweight cipher algorithms have been presented and implemented on
GPUs with different optimizations to reach high performance. Some ex-
amples of these ciphers are Speck, Simon which both require less latency
compared to Advanced Encryption Standard (AES). However, these so-
lutions require a higher number of rounds but with a more simple round
function compared to AES. Therefore, in this paper, a new cipher scheme
called "ORSCA" is defined which only requires one round with the dy-
namic key-dependent approach. The proposed cipher is designed accord-
ing to the GPU characteristics. The proposed one-round stream cipher
solution is suitable for the high data rate applications. According to the
performance results, it can achieve high data throughput compared to ex-
isting ones, with throughput greater than 5 Terabits/s on a Tesla A100
GPU. Thus, this approach can be considered as a promising candidate for
real-time applications. Finally, the security level is ensured by using the
dynamic cryptographic primitives that can be changed for each new input
message (or for a set of messages: sub-session key). Thus, the proposed
solution is a promising candidate for high secure GPU cryptographic al-
gorithms.

Keywords— One round GPU stream cipher solution; Security and performance
analysis; Parallel computing; Dynamic key dependent cryptographic primitives

1 Introduction
Data security is facing increasing challenges with new security attacks that benefit
from the advancement of the attackers computational power. Data security attacks
can be either active or passive. The passive attacks can seriously compromise the data
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confidentiality, while active attacks can compromise the data authentication, integrity,
and availability. Active attackers have the ability to insert, remove, and alter the data
content, while passive attackers just intercept the communicated data. Passive attacks
are more difficult to detect but they should be taking into account to preserve the data
confidentiality.

Data confidentiality can be ensured in general by using cryptographic algorithms,
that can be divided into two main classes: symmetric and asymmetric. The symmet-
ric cryptographic algorithms are more efficient in terms of memory and computational
overhead compared to the asymmetric ones. Furthermore, symmetric cryptographic
algorithms can be block or stream cipher based. Generally, a block cipher [1] uses
a round function that can be based on Feistel Network (FN) like Data Encryption
Standard (DES) or Substitution-Permutation Networks (SPN) like Advanced Encryp-
tion Standard (AES) [2]. Currently, AES is widely used because it is more secure and
efficient compared to DES, as indicated in [3]. In addition, SPN lends itself to parallel
implementation and requires fewer rounds than FN. Besides, SPN or FN implementa-
tions use the concept of multi-rounds, where a round function is iterated for r rounds,
which presents a high computation overhead.

Each generation of the GPU architecture adds new hardware capabilities that boost
the computational capability of the GPU. One of the most significant characteristics
is the expansion of the GPU’s computational cores. Additionally, the computational
capabilities per GPU core remain somewhat limited due to the massive parallelism
embedded in the GPU device’s architecture. However, existing cryptographic algo-
rithms that employ many rounds per core (thread) restrict them from reaching their
best performance.

Therefore, in order to solve this challenge and to reach maximum performance, one
need to redesign cryptographic algorithms according to the optimized GPU features.
Therefore, in this paper, a new lightweight stream cipher scheme with parallel struc-
ture is presented which only requires one round with simple operations. The proposed
solution is designed according to GPU features to be implemented in an efficient man-
ner on GPU. Therefore, its GPU implementation can be optimized and can achieve
high throughput and speedup compared to existing recent cipher algorithms. There-
fore, the proposed stream cipher solution with GPU implementation can ensure data
confidentiality with minimum latency overhead and consequently can respond better
to real-time applications. This work is presented to indicate that GPU can be used to
make symmetric cryptographic algorithms more secure and robust.

The rest of the paper is organized as follows: Section 3 describes the necessary
background for GPUs and the lightweight cryptographic algorithm implemented over
GPUs. Then, the proposed one-round stream cipher algorithm "ORSCA" for GPU
implementations is detailed and described in Section 4. The robustness of the proposed
stream cipher scheme is described in Section 5. In addition, several performance
tests were done and described in Section 6 to confirm the efficiency of the proposed
solutions in terms of throughput and speed-up. Finally, a conclusion and future work
are presented in Section 7.
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(a) CPU-GPU functionality

(b) NVIDIA memory hierarchical

Figure 1: CPU and NVIDIA GPU architecture (a) and NVIDIA GPU memory
hierarchical level (b) 3



2 Related Work
Recently, to achieve better performances, new counter (CTR)-mode-based symmet-
ric ciphers have been designed to run on the Graphics Processing Unit (GPU). This
leads to better throughput compared to the CPU implementation. As GPUs are
very efficient for parallel computing. Thus, the CTR based encryption approach can
take advantage of the hundreds or thousands of core components of a GPU to reduce
the cipher execution time. Researchers have already used GPUs for pseudo-random
numbers generation, as in [4, 5]. Furthermore, AES has also been implemented on
GPUs [6, 7, 8], yielding an impressive speedup [9] over the CPU implementation.
Note that the efficient GPU implementation of an algorithm requires making the best
use of the GPU architecture in terms of shared memory, registers, and warp [10].

