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Abstract: Being able to predict the output power of wind turbines and wind farms is crucial in
the process of integrating such stochastic energy sources with power systems. To support
stakeholders  in  short-  and mid-term wind power prediction,  a  novel  data-driven Machine
Learning based approach is proposed. This approach relies on three Gradient Boosting (GB)
regressor implementations. The novelty of our approach is also manifested in the fact, that it
is respectively based on the use of MERRA-2 reanalysis data and GEOS FP meteorological
forecasts in models training and wind power prediction. It makes the short- and mid-term
prediction unique in enriching the results even for time horizon of 240 h with resolution of 1
hour.  The data  preprocessing  and cleaning,  feature  engineering,  and training,  testing  and
validation  of  the  models  are  presented  in  details.  The  performances  of  the  models  and
prediction accuracy are evaluated relying on a few absolute and relative error measures. The
proposed methodology  is  implemented  in  the  output  power  prediction  of  a  wind  turbine
located  in  Poland.  The results  of  predictions  are  compared with  other  Machine  Learning
algorithms.  The  results  show  that  proposed  GB  implementations  can  capture  accepted
accuracy of prediction and outperform other investigated algorithms.

Keywords:  wind power,  short-and medium-term prediction,  gradient  boosting,  MERRA-2,
GEOS FP

1. Introduction

Although the success of wind energy is increasing significantly year by year, it  still
presents essential operational and planning challenges to both wind farm operators and power
system operators. The challenges are caused by the stochastic nature of wind resources and
other  meteorological  features,  such  as  wind  dynamics,  wind  turbines  operational
characteristics and many more features. An essential part of the effective integration of wind
energy generation units lies in the accurate prediction of their output power. This is crucial to
power system operators –  for  optimal  load flow analysis,  voltage levels  control  and unit
commitment studies, and wind farm operators – for biding at day ahead energy market and
maintenance  planning.  One of  some reasonably options  of  wind turbine  (or  farm) output
power prediction (in short – wind power prediction) is to use available historical weather data
and historical wind turbine (farm) data as well as meteorological forecast. 
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Wind power prediction studies, are broadly classified into direct and indirect approaches
[1].  Concerning direct  approaches,  different  methods  enable  one  to  directly  predict  wind
power.  The  main  advantage  of  this  approach  is  that  there  is  no  need  to  investigate  the
relationship between output power and meteorological features, e.g. wind speed and direction.
In latter approaches a wind speed is firstly forecasted and then the resulted data is converted
into output power relying on different techniques (e.g. deterministic power curve, statistical
models).  In practice,  while transforming wind speed into output power,  further errors are
made  in  prediction  accuracy.  Statistical  models  seem to  be  better  than  power  curves  to
incorporate the nonlinear and uncertain relationships between output power and wind speed.
There are few papers in related literature that report the comparison of the performance of
both direct and indirect approaches [1]. Most of them show that direct approaches offer the
best predicting accuracy.

Wind power prediction models are usually categorized as physical and statistical models
[2]. Both approaches are able to predict the output power effectively, but they are profoundly
different in terms of the ideas that are applied. Physical models use mathematical expressions
to  model  highly  complex  and  nonlinear  dynamics  of  the  atmospheric  flow  to  produce
numerical weather predictions (NWP). Then NWP can be adopted to local flow conditions,
focusing mainly on wind speed, which can be finally used as an input in the wind power
prediction.  Statistical  models  rely  on  relevant  chronological  data  either  wind  power  data
(direct  approach)  or  wind speed data  (indirect  approach).  They use  methods  such as  the
Autoregressive Moving Average (ARMA) or the Autoregressive Integrated Moving Average
(ARIMA). They are able to forecast the variables in question with one or a few time steps
ahead. Another classification of the approaches of wind power prediction is their division
into:  (i)  model-driven,  (ii)  data-driven,  and  (iii)  hybrid  intelligent  approaches  [3].  In  the
model-driven approaches,  abundant meteorological information of distinct physical factors
affecting wind power is required. NWP model is an example of this approach. In data-driven
approach,  statistical  modelling  based  on  historical  data  are  used  in  the  predictions.  The
ARMA and ARIMA models are examples of data-driven models. Another group consists of
Machine Learning (ML) algorithms, e.g. Gradient Boosting (GB), Artificial Neural Networks
(ANN), Decision Trees (DT), Random Forests (RF), and many more. Since wind power (and
wind speed) time-series is highly stochastic in nature, the prediction accuracy relying on data-
driven  approaches  may  be  unsatisfactory.  Such  problems  can  be  overcome  with  the
hybridization of two or even more either data-driven [1, 3, 4, 5] or model-driven and data-
driven methods [6, 7]. Paper [7] presents a summary of the recently proposed fifteen wind
power prediction models using both statistical data-driven and hybrid methods. The models
that  require  either  one  input  data  (wind  power  or  wind  speed)  or  several  input  data
(combinations of either wind power and meteorological features or meteorological features
only). The time horizon of prediction ranges from 30 min up to 250 h (usually a few hours
only,  sometimes dozens of  hours).  A comprehensive review of  the various deep learning
algorithms being used in wind power (and wind speed) forecasting including the stages of
data processing, future extraction and learning issues is presented in [8].