An optimized and efficient implementation of AES on GPU has been presented
in [8]. This implementation presents various optimizations over previous related work
and thus is considered it as a reference for comparison with our proposed solution.
Another recent implementation of AES on GPU, PHAST, has been described in [11].
This implementation in a decrease of approximately 10% of the performance compared
to [8].

In addition, another implementation of AES-128 is presented in [12]. This imple-
mentation was executed with a RTX 2070 GPU and reaches 878.6 Gbps throughput
thanks to an improvement that removes bank conflicts in shared memory accesses.
However, the existing ciphers require a higher number of rounds ( r) since the fixed
cryptographic primitives concept is used [13, 14]. These ciphers are vulnerable to a
range of analytical attacks if they are configured with a low number of rounds.

To that purpose, researchers are focusing on developing lightweight round func-
tions that use basic operations, and by reducing the number of rounds by employing
a dynamic key-dependent cryptographic approach [15, 16, 17, 18, 19, 20, 21]. For
example, a set of the approaches such as [22, 16, 20] requires two rounds and use the
chaining operation mode, but the one presented in [15] needs only a single round, and
it processes two blocks at once.

This work is presented to improve the last research work on the dynamic cryp-
tographic approach, which is described in [21]. We propose the development of an
efficient and resilient stream cipher that can benefit from the parallel computing capa-
bility of GPU devices. Compared to [21], different cryptographic primitives are used.
In fact, the proposed solution uses a different technique to produce the dynamic cryp-
tographic primitives (without a chaining operation). Additionally, the proposed cipher
solution avoids the use of the permutation operation to reach best performance. In
addition, in terms of number of operations, the proposed solution uses only one round
function without the need of an update function. Therefore, only one substitution and
one PRNG operations are required in the proposed solution compared to two in the
previous dynamic-key based solution.

In fact, the required latency and resources of existing ciphers depend on the round
function structure (confusion and diffusion operations) and the number of rounds r.
Therefore, the best performance can be reached by reducing the number of rounds
and simplifying the round function. In addition, any efficient cipher scheme should
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preserve a high level of security and performance at the same time, which is a hard
challenge.

3 Background
This section presents background knowledge related to the concept and characteristics
of the stream cipher and GPUs. On the other hand, the list of notations used in this
paper is introduced in Table 1.

Table 1: Notations table

Symbol Definition
SK Shared secret session key
nonce A dynamic Nonce that changes per input message
DK Dynamic key updated per input message
kS1 and kS2 Substitution sub-keys
S1 and S2 Substitution tables produced by using kS1 and kS2, respectively.
S(m, S1, S2) Substitute the bytes of m with odd and even indices by using first substitution

table S1 and S2, respectively.
KSeed the seed sub-key and it is used to produce N seeds.
len Length of input message
dxe Rounds x to the nearest integer above its current value
nbth Blocks number per input message and is equals to d len

sizee
size Number of words keystream produced per thread
M Original message
nbth Total number of threads
N Length of initial seeds
mi ith original plain block
C Encrypted message
ci ith encrypted block
KSA Key Setup Algorithm of RC4

3.1 GPU Characteristics
The GPU is a processing technology often used to accelerate computations. Nowadays,
GPUs are used in a wide range of computing applications and systems, including smart
phones, embedded computing, and supercomputers. The GPU architecture is very dif-
ferent from the CPU one. The design of a GPU is tuned to increase the execution
throughput of multiple concurrent threads. The number of computing cores within a
GPU can range from hundreds to thousands of cores. The hardware is built to handle
many threads, even if memory access could be the bottleneck. To make use of the GPU
computational capacity, a GPU code needs to use more threads than the number of
cores. As a result, while some threads are waiting for data, other threads can compute.

NVIDIA GPUs consist of several Stream Multi-processors (SMs) as in Figure 1.a.
According to the GPU type, some characteristics of the SMs may vary. SMs typically
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consist of 32 cores which can only carry out one instruction at a time. So, if two
threads with two different instructions are run on the same SM, only one instruction
gets executed while the second one needs to wait. This is known as threads diver-
gence. All conditional instructions, like "if" and repetitive instructions such as "for"
or "while", must thus be prevented as far as possible. A set of 32 threads is executed
on an SM. This set is called a warp. Moreover, threads are structured into blocks.
The maximum number of threads for each block is restricted to 1,024 according to the
GPU architecture.

Typically, a GPU has many types of memory: global memory, which is the slowest;
cache memory; texture memory; shared memory; local memory; and a limited set
of registers with the quickest access. Figure 1.b presents the memory hierarchy in
NVIDIA GPU devices as follows:

• Registers: These are thread-private, which implies that thread-specific registers
are not accessible to other threads. The compiler makes judgments on the
register use.

• L1/Shared memory (SMEM): Each SM includes an on-chip memory that may be
utilized as both the L1 cache and a shared memory. The L1 cache is privately
accessible by threads while all threads in a CUDA block can use the shared
memory simultaneously.

• L2 cache: It is shared among all SMs and it is accessible to every thread through-
out each CUDA block.

• Global memory: This refers to the size of the GPU’s frame buffer and the DRAM
included within the GPU.

3.2 Dynamic key generation method
The proposed solution is based on the dynamic key dependent approach, where a
Dynamic Key DK is used to produce a set of dynamic cryptographic primitives (sub-
stitution tables in addition to a set of N seeds, where each seed can be a word of 32
or 64 bits). This dynamic key Dk is obtained by hashing the output of "exclusive or"
between a shared secret key (session key SK) and a Nonce that should be updated
and unique for each message. This operation is done as illustrated in Figure 2 and
described in the following equation:

Dk = hash(SK ⊕Nonce) (1)

Any secure cryptographic hash function can be used in this step to avoid collisions.
We use the SHA-512 as a secure cryptographic function to obtain a dynamic key with
512 bits length. Then, this dynamic key Dk is divided into three sub-keys, where each
one of the first two sub-keys (KS1 and KS2) has 128 bits length and the third one
(KSeed) has 256 bits length.

The description of these sub-keys are presented in the following:

1. KS1 is the first substitution sub-key and it represents the first 128 Least Signif-
icant Bits of DK. This sub-key is used to produce the first substitution table
S1. Any method to produce dynamic-key dependent substitution tables can be
used in this step. For example, the Key Setup Algorithm (KSA) of RC4 was
used in [15] to construct dynamic substitution tables. In this step, we also use
the KSA algorithm of RC4.
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2. KS2 is the second substitution sub-key and it represents the second 128 Least
Significant Bits of DK. This sub-key is used to produce the second substitution
table S2 by using the same method uses with KS1, which is the KSA of RC4.

3. KSeed represents the first 256 Most Significant Bits (MSB) of DK. This sub-key
is used as a secret seed with any PRNG to produce a keystream of length N
words, where words can have a length of 32 or 64 bits. Therefore, N seeds are
obtained from KSeed. Each thread will select one of these produced seeds that
are generated in a dynamic pseudo-random manner.

Figure 2: The proposed dynamic key generation and construction cryptographic
primitives

Besides, the construction of these dynamic cryptographic primitives are done at the
CPU and copied to GPU.

4 Proposed Stream Cipher Scheme
The same keystream block generation procedure is applied on all the threads but with
different input seeds (see Figure 3). Each thread selects a seed according to its thread
id and uses it to produce a given number of words (chosen by the user). This number
is denoted size in the following. This procedure is based on repeating the round
function for size times. The main steps of the proposed keystream generation process
are described in the following:

1. Iterate the PRNG Splitmix64 with the seed x;
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2. Substitute the bytes of the produced word by using two substitution tables that
are stored in the shared memory;

3. The output of this iteration becomes the seed for the next iteration and it is
considered one of the produced word keystream.

In fact, the round function will be repeated for size iterations in a recursive man-
ner. In each iteration, a word keystream is produced and "exclusive or" with a word of
the plaintext/ciphertext to obtain ciphertext/plaintext, respectively. Therefore, each
thread will be responsible to encrypt/decrypt size words. Let us indicate that the
generation of the keystream for each thread follows the chaining operation mode.

The entire data stream (plaintext/ciphertext) in will be converted into words. We
consider that the length of plaintext/ciphertext is nbth words that can be encrypt-
ed/decrypted in parallel by using the proposed one round stream cipher. The data
stream is divided into N = nbth

size
blocks, and each block will have size words. More-

over, the GPU device has many computing threads that work in parallel. Thus, a high
number of threads can be used to produce the keystream and consequently encryp-
t/decrypt the plaintext/ciphertext, respectively. The encryption/decryption steps to

Figure 3: The proposed one round function of ORSCA stream cipher (each
thread has a different seed in the GPU implementation)

encrypt (or decrypt) the ith ciphertext block of size words, ci, are illustrated in Fig-
ure 3 and described in detail in Algorithm 1. In the following, we describe the different
phases of the GPU implementation of the proposed one round function (Kernel).