Both data-driven approaches and hybrid intelligent models can be trained relying on
historical data (one or more input features) to predict target feature (wind power). If historical
data concerns one input feature it can be either output power or wind speed, depending on the
modelling purpose – direct or indirect prediction. In the case of more than one input feature as
a historical data, they can be both output power and meteorological features that most affect
the  output  power,  and the target  feature.  In  the  latter  case  of  direct  power prediction  its
accuracy can improve significantly when additional meteorological forecasts are used. The
only condition is full compatibility between the historical meteorological data and weather
forecasts  in  terms  of:  type  of  features,  geographical  coordinates,  and  resolution.
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Unfortunately, meeting the condition of access to historical meteorological data and relevant
weather forecasts is difficult or impossible for most wind turbines, farm operators, or grid
operators.  This  problem is  more  evident  while  predicting output  power  of  offshore  wind
farms. From this point of view, it is useful to use climate reanalysis data and weather forecasts
that are compatible with them, for short- and mid-term output power predictions (time horizon
from one up to tens or several hundred hours). Many reanalysis products are available [9, 10].
Wind speeds and direction are most commonly available at a fixed height of 10 m above
ground  (common  met  mast  altitude).  A  key  benefit  of  reanalysis  is  that  it  can  infer
meteorological features for which there are no observations, i.e. in locations that are either
remote or out at sea (where met masts are not present). Data from climate reanalyses are
useful data in wind power analysis, with large spatial and temporal coverage.

The use of second Modern-Era Retrospective Analysis for Research and Applications
(MERRA-2) reanalysis and of the Goddard Earth Observing System – Forward Processing
(GEOS FP) which is compatible with it can be very beneficial to wind power prediction.
MERRA-2  reanalysis  [11]  is  one  of  the  major  state-of-the-art  climate  reanalysis  freely
available on a global scale. It covers many meteorological features that significantly affect
wind power investigations. The advantage of this reanalysis is other model heights, usually
based on fixed pressure isothermal level. For example wind speed and direction at 50 m (met
masts are usually only 10 m tall). It provides multiple meteorological features at the hourly
time  step,  with  a  spatial  resolution  of  50  km (corresponds  to  the  resolution  of  0.625o

longitude by 0.5o latitude) and temporal coverage from 1980 onwards. In addition, MERRA-2
reanalysis is published with a short latency of two or three weeks of real time, which makes it
suitable for updating the predicting model. GEOS FP weather forecasts [12] with high spatial
resolution  0.3125o longitude  by  0.25o latitude  were  adopted  from  GEOS-5  of  the  Data
Assimilation  System (DAS).  This  is  a  resource  widely  used  and  validated  in  studies  of
atmospheric chemistry that combines a suite of observations, including data from satellites,
radiosondes,  aircrafts,  dropsondes,  surface  ships,  and  buoys.  As  regards  historical  wind
turbine or wind farm data, the data can be retrieved from built-in Supervisory Control and
Data  Acquisition  (SCADA)  systems.  These  data  both  refer  to  the  operational  data
(measurements of electrical, mechanical and other quantities) and to the operational statuses
of the turbines.

The main objective of the study is to explore the use of state-of-the-art ML techniques
to formulate new GB models to predict wind turbine output power relying on both historical
turbine data collected by SCADA system and on meteorological data gathered from MERRA-
2 reanalysis, and relying also on weather forecasts being retrieved from GEOS FP. Three
implementations of GB are investigated, i.e. CatBoost Regressor, LightBoost Regressor and
XGBoost Regressor. The study applies advanced data preprocessing, feature engineering, GB
models formulation, their parameters tuning to deliver improvements in terms of prediction
accuracy, generalization ability as well as computational performance for wind turbine output
power  prediction.  Their  validity  was  comprehensively  assessed  by  comparing  the  LSTM
model, the Decision Tree model and the Random Forest model. In [13], the authors compared
the GB and LSTM, for times series predictions. There are not many examples in the literature
yet of using GB for wind power prediction. In [14] a hybrid model of wind power prediction
based on XGBoost and NWPs was presented. The same GB implementation together with
weather similarity analysis and feature engineering was applied in [15] for short-term wind
power forecasting.

GB were proven to be superior to traditional ANNs which implies a great potential for
wind power prediction. The proposed GB models are suitable to predict the output power of
wind turbines installed both onshore and offshore, in any location (country, continent). In the
case of offshore turbine locations, the presented approach can be exceptionally competitive
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because it is not possible to obtain actual measurements of meteorological features, as such
measurements are not carried out. Other advantages of the GB models over the methodologies
presented in related literature are as follows: (i) there is no need to convert meteorological
values (especially wind speed and direction) to the height corresponding to the height of the
turbine nacelle above the ground surface, and (ii) there is no need to convert wind speed into
turbine power according to the power curve provided by the manufacturer or any statistical
models. Due to the use of both meteorological databases (reanalysis and weather forecasts),
there is  no need to use historical data  covering the time period up to  t in order to make
forecasts starting from time t. Thus, the last historical data may come from days or months
ago, and the prediction can be made from the current time.

The novelty and scientific originality of this paper is that it is the first reported study
which implements GB algorithm for wind power prediction where key input parameters are
gathered  from  SCADA  system  of  wind  turbine,  MERRA-2  reanalysis  and  GEOS  FP
meteorological  forecasts.  The  use  of  MERRA-2  and  GEOS  FP  allows  to  wind  power
prediction in a time horizon of up to 240 h with resolution of 1 h. Moreover, there is need to
convert any meteorological features (mainly wind speed) into wind turbine output power and
to use historical data covering the time period up to t in order to make prediction starting from
time t. The novelty and main contributions of the work can be summarized as follows:

a) data cleaning method was introduced to effectively detect outliers in original wind
turbine output power data to improve the quality of input data; it relies on expert
knowledge and operational statuses recorded by the SCADA system of the turbine,

b) the  methodology  uses  many  meteorological  features  provided  by  MERRA-2
reanalysis and GEOS FP forecasts, i.e. surface pressure, 2- and 10-meter m specific
humidity, 2- and 10-meter air temperature, and 2-, 10- and 50-meter wind speed and
direction; a new idea to use these features from four nearest grid points around the
wind turbine  site  coordinates  is  proposed;  this  allows for  wind power  predicting
regardless  of  the  turbine  site  (onshore  and  offshore)  and  availability  of  local
meteorological data measured thanks to meteorological masts,