4.1 Parallel kernel function
The proposed technique to generate the keystream (of size words) at each thread is
presented in Algorithm 2. In this algorithm, the output ciphertext/deciphertext data
stream is stored in the out vector and the input data stream in the in data vector.
These vectors have words elements of 64 bits. In addition, for constant variables, we
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Algorithm 1 ORSCA Stream Cipher
Input: Plain-text Message M ;
Substitution tables (S1 and S2);
N seeds: Seeds = {Seed1, Seed2, . . . , SeedN}
Output: Cipher-text C
1: procedure Encr(M, S1, S2, Seeds)
2: M = m1 ,m2, . . . ,mN

3: for i = 1→ N do
4: X ← Seedi
5: for j = 1→ size do
6: X ← Splitmix64(X)
7: X ← Substitution(X, S1, S2)
8: RKi,j ← X

9: ci = mi ⊕RKi

10: C ← c1||c2|| . . . ||cN

use the __restrict__ keyword is used to allow the compiler to minimize the access
time for these variables. This keyword is likewise used for other unaltered variables
when the algorithm is executed. Initially, two substitution tables are used (S1 is called
sbox1 and S2 is called sbox2 in the following code and each one has a size of 256 bytes
length). In addition, they are stored in the shared memory to improve the access
speed of parallel threads. In this case, we should use the __syncthreads() instruction
to synchronize threads in separate warps. However, the thread synchronization intro-
duces overhead, which consequently reduces the performance. Therefore, to maximize
the GPU’s occupancy and consequently to achieve the best performance, each thread
should produce size keystream words per GPU thread. Thus, the number of threads
decreases by increasing size and the best thread granularity can be reached. In the
proposed implementation, nbth represents the total number of threads, and it depends
on the data size to be encrypted/decrypted.
In more details, the structure of the proposed round function consists of two main
operations (PRNG iteration and byte substitution) for each iteration j, where j varies
between 0 and size− 1. More details are described in the following steps:

1. Iterate an efficient PRNG with a unique seed for each thread that are stored
in a variable v2. An example of a possible PRNG that can be employed is the
splitmix64.

2. The produced output of each PRNG iteration is a word and will be stored in
v2 (input-output variable). Then, v2 will be converted to a set of bytes. For
example, for word length of 64 bits, 8 bytes are obtained.

3. Then, the produced output is substituted using two substitution tables (S1 and
S2). The bytes with odd indices are substituted by using the first substitution
table S1 and the even ones are substituted with the second substitution table
S2. Two substitution tables are used at this step to increase the security level.

4. Then, a corresponding input plaintext/ciphertext word is XORed with the pro-
duced substituted output to provide ciphertext/deciphertext word, respectively.

5. For the next iteration, the seed is updated to be equal to the produced sub-
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stituted word. This means that the produced keystream is done in a chaining
mode, where the output of the previous iteration becomes the input of the next
iteration.

Figure 4: Graphical illustration of the ORSCA stream cipher implementation
with GPU

For a further illustration of how ORSCA works, Figure 4 gives a graphical example.
It shows that a CUDA block is a set of threads, and a grid of CUDA blocks is used
to organize them. Each CUDA block is executed by a single streaming multiprocessor
(SM) on the GPU. On the host side, before a kernel is allocated to a grid of thread
blocks, input vectors must be copied from host to device. According to the commu-
nication overhead between host and device, the size of the initial vector v is reduced
by a factor of 1

size
compared to the plain text size. However, to manipulate a data

vector in parallel by a kernel function, in the beginning, the global index Gid must be
computed by each thread, Gid = blockidx.x × blockDim.x + threadidx.x. Then, the
algorithm encrypts/decrypts (per thread) a number of words starting from the index
Gid×size to the Gid×size×(size−1) of data vector. Accordingly, the proposed algo-
rithm is portable enough to work with all NVIDIA GPU devices without any further
modifications.

4.1.1 Splitmix64

Splitmix64 PRNG uses arithmetical (addition and multiplication) and logical (xor and
rotation) operators [23]. Algorithm 3 presents the steps of the splitmixt64. Splitmix64
is not a secure PRNG but it is selected since it is efficient (low execution time) and can
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Algorithm 2 ORSCA kernel function

__global__
void encrypt ( uint64_t∗ __restrict__ v , const uint64_t∗ __restrict__ in , uint64_t∗ out ,
const uchar∗ __restrict__ box1 , const uchar∗ __restrict__ box2 , i n t s i z e , long nbth )
{

i n t Gid=blockIdx . x∗blockDim . x+threadIdx . x ;
i f ( threadIdx . x<256){

sbox1 [ threadIdx . x]=box1 [ threadIdx . x ] ;
sbox2 [ threadIdx . x]=box2 [ threadIdx . x ] ;

}
__syncthreads ( ) ;
i f (Gid<nbth )
{
uchar∗ t t ;
uint64_t v2=v [ Gid ] ;
f o r ( i n t j =0; j<s i z e ; j++)
{
v2=sp l i tm i x64_s t a t e l e s s ( v2 ) ;
t t=(uchar∗)&v2 ;
t t [0 ]= sbox1 [ t t [ 0 ] ] ;
t t [1 ]= sbox2 [ t t [ 1 ] ] ;
t t [2 ]= sbox1 [ t t [ 2 ] ] ;
t t [3 ]= sbox2 [ t t [ 3 ] ] ;
t t [4 ]= sbox1 [ t t [ 4 ] ] ;
t t [5 ]= sbox2 [ t t [ 5 ] ] ;
t t [6 ]= sbox1 [ t t [ 6 ] ] ;
t t [7 ]= sbox2 [ t t [ 7 ] ] ;
out [ Gid+j ∗nbth]=v2^in [ Gid+j ∗nbth ] ;

}
v [ Gid]=v2 ;

}
}

be implemented easily. The security level of the proposed stream cipher is based on
the use of dynamic cryptographic primitives in addition to having high key space. In

Algorithm 3 Splitmix64 function

__device__
uint64_t sp l i tm i x64_s t a t e l e s s ( uint64_t x ) {

uint64_t z = (x + UINT64_C(0x9E3779B97F4A7C15 ) ) ;
z = ( z ^ ( z >> 30)) ∗ UINT64_C(0xBF58476D1CE4E5B9 ) ;
z = ( z ^ ( z >> 27)) ∗ UINT64_C(0x94D049BB133111EB ) ;
re turn z ^ ( z >> 31 ) ;

}

the following section, several security and performance tests are included to validate
the robustness and effectiveness of the proposed one round stream cipher compared to
other existing ones.
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5 Security Analysis
Well-known attacks such as statistical, linear, differential, or brute force attacks [15, 24]
are used to test the safety and security of a proposed cipher scheme. This section
performs extensive experiments to prove the robustness of the proposed cipher scheme.
Note that the proposed encryption scheme can be used for any data type, but in the
following, only the results for multimedia contents are provided.

(a) (b)

(c) (d)

Figure 5: The recurrence of the original message (a), ciphertext (b) produced by
using the proposed stream cipher for a random dynamic key. The corresponding
PDF of the original message (c) and of the produced ciphertext (d).
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5.1 Ciphertext Statistical Analysis tests
To be considered as secure against statistical attacks, a cipher must exhibit two essen-
tial properties, which are randomness and uniformity [25]. To check the randomness
degree, the following statistical security tests are performed: (a) Probability Density
Function (PDF) analysis, (b) entropy analysis, and (c) correlation between original
and encrypted messages.

5.1.1 Uniformity Analysis

The most significant test is the probability density function (PDF) of the encrypted
message, which must be uniform. Each symbol in the produced ciphertext has a
probability occurrence close to 1

n
, where n is the number of symbols. The original

PDF and their corresponding encrypted messages are shown in Figure 5. The PDFs
of the encrypted messages can be considered to be close to the uniform distribution,
with a value close to 0.039 ( 1

256
= 3.9× 10−3) for all ciphertext symbols.

5.1.2 Information Entropy Analysis

The information entropy of a given message M , is a metric that measures the level of
uncertainty of a random variable [26], and can be defined as:

H(m) = −
h2∑
i=1

p(mi) log2
1

p(mi)
(2)

Entropy is expressed in bits, and p(mi) is the probability of occurrence of symbol mi,
and NS is the total number of symbols. The entropy of the ciphertext, if equal or close
to log2(NS), can be interpreted as a true random source with a uniform distribution.

The analysis of the entropy of the ciphertext (encrypted messages) at the sub-
matrix level with a dimension of 16× 16 (256 elements), and by using a random
dynamic key, is shown in Figure 6. Furthermore, the obtained results indicate that
the produced ciphertexts have entropy equals to the desired value, which is 8. Thus,
the proposed cipher scheme is sufficiently secure against any given entropy attack.