c) advanced feature engineering was introduced to improve the accuracy of prediction;
it  refers  to  categorical  and cyclic  features,  and data  normalization;  original  wind
direction is additionally transformed into categorical feature, i.e. 16 cardinal (and
intercardinal)  wind  directions;  cyclic  features  (i.e.  hours  of  day,  days  of  week,
months  of  year,  and  wind  direction)  are  transformed  based  on  sin  and  cos
trigonometric  functions;  two  calculated  features  substitute  each  original  cyclic
feature,

d) the GB algorithm and its three implementations CatBoost, LightBoost and XGBoost
are proposed for effective and accurate solving the regression problem among input
features and target feature (output power) using the ‘boosting trees’ approaches,

e) the GB based methodology has been validated using historical data from E-53 wind
turbine by Enercon, operating in north-eastern Poland; the accuracy of wind power
prediction relying on three GB implementations is better as compared to the accuracy
of prediction based on other ML algorithms (e.g. LSTM neural networks, Decision
tree  and  Random  Forest);  moreover,  the  approach  generalizes  and  significantly
improves the accuracy of wind power prediction as compared to other methodologies
that rely on time series prediction; with the extension of the predicting time horizon,
this advantage over other methods becomes more and more evident.

The remainder of the paper is organized as follows. Section 2 provides some details on
four  machine  learning  algorithms,  i.e.  GB,  LSTM,  Decision  Tree  and  Random  Forest.
Concerning GB, three implementations are presented – CatBoost, XGBoost and LightBoost.
Section  3  introduces  the  idea  and detailed  description  of  the  wind turbine  output  power
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prediction process which covers the following steps: obtaining the required data, data pre-
processing and features engineering, training the prediction models, their hyper-parameters
tuning, and finally – obtaining some power predictions. Section 4 presents case study of real
wind turbine output power prediction and discussion of the results. Section 5 concludes the
study by summarizing the key findings and the contributions of this work.

2. Machine learning algorithms

2.1. GB algorithms
Boosting algorithms refer to a class of learning algorithms that fit models by combining

many sampler models [16]. These sampler models are typically base models and are trained
using base learner or weak learner. The models tend to perform slightly better than a random
guess, but when selected carefully and aggregated using a boosting algorithm, they form a
relatively more accurate model. In our work, three boosting implementations were used, i.e.
CatBoost,  LightBoost and XGBoost. To be more precise, gradient boosting  regressors are
used to solve the regression problem using the ‘boosting trees’ approaches.

A benefit of using gradient boosting is that once the boosted trees are computed, it is
quite  straightforward to  retrieve  importance  scores  for  each feature  (attribute).  Generally,
importance  provides  a  score  that  indicates  how  useful  or  valuable  each  feature  was  in
formalizing the boosted decision trees within the model. The more a feature is used to make
key  decisions  with  decision  trees,  the  higher  its  relative  importance.  This  importance  is
calculated  explicitly  for  each  feature  in  the  dataset,  allowing attributes  to  be  ranked and
compared to each other. Importance is calculated for a single decision tree by the amount that
each  feature  split  point  improves  the  performance  measure,  weighted  by  the  number  of
observations the node is responsible for. The performance measure may be the purity score
used to select the split points or another more specific error function. The feature importance
are then averaged across all of the decision trees within the model.

Catboost regressor implementation
Catboost  is  a  very  efficient  GPU  and  CPU  implementation  of  GB.  Despite  being

launched later than other well-known boosting algorithms, Catboost has developed a high
reputation for its speed of execution and the accuracy of its predictions. It was open sourced
by yandex, one of Russia's largest internet businesses, in April 2017. It distinguishes itself
from its competitors by a number of qualities, including:

 ordered Boosting to overcome over fitting,
 native handling for categorical features,
 using Oblivious Trees or Symmetric Trees for faster execution.

Lightboost regressor implementation
By using  a  leaf-wise  tree  growth  method  and  introducing  unique  techniques  Light

Gradient Boosting Machine (LightGBM), a recent upgrade of the gradient boosting algorithm,
was able to maintain its excellent predictivity while also resolving its scalability and long
processing time. Microsoft announced the first stable version of LightGBM in January 2017.
This implementation of the GB algorithm is known for its speed. Compared to its competitors,
LightGBM has the following features:

 leaf wise tree growth compared to other boosting algorithms that use level-wise tree
growth,
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 faster training speed,
 lower memory usage.

XGboost regressor implementation
One  of  the  most  well-known  implementations  of  Boosting  algorithms  is  eXtreme

Gradient Boosting (XGBoost) [17]. It began as a Tianqi Chen research project and has since
grown in popularity in the machine learning competition circles. XGBoost is an open-source
toolkit that is part of the Distributed Machine Learning Community (DMLC). As such, it
benefits from a strong and active community and is more transparent than its competitors,
allowing  for  easy  plotting  of  trees,  for  example.  Other  characteristics  that  distinguish
XGBoost from other boosting solutions include:

 a proportional shrinking of leaf nodes,
 clever penalization of trees,
 Newton Boosting,
 extra randomization parameter.