5.1.3 Statistical tests with TestU01 and Practrand

As explained earlier, the proposed stream cipher was tested with 100 seeds using
TestU01 [27] and Practrand [28], and it successfully passed all the tests. Practically,
a message of size 512*512 is simply used with all elements set to zero, and the key is
initialized only once, at the beginning. All other variables are also initialized once. The
obtained ciphertexts were tested using the PractRand and TestU01 statistical tests,
which are considered as the most difficult ones. These tests can verify if the generated
key-stream satisfies the appropriate randomization and uniformity properties.

5.1.4 Independence

The elimination of any correlation between the elements sequence is essential to ensure
the robustness of the proposed encryption scheme [15]. If the correlation coefficient is
close to zero, it means that the cipher scheme has a high degree of randomness. The

13



Figure 6: Entropy analysis of produced ciphertext versus 1,000 random secret
keys at the sub-matrix level. Ciphertext is divided into a set of sub-matrices of
size 16× 16 and NS = 256 bytes (mean equals to 7.175).

correlation test is done by randomly picking adjacent pixels from an original message
and its corresponding encrypted ones. The correlation can be done in the horizontal,
vertical and diagonal directions. The correlation coefficient rxy is calculated by using
the following equation:

rxy =
cov(x, y)√
D(x)×D(y)

(3)

where :

cov(x, y) =
1

N
×

N∑
i=1

(xi − E(x))(yi − E(y))

Ex =
1

N
×

N∑
i=1

xi

Dx =
1

N
×

N∑
i=1

(xi − E(x))2

The results of the correlation test between original and encrypted messages are pro-
vided in Figure 7 for one random key for each time, and for 1,000 random keys in
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total. The results clearly show that the correlation coefficient is very low, close to 0,
which confirms the randomness property of the produced ciphertext and consequently
its independence. On the other hand, the ciphertext must be very different from the

Figure 7: Probability density function of the correlation coefficient between
original and encrypted messages for 1,000 random dynamic keys.
original one, with a difference of at least 50%, at the bit level. From the results shown
in Figure 8-(a), the proposed cipher scheme satisfies the desired difference results, with
a percentage of at least 50% between the plaintext and the encrypted ones.

5.2 Sensitivity Tests
The differential attacks focuses on analyzing the relationship between two encrypted
messages resulting from a small change, such as a one-bit difference, between two
original messages. The sensitivity tests must confirm that a small change in the
plaintext or in the key affects the ciphertext and produces a different one. The larger
the difference, the better the sensitivity of the proposed cipher scheme.

5.2.1 Key Avalanche Effect

One of the most important test is the key avalanche test. This test quantifies the
sensitivity of the ciphertext (or the sensitivity of keystream in the case of stream
cipher) to a slight change in the secret key. The proposed key derivation function can
ensure a high level of sensitivity of the secret key and the nonce since it is based on
them. To further examine the sensitivity of the dynamic key, two dynamic keys, DK1

and DK2, which differ by a single random bit, are used. Then, the same plaintext
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(a) (b)

Figure 8: (a) The different variations between plain and ciphered messages
(percentage of the Hamming distance) and (b) key sensitivity against 1,000
random keys.

is encrypted separately, and the Hamming distance of the corresponding ciphertexts,
C1 and C2, is computed and shown in Figure 8-(b) against 1000 random dynamic
keys. It is clear that the majority of the values are close to the optimal value (50%)
with a mean equals to 49.99% (see Table 2). The obtained results confirm the high
key sensitivity of the proposed cipher scheme. Moreover, the obtained results are
acceptable compared to those of AES.

5.2.2 Message Avalanche Effect(Sensitivity)

As a different dynamic key is used for each input message, the algorithm produces a
completely different ciphertext for the same plaintext input. Consequently, the pro-
posed cipher scheme successfully satisfies the avalanche criterion.

Table 2: Statistical results of the proposed stream cipher for 1,000 random keys.

Security Test Min Mean Max Std
Dif 48.6419 49.9029 52.3468 0.71019
KS 49.4873 50.179 50.836 0.4277
HE 7.91 7.943 7.9618 0.00654
ρ -0.1051 0.00499 0.0966 0.038
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(a) Throughput results over Tesla A100 (b) Throughput results over Tesla V100

(c) Throughput results over Titan X (d) Throughput results over Tesla T4

(e) Throughput results over GTX1060

Figure 9: Throughput analysis for the proposed cipher and related ones over
different GPU devices

5.3 Cryptanalysis: Resistance Against Well-known Types
of Attacks

Different from the majority of existing cipher solutions, the proposed scheme is based
on a dynamic key approach, with dynamic substitution and permutation primitives
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(a)

(b)

Figure 10: The throughput results (a) of the proposed cipher and others over
the CPU. In addition, the speedup ratio (b) comparison of the proposed cipher
over GPUs to CPU speed.

for every input message. Previous statistical tests (entropy analysis, probability den-
sity function, and correlation tests) confirmed the strength of the proposed cipher
scheme against statistical attacks (see Table 2). In addition, the key sensitivity anal-
ysis demonstrated a high sensitivity and consequently resistance against key-related
attacks. These results are sufficient to infer that no useful information can be derived
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from the produced ciphertext. On the other hand, the resistance to chosen/known
plaintext attacks can be confirmed by using the dynamic key approach, which greatly
complicates the attacker’s task. Accordingly, the effect of single message failure and
accidental key disclosure are also minimized since a dynamic key is produced for each
input message. Therefore, differential and linear attacks are not feasible since any
change in the dynamic key results in a significant difference in the produced crypto-
graphic primitive produced and thus in the ciphertext. Furthermore, the key space
of the secret key is on the order of 2128, which is large enough to make brute force
attacks infeasible. The same is true for the dynamic key space, which is 2512. One
should takes into account the fact that the difficulty of the ciphertext-only attack is
equivalent to one of the brute force attacks and in the proposed solution a large secret
key and a large dynamic key are used. Therefore, in our case, a ciphertext-only attack
cannot recover useful information from the ciphertext.

6 Performance Analysis
In this section, the proposed method is evaluated and compared against various en-
cryption algorithms using both GPU and CPU devices. This evaluation was conducted
on a Linux/Debian system. CUDA version 11.3 is used to program and implement all
cryptographic algorithm kernels.

6.1 Experimental results over GPUs
In this section, the required latency of all tested ciphers are quantified to assess their
performance. Therefore, these ciphers were evaluated on different GPU devices that
are listed and detailed in Table 3. In addition, four different cipher algorithms are ap-
plied in this test, which are Speck [29], Simon [29] and AES [8] in addition to a recent
stream cipher based on GPU, called ESSENCE [30] are compared with the proposed
one. It has one round function to encrypt or decrypt the data stream vector. However,
these ciphers were implemented in the CTR mode (which can be considered a stream
cipher) to be processed in parallel, and thus they are comparable to the proposed
method.

The throughput results over five GPU devices are presented in Figure 9. The ob-
tained results indicate that the proposed stream cipher scheme is faster compared to
recent and standard ciphers on GPU. Different throughput ratios are obtained depend-
ing on the message size and the computing capabilities of the GPU devise executing
the cipher algorithm. Table 4 and Table 5 show the highest throughput and execution
time values acquired over Tesla A100 GPU.

Moreover, the average speedup ratios of the proposed cipher and the considered
ciphers for comparison, obtained over all GPU devices, are presented in Table 6. As
these results show, the proposed stream cipher is more efficient than the existing ones
and consequently it is more suitable for real-time applications. Furthermore, the pro-
posed cipher requires a low computation complexity due to its simple implementation
(one round with simple operations such as PRNG and substitution). The proposed
solution can be considered as an enhancement of the recent ESSENCE cipher and it
reaches better throughput.
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(a) message size = 48 MB

(b) message size = 192 MB

Figure 11: The throughput results of different word lengths per thread: (a)
message size = 48 MB, (b) message size = 192 MB.

On the other hand, recent lightweight ciphers such as Speck, Simon, and AES ex-
cept ESSENCE apply several rounds and use several operations per round. The round
number is 32, 68, and 10 for Speck, Simon, and AES respectively for a secret key size
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equal to 128 bits. Both Speck and Simon ciphers are based on quick and simple pro-
cedures that are popular in a wide variety of computer systems (AND, rotate, XOR,
and modular addition). Both Speck and Simon 2B work on 2 blocks per thread, while
the 4B versions work on 4 blocks per thread. Moreover, for more details about their
implementation, the reader can refer to [29]. However, Simon is dedicated to hardware
implementation, its results present different throughput speeds according to the GPU
hardware used.

Moreover, Figure 11 presents the throughput versus number of words per thread
(size) for two message lengths and for different GPU devices. The obtained results
indicate that for a low number of words per length, a high throughout is achieved by
the proposed solution. However, for a higher number of words per thread, a lower
throughput is obtained. Thus, the optimal number of words per length can be varied
between 16 and 64.