2.2. ANN algorithms
ANNs emerged as one of the most commonly used ML algorithms in the field of wind

power prediction [2]. ANNs are complex structures that attempt to mimic the structure of the
human  brain  based  on  a  set  of  replicated  processing  units  called  neurons.  Neurons  are
interlinked  and  pass  information  via  weighted  connections  adjusted  during  the  training
process. Developments in initialization algorithms and neuron activation functions enhanced
the  capabilities  of  ANN and  made  it  possible  to  solve  complex  non-linear  problems  by
training models consisting of a large number of hidden layers, that is often referred to as ‘deep
learning’. Recurrent neural network (RNN) is a class of an ANNs, in which the connection
between its neurons form a loop, allowing information to persist. This means it is capable of
handling nonlinear dependencies between past time series values and the estimate of values to
be predicted via the inherent dynamic memory created by recurrent connections in the hidden
layers. Despite its superiority over conventional ANNs [18], RNN suffers from a phenomenon
referred to as vanishing or exploding gradients caused by error signals flowing backwards,
which leads to oscillating weights or loss of long-term dependencies due to the rapid decay
(vanishing)  or  increase  (exploding)  in  the  norm  of  gradient  during  training.  Among  the
numerous methods proposed to address vanishing and exploding gradients, the introduction of
gating mechanisms to control the flow of information between layers has shown promising
results and practical applications. Some noteworthy examples of RNN architectures adopting
this principle are Gated Recurrent Unit (GRU) and Long-Short Term Memory (LSTM) [19].
Existing studies on wind power prediction relying on ANN have mainly been based on LSTM
models.  The data transfer process is LSTM is similar to that of standard recurrent neural
networks. However, the information propagation operation is different. As the information
passes  through,  the  operation  decides  what  information  to  process  further  and  what
information to discard. The main operation consists of cells and gates. The state of the cell
functions as a pathway for the transfer of information. You can think of cells as a memory.
For more details about LSTM, interested readers are invited to read [19].

2.3. Decision Tree
Roots, branches, and leaves make up a typical tree. Decision Trees follow the same

structure. There are root nodes, branches, and leaf nodes in it. Every internal node is used to
test an attribute, the result of the test is on the branch, and the class label is on the leaf node as
a result [20, 21]. A root node is the topmost node in a tree and serves as the parent of all
nodes. A decision tree is a tree in which each node (attribute) represents a characteristic, each
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link (branch) represents a decision (rule), and each leaf represents an outcome (categorical or
continuous value) [21]. Because decision trees are designed to replicate human reasoning,
grabbing facts  and making good interpretations  is  extremely easy.  The goal  is  to build a
similar tree for all of the data and process a single result at each leaf.

2.4. Random Forest
Random Forest is an algorithm based on the assembly of decision trees. It consists of a

set of independent decision trees. Each tree has a fragmented view of the problem due to a
double random draw:

 a  random  draw  with  replacement  of  the  training  set;  this  process  is  called  tree
bagging,

 a random draw on the variables; this process is called feature sampling.
In the end, all these independent decision trees are assembled. The prediction made by

the  Random Forest  for  unknown data  is  then  the  average  (or  the  vote,  in  the  case  of  a
classification problem) of all the trees.

A Random Forest  algorithm can perform both regression and classification tasks.  It
produces efficient predictions that can be understood easily and it provides a higher level of
accuracy in predicting outcomes over the decision tree algorithm.

3. MERRA-2 reanalysis and GEOS FP weather forecasts

MERRA-2  is  a  NASA  global  atmospheric  reanalysis  [11].  It  uses  Goddard  Earth
Observing System Model, Version 5.12.4 (GEOS-5) data assimilation system. This system
combines historic weather observations with the atmospheric circulation model to infer the
state of the global weather conditions. The model is set to replicate historic observations from
satellites,  ground  observatories,  ships,  aircrafts,  etc.  producing  a  hindcast  as  opposed  to
forecast. Data collections from MERRA-2 are provided on the horizontal grid that has 576
points in the longitudinal direction and 361 points in the latitudinal direction, corresponding
to the resolution of 0.625o  longitude  0.5o latitude (cubed-sphere grid with an approximate
resolution of 50 km  50 km). The collection ‘tavg1_2d_slv_Nx (M2T1NXSLV)’ [22] is one
of  the most  interesting ones  for  wind power prediction among all  MERRA-2 collections
provided. Temporal coverage of the data collection is from 1980 onwards.

GEOS FP is a global atmospheric data assimilation system designed for analyses and
forecasts produced in real time, using the most recent validated GEOS assimilation system
[12]. The GEOS FP global horizontal grid consists of 1152 points in the longitudinal direction
and 721 points in the latitudinal direction, corresponding to the resolution of 0.3125o longitude
 0.25o latitude (cubed-sphere grid with an approximate resolution of 25 km  25 km). The
collection ‘tavg1_2d_slv_Nx’ is useful in most wind power short-term prediction (max 240
hours  ahead)  investigations,  among  all  GEOS  FP  collections  provided.  The  dataset  is
uploaded every day and temporal coverage of the data is from 00:30 of the first day (the day
before withdrawal of data) till 23:30 of the tenth day.

Both  MERRA-2  and  GEOS  FP  ‘tavg1_2d_slv_Nx’  collections  are  single-level
diagnostics, of 1-hourly frequency (data averaged over 1 hour) with spatial  grid 2D. One
MERRA-2 file covers the data records for 24 h from 00:30 UTC till 23:30 UTC, whereas one
GEOS FP file consists of one data row for 1 h (time-stamped with the central time of the
interval, i.e. 00:30 UTC, 01:30 UTC, 02:30 UTC, etc.). Since the horizontal native grid origin
represents a grid point located at 180oW, 90oS in both MERRA-2 and GEOS FP files, the
points that correspond to the resolution of 0.625o  0.5o are the same in both files. The list of
meteorological variables useful  in the process of wind power prediction provided in both
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MERRA-2 and GEOS FP ‘tavg1_2d_slv_Nx’ collections  is  the following:  DISPH – zero
plane  displacement  height  [m],  PS –  surface  pressure  [Pa],  QV10M –  10-meter  specific
humidity [kg/kg], QV2M – 2-meter specific humidity [kg/kg], SLP – sea level pressure [Pa],
T10M – 10-meter air temperature [K], T2M – 2-meter air temperature [K], U10M – 10-meter
eastward wind [m/s], U2M – 2-meter eastward wind [m/s], U50M – eastward wind at 50
meters [m/s], V10M – 10-meter northward wind [m/s], V2M – 2-meter northward wind [m/s],
and V50M – northward wind at 50 meters [m/s]. Additional details about variables listed in
the files specification [11, 12] can be found in [23].