6.2 Experimental results over CPU
The proposed ORSCA and the other recent cipher algorithms are evaluated on an
Intel (R) i7-7700HQ CPU to determine their performance. Each core of this CPU
operates at a frequency of 2.80 GHz. The sequential versions of all ciphers are imple-
mented on this CPU and their throughput results are presented in Figure 10a. The
obtained results indicate that the sequential algorithm of the proposed ORSCA has
the highest throughput compared to all other cipher algorithms for different message
sizes, especially compared to ESSENCE. Moreover, the speedup ratios of the proposed
ORSCA are computed between its execution time over all five GPU devices and its
execution time over the CPU, as in Figure 10b. These results indicate clearly that by
using a powerful GPU device, better speedup can be achieved, where the best speed
is achieved with the Tesla A100.

7 Conclusion
In this paper, an efficient optimized one-round stream cipher scheme is proposed and
it is called "ORSCA". It is designed to target the GPU architecture. The proposed
cipher outperforms the most optimized implementations of AES, SIMON, and Speck
on GPU, which makes it more suitable for real-time applications. Moreover, the im-
plementation of the proposed cipher is very simple compared to other existing cipher
schemes. Furthermore, the robustness of the proposed stream cipher scheme is based
on the use of dynamic cryptographic primitives that can be changed for each input
message. In addition, the resistance against attacks has been assessed and confirmed
via cryptanalysis. Also, different benchmark tests were done to prove the efficiency
of the proposed cipher. In future work, the design of an efficient parallel dynamic
key-dependent hash algorithm for GPU will be investigated.
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Table 3: Employed GPU devices during bench-marking

GPU Device Characteristics
Tesla A100

• Compute capability: 8.0

• Global memory: 40,000 MB

• GPU frequency: 1.41 GHz

• Memory frequency: 1,215 MHz

• Number of CUDA cores: 6,912

Tesla V100
• Compute capability: 7.0

• Global memory: 16,152 MB

• GPU frequency: 1.53 GHz

• Memory frequency: 877 MHz

• Number of CUDA cores: 5,120

Titan X GPU
• Compute capability: 5.2

• Global memory: 12,207 MB

• GPU frequency: 1.25 GHz

• Memory frequency: 3,505 MHz

• Number of CUDA cores: 3,072

Tesla T4 GPU
• Compute capability: 7.5

• Global memory: 15,110 MB

• GPU frequency: 1.59 GHz

• Memory frequency: 5,001 MHz

• Number of CUDA cores: 2,560

GTX1060 GPU
• Compute capability: 6.1

• Global memory: 6,078 MB

• GPU frequency: 1.34 GHz

• Memory frequency: 4004 MHz

• Number of CUDA cores: 1,280
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Table 4: Throughout comparison of ORSCA (size=32) and with other ciphers
on Tesla A100 GPU

Message
size

Throughput (in Gbits/s)

ORSCA ESSE. Speck
2B

Speck
4B

Simon
2B

Simon
4B AES

10242 × 3 2109.4 2008.4 1308.7 1494.4 948.8 1560.3 653.0
20482 × 3 4016.0 3676.5 2147.3 2615.3 1298.7 2756.7 1402.4
40962 × 3 4580.2 4357.2 2849.4 3070.6 1596.6 3239.2 1689.1
81922 × 3 5158.2 4849.3 2763.7 2863.4 1616.4 3608.4 1721.4
163842 × 3 5247.8 5018.2 2529.8 2738.0 1390.0 3703.9 1831.0

Table 5: Execution time comparison of ORSCA (size=32) and with other ci-
phers on Tesla A100 GPU

Message
size

Execution time (millisecond)

ORSCA ESSE. Speck
2B

Speck
4B

Simon
2B

Simon
4B AES

10242 × 3 0.012 0.014 0.019 0.017 0.027 0.016 0.039
20482 × 3 0.024 0.027 0.047 0.038 0.078 0.037 0.072
40962 × 3 0.088 0.092 0.141 0.131 0.252 0.124 0.238
81922 × 3 0.312 0.332 0.583 0.562 0.996 0.446 0.936
163842 × 3 1.228 1.284 2.547 2.353 4.635 1.739 3.519

Table 6: Speedup ratio comparison of the proposed ORSCA to all other methods
over all five GPU devices

Message
size

Average speedup ratio compare to

ESSE. Speck
2B

Speck
4B

Simon
2B

Simon
4B AES

10242 × 3 1.35 1.54 1.42 2.42 1.42 3.73
20482 × 3 1.18 3.49 1.14 4.29 1.14 2.22
40962 × 3 1.18 8.57 1.49 10.45 1.41 2.18
81922 × 3 1.09 1.59 1.97 3.15 1.91 3.00
163842 × 3 1.06 1.81 1.63 3.03 1.41 2.93
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