The provider of GEOS FP data mentions that the weather forecasts using the GEOS
system must be experimental and is for research purpose only.

The main advantages of MERRA-2 and GEOS FP collections over other reanalyses,
historical  meteorological  data,  and  weather  forecasts,  can  be  listed  as  follows:  (i)  full
compatibility in terms of grid points and meteorological variables, (ii) incorporation of two
variables that are very important in wind power prediction – wind speed and direction at the
50 m above ground, (iii) the same data assimilations systems (GEOS), (iv) temporal coverage
of MERRA-2 data from 1980 onwards, (v) meteorological forecasts of 10 days ahead, (vi)
and free access to the data. Thanks to these advantages, every wind turbine regardless both of
the site (either onshore or offshore) and of the starting time of their operation can be used for
the study. Moreover, any adaptation of GEOS FP meteorological forecasts to the historical
meteorological data (e.g. grid points, altitude, time resolution etc.) collected in MERRA-2
data is unnecessary.

4. Wind turbine output power prediction approach

4.1. Overall framework
A new model based on gradient boosting implementations, historical wind turbine data,

MERRA-2 reanalysis and GEOS FP weather forecasts is presented in details. The flowchart
of the approach is shown in Figure 4.1. The entire prediction process consists of the following
steps: (i) input data collecting, (ii) wind turbine data cleaning, (iii) wind turbine data cleaned
and MERRA-2 data integrating, (iv) features engineering, (v) gradient boosting modelling,
and (vi) wind turbine output power prediction. The steps (i) – (v) can be executed once in the
whole process of prediction or repeated from time to time while the new wind turbine data
and MERRA-2 data are accessible. Such updates enable to improve the model performance
thanks: (i) the bigger number of data used for model training and (ii) incorporation the loss of
wind  turbine  productivity  with  time  (e.g.  ageing,  degradation,  fatigue).  Step  (vi)  can  be
repeated daily as new GEOS FP data become available.

Input data are the following: wind turbine dataset,  coordinates of wind turbine site,
coordinates of MERRA-2 and GEOS FP grid points and, MERRA-2 and GEOS FP datasets.
A wind turbine dataset consists of both the measurements (active and reactive power, wind
speed and direction measured by anemometer at the top of a nacelle, angle of a nacelle, pitch
angle,  temperature  of  turbine  components,  and  many  more)  and  the  operational  statuses,
recorded by SCADA system of the turbine. The average measurements are being recorded in
regular periods of time (5 or 10 minutes, depending on the turbine manufacturer). Usually,
some of the rows of measurements do not exist because of SCADA errors, turbine outage for
safety reasons. In wind turbine output power prediction relying on the methodology presented
in the study, only active power is processed. Some of the operational statuses concern the
event or state that stops the turbine, e.g. internal faults and failures of components, icing the
blades, external grid failures, manual stops, maintenance, calibration the load control and so
on. Each status is recorded directly after an event or a state occurred, and is described by its
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name, a unique code, and its duration. Time stamps of measurements and operational statues
of the turbine in question refer to local times.

Figure 4.1. Flowchart of the wind turbine output power prediction approach relying on the gradient boosting
model

Coordinates of wind turbine site (latitudinal and longitudinal directions) have to be used
to determinate the coordinates of MERRA-2 and GEOS FP grid points. The principle of this
process is to find the nearest grid points around the wind turbine site coordinates (see Figure
4.2, wind turbine site (a) and grid points: 1 – 4).

Figure 4.2. The layout of grid points of MERRA-2 and GEOS FP data, and wind turbine site, 
where Xo and Yo – coordinates of grid point 2

However, if one coordinate (either longitude or latitude) of a wind turbine site and one
coordinate of MERRA-2/GEOS FP are the same, the principle is to choose the two nearest
grid points, e.g. grid points 2 and 4 (in case of wind turbine site (b)) or grid points 1 and 2 (in
case of wind turbine site (c)). And finally, if two coordinates of both wind turbine site and
grid point are the same, it is enough to choose this only grid point, e.g. grid point 1 (in case of
wind turbine site (d)).
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When the grid points are known one can retrieve the meteorological features collected
in  ‘tavg1_2d_slv_Nx’ of  MERRA-2 and GEOS FP datasets for each grid point (the list of
meteorological  features  gained  and  other  details  addressed  both  datasets  are  provided  in
Section  3).  The  time  span  of  retrieved  MERRA-2  data  should  match  the  time  span  of
historical wind turbine data in question. The longer the wind turbine data time span is, the
better the output power prediction accuracy of the Wind Turbine (WT) is. Temporal coverage
of MERRA-2 data from 1980 onwards guarantees the same time span of MERRA-2 and wind
turbine data. The number of retrieved GEOS FP data depends on the output power prediction
time horizon needed (with a maximum of 240 h ahead).

The  units  of  some the  features  collected  in  MERRA-2  and  GEOS FP datasets  are
converted, i.e. pressure from [Pa] into [hPa], humidity from [kg/kg] into [g/kg], temperature
from [K] into [oC]. Then one calculates  wind speed [m/s]  relying on orthogonal  velocity
components  of  the  wind,  U (the  zonal  velocity  –  the  component  of  the  horizontal  wind
towards east) and V (the meridional velocity – the component of the horizontal wind towards
north), i.e.

WS=√U2+V 2,                                                       (4.1)
 

and  meteorological  direction  in  terms  of  both  the  degree  of  range  0  ...  360o based  on
components U and V

WDMET (deg )=180
π
∙atan2(−U ,−V ),                                        (4.2)

and 16 cardinal (and intercardinal) directions relying on WDMET (deg): ‘N’ – 348.75o–11.25o,
‘NNE’ – 11.25o–33.75o, ‘NE’ – 33.75o–56.25o, ‘ENE’ – 56.25o–78.75o, ‘E’ – 78.75o–101.25o,
‘ESE’ – 101.25o–123.75o, ‘SE’ – 123.75o–146.25o, ‘SSE’ – 146.25o–168.75o, ‘S’ – 168.75o–
191.25o, ‘SSW’ – 191.25o–213.75o, ‘SW’ – 213.75o–236.25o, ‘WSW’ – 236.25o–258.75o, ‘W’
– 258.75o–281.25o, ‘WNW’ – 281.25o–303.75o, ‘NW’ – 303.75o–326.25o, ‘NNW’ – 326.25o–
348.75o.

Wind turbine data cleaning involves: (i) filling in with the missing rows in original
dataset of measurements, (ii) removing the data from some rows and (iii) calculating hourly
averages of the data. Completing missing values relies on adding both the rows and their
date/time (regular period of time of 5 or 10 min). The number of missing values between two
rows of original dataset ranges from one up to hundreds (or even thousands). Removing the
data (except date and time) should be carried out relying on operational statuses recorded by
the SCADA system of wind turbine. The principle of this process is to remove one or more
rows  of  original  dataset  of  measurements  which  coincide  with  time  of  occurrence  and
duration of the statuses which concerns the stopping of the turbine. Moreover, if at least one
row (time period of 5 or 10 min) of time interval of 1 h (from HH:10 till HH+1h:00, where
HH is an hour of the day) is missing or removed, the remaining of rows of this interval should
be removed as well, to avoid errors while calculating the hourly averages of the data. The last
step of data cleaning consists in calculating of the hourly averages of data (from HH:10 till
HH+1h:00).  If  there is  not data in the interval  (because of missing values in the original
dataset or of removed data) the row affecting this interval will be empty (except for date and
time).

While the wind turbine data are cleaned, they can be integrated with MERRA-2 data to
constitute the feature dataset. MERRA-2 data must be adapted to local time and synchronized
in time with wind turbine data. GEOS FP data must be adapted to local time as well. 
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Features engineering applies to both cleaned integrated wind turbine data and MERRA-
2 data, and GEOS FP data in the same way. It should be carried out before feeding a gradient
boosting model with data, and turbine output power prediction, respectively. The main goal is
to format input dataset to fit the data-assumption of the model at hand. It can significantly
improve the performances of the model. Features engineering consists in: (i) updating the
datasets with the columns of the features resulting from given ‘Look back’ parameter, (ii)
categorical  features encoding,  (iii)  data  standardization and normalization,  and (iv)  cyclic
features transformation. The details on features engineering are provided in Subsection 5.2. 

ML modelling is the process that consists of a few steps, i.e.:  (i) splitting the input
dataset of the features into training and testing sets, (ii) training the model based on learning
algorithm, (iii) hyper-parameters tuning, and (iv) testing and evaluation of the model. The
whole dataset should be divided into two subsets – first to train the model and the second to
test it. Let us assume that the proportions of the subsets are respectively 80%/20%. Training
the model is being carried out relying on: learning algorithm and the training subset of data.
As  a  learning  algorithm,  three  implementations  of  gradient  boosting,  i.e.  CatBoost,
LightBoost and XGBoost have been used. Some details concerning the implementations can
be found in Section 3. Before starting the training process, some of the parameters should be
set by the user. They are called hyper-parameters and are essential to the performance of the
model,  the speed and the quality of the learning process.  Usually the learning algorithms
come with  these  parameters  set  to  default  values  that  are  not  necessarily  fit  for  specific
problem at hand. In practice, one needs to use appropriate strategies in order to find the best
values with respect  to the performance criteria.  Grid-search is  one of  such strategies  and
mostly consists of an exhaustive search on specific parameters values. Having completed the
training process, the testing and the evaluation of the model can be carried out. The testing
process involves calculating output power based on a trained model and testing subset of
features  dataset.  The  evaluation  of  the  model  relies  on  measuring  its  performances,  i.e.
statistical relationship between time series of real values of wind turbine output power and
time series of the values output power obtained based on the model and testing subset of input
data. Two common errors metrics have been used, i.e. RMSE and MAE (see Subsection 5.4).
Moreover, the error metrics can be used to correct the hyper-parameters and the ‘Look back’
parameter, to improve the model performances as much as possible. Having corrected the
hyper-parameters and ‘Look back’ parameter the process of training and testing should be
repeated. The gradient boosting model that assures the best performance can be approved and
taken for wind turbine output power prediction.

Finally,  the  resulting  model  updated  with  GEOS  FP  meteorological  forecasts  for
assumed time horizon of prediction returns the time series (point values) of wind turbine
output power. Preprocessing the GEOS FP data is the same as MERRA-2 data in terms of
features engineering (see Subsection 4.2). The first hour of the time horizon of wind turbine
output power prediction and the time horizon depend on: the local time shift (in relation to
UTC) and the ‘Look back’  parameter. For example, if the local time shift is UTC+1 h for
winter time and UTC+2 h for summer time (as for CET) and if ‘Look back’ = 1, then the first
hour of power prediction is 02:30 AM CET (winter time) and 03:30 AM CET (summer time),
and the time horizon is 239 h ahead. With ‘Look back’ = 5, the first hour of power prediction
is 06:30 AM CET (winter time) and 07:30 AM CET (summer time), and the time horizon is
235 h ahead.

4.2. Feature engineering
The features dataset is expanded with some more columns of data, i.e. lagged features

of  MERRA-2 data  and additionally  generated  data,  and GEOS FP data.  Lagged features
consist of data from the past (at time intervals t-1, t-2, …, t-n). The number of time intervals
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is called ‘Look back’ and must be set by the user, i.e. ‘Look back’ = n. The default value of
‘Look back’ may be 1, 2 or 3. Lagged features insertion is motivated by the strong temporal
correlation among turbine output power within time interval  t and meteorological features
(e.g. wind speed and direction) in intervals t-1, t-2, and so on. The criterion to select the value
of ‘Look back’ is the best performance of the model that can be achieved within its testing
and evaluation.

On  the  basis  of  the  date-time  feature  included  in  the  features  dataset  in  the
YYYYMMDD:HH format, three other features have been generated, i.e.: hour of the day (0,
1,  …, 23),  month (1,  2,  …, 12),  and weather season (winter – from YYYY.12.21:00 till
YYYY.03.20:00,  spring  –  from  YYYY.03.20:00  till  YYYY.06.20:00,  summer  –  from
YYYY.06.20:00  till  YYYY.09.22:00,  and  autumn  –  from  YYYY.09.22:00  till
YYYY.12.21:00) for each row of features dataset.

Categorical features take the finite set of values as opposite to continuous features. Most
gradient boosting implementations, with a few exceptions such as CatBoost, do not support
categorical features natively. Thus, they must be encoded before feeding a gradient boosting
model with the data at hand. The list of categorical features of our dataset consists of cardinal
(intercardinal) wind directions for each grid point in question and time intervals – t, t-1, t-2,
…, t-n. The wind directions are mapped into numbers as follows: ‘N’: 0, ‘NNE’: 1, ‘NE’: 2,
‘NEE’: 3, ‘E’: 4, ‘SEE’: 5, ‘SE’: 6, ‘SSE’: 7, ‘S’: 8, ‘SSW’: 9, ‘SW’: 10, ‘SWW’: 11, ‘W’:
12, ‘NWW’: 13, ‘NW’: 14, ‘NNW’: 15. Data normalization consists of re-scaling the original
data provided, so that all values of the features, are within the range 0 – 1. It has been carried
out based on the following formula

 

xNEW=
x−xMIN
xMAX−xMIN

,                                                      (4.3)

where  xNEW  –  new  normalized  value,  x,  xMIN  and  xMAX –  actual,  min  and  max  value
respectively.

Data normalization is necessary for many machine learning algorithms and especially
for LSTM algorithms which are based on neural networks. There are different possibilities to
normalize  data.  There  are  also  many  different  solutions  to  normalize  or  scale  the  data.
Standardization is defined by

xNEW= x−μ
σ ,                                                          (4.4)

where xNEW  – new normalized value, μ and σ  – mean and standard deviation of the original
data respectively.

Classically, the min-max normalization (or rescaling) between [-1,1] is defined by

xNEW=−1+ 2(x−min (x))
max ( x )−min (x)

,                                            (4.5)

where min(x) and max(x) are respectively the minimum and the maximum value of x.

Both versions were tested and the tests show that the min-max normalization provides
the best predictions.
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Cyclic features transformation addresses those features whose values are cyclical, i.e.
hours of day, days of week, months of year, and wind direction. Their optimal processing can
lead to the optimal learning process of the model, i.e. these new features carry the correct
information we want the model to learn. Two equations based on trigonometric functions (sin,
cos), enable one to create two features corresponding to original feature at hand, i.e.

xsin=sin( 2∙ π ∙ x
max (x)), xcos=cos ( 2 ∙ π ∙ x

max ( x)),                                 (4.6)

where x – the values of original feature.

4.3. Output power prediction accuracy measures
To  evaluate  the  accuracy  of  a  wind  turbine  output  power  prediction  the  following

choices have been made: (i) two primary metrics commonly used in the field, i.e. root mean
squared error (RMSE) and mean absolute error (MAE), (ii) their relative metrics, i.e. root
relative squared error (RRSE) and relative absolute error (RAE) respectively, and (iii) three
normalized metrics, i.e. normalized root mean squared error – normalized by the mean of
actual  data  (NRMSE_m),  and  normalized  by  the  standard  deviation  of  the  actual  data
(NRMSE_sd). RMSE and MAE were used for evaluation of prediction models performance.
The measures mentioned above are defined as follows [24]:

 root mean square error, RMSE=√ 1
N∑

i=1

N

|X i−X̂ i|
2
,

 relative root squared error, RRSE=√∑i=1

N

|X i− X̂ i|
2

∑
i=1

N

|X i−X|
2

,

 normalized root mean squared error (normalized by the standard deviation of the actual

data), NRMSEsd=
RMSE
sd ,

 normalized  root  mean  squared  error  (normalized  by  mean  of  actual  data),

NRMSEm=
RMSE
X ,

 mean absolute error, MAE= 1
N∑

i=1

N

|X i−X̂ i|,

 relative absolute error, RAE=
∑
i=1

N

|X i−X̂ i|

∑
i=1

N

|X i−X|
,

where: X i – ith actual value, X̂ i – ith value obtained while testing the model or output power
predicting, X  – mean of the actual values, X  – the set of actual values, sd – standard deviation
of actual values, N – size of the dataset.

RRSE and NRMSE_sd are the same in terms of mathematical formula. The smaller the
values  of  the  metrics,  the  more  efficient  gradient  boosting  models  and  output  power
prediction results are. Let us assume the criterion of acceptance of output power prediction is
both  relative  and  normalized  errors  do  not  excide  1.  According  to  the  performance
requirement  in  the functional  specification of  wind power forecasting system reported by
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State Grid Corporation of China, article IV, the RMSE of short-term forecasting of a single
wind farm should be less than 20%. The RMSE of the predicted value of 4 h should be less
than 15% [4].

5. Case study

5.1. Wind turbine operation data
The  case  study addresses  a  prediction  of  output  power  of  a  wind turbine  E-53 by

ENERCON. The rated power of the turbine is 800 kW. It is located in the North-Eastern of
Poland. Original wind turbine dataset consists of the measurements of turbine parameters and
its operational statuses, both recorded in SCADA system over period 2014.09.01–2020.11.30.
Resolution of the data  is  10 min (interval  averages).  Data cleaning of original  dataset  of
measurements has involved: filling in with the missing rows, removing the data in some rows
(data of 10 min resolution) based on operational statuses of the turbine, and calculating hourly
averages of the data (see the rules in Subsection 4.1). The total number of hourly averaged
measurement rows is  54787. The hourly averages of the data have been calculated to be
compatible  with  MERRA-2  data  and  finally  –  to  constitute  the  features  dataset.  For
comparison with the dataset of hourly averages calculated relying on the rule described in
Subsection 4.1, a second dataset was created in which hourly averaged values are obtained
without applying this rule. The number of missing records, mean, standard deviation, variance
of wind turbine output power and correlation between output power and wind speed measured
by anemometer of the turbine, in both datasets are provided in Table 5.1.

Table 5.1. Parameters that summarize the wind turbine output power data, without and with applying the rule of
hourly averaged data calculation

As provided in Table 5.1 the number of missing values in both datasets is not large
respectively – 2.1% and 6.5% of the total number of data. The application of the rule results
in a threefold increase of missing data. Since the total number of records is huge, one can omit
the  missing  values  in  processing  with  output  power  prediction  without  any  significant
consequences. Following this rule resulted in: (i) both mean of output power and coefficient
of  correlation  between  output  power  and  wind  speed  increase  and  (ii)  both  a  standard
deviation and a decrease in the variance.

Figure 5.1 presents the scatter plots and histograms of two features: wind turbine output
power and wind speed measured by turbine’s anemometer. The main difference between both
scatter plots is the number of data points below the common sigmoidal shaped power curve of
the  turbine  –  mostly  in  or  near  the  horizontal  axis  where  the  output  power  is  0.  The
histograms of output power (and wind speed) are very similar to each other in terms of bins
distribution. The only difference is the frequency of data in the bins. It can be noted that the
distribution of wind speed tends to be a normal distribution and the mean is much lower ( 5
- 6 m/s) than the rated wind speed (following manufacturer data – 12 m/s), for both datasets.
This implies that a wind turbine spends the majority of its operating time much below the
rated power (800 kW).
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Parameter Without applying the rule With applying the rule
number of missing values (percentage 
of total number of data) 1150 (2.1%) 3565 (6.5%)

mean [kW] 178.92 182.61
standard deviation [kW] 180.83 180.63
variance 32698.8 32626.5
coefficient of Pearson correlation 
between output power and wind speed 0.914 0.944



   
Figure 5.1. Scatterplots and histograms of wind turbine output power and wind speed measured by turbine’s

anemometer within the period 2014.09.01-2020.11.30, without (left) and with (right) applying the rule of hourly
averaged data calculation

Following these experiments, one can conclude that the performance of the models and
the predictions accuracy are essentially better for the dataset that was created using the rule of
hourly averaged data calculation. Only the prediction results based on a dataset created with
applying the rule of hourly averaging data are presented in the further part of the work.

5.2. MERRA-2 and GEOS FP data
Coordinates of the wind turbine site (latitudinal and longitudinal directions) were used

to determinate the coordinates of MERRA-2 and GEOS FP grid points based on the rule
presented in Subsection 5.1. The turbine site corresponds to case (a) in Figure 4.2, i.e. the
coordinates of the four nearest grid points were found. The distances between wind turbine
and grid points of MERRA-2 reanalysis and GEOS FP data are as follows: WT and grid point
1 = 38.31 km, WT and grid point 2 = 30.51 km, WT and grid point 3 = 39.02 km and WT and
grid point 4 = 31.5 km. The time span of retrieved MERRA-2 data is the same as the one
found  in  the  wind  turbine  data,  i.e.  2014.09.01  –  2020.11.30.  Collected  meteorological
features are listed in Subsection 5.1. MERRA-2 dataset was adapted to local time (CET), i.e.
UTC+1 for winter time and UTC+2 h for summer time and finally integrated with cleaned
wind turbine data.  GEOS FP datasets  were retrieved for many days during the following
period 15.08.2020 – 15.02.2021,  but  it  was  decided to  proceed with the forecasts  for  14
randomly selected days, i.e.: 28.04.2020, 31.08.2020, 07.09.2020, 23.09.2020, 05.10.2020,
19.10.2020,  03.11.2020,  27.11.2020,  09.12.2020,  28.12.2020,  04.01.2021,  25.01.2021,
02.02.2021, 08.02.2021. The only criterion of the day selection was to take two days of one
month, in a proportional way among different seasons. GEOS FP datasets were adopted to
local  time  (CET)  as  well.  Each  GEOS  FP  dataset  consists  of  240  hourly  averaged
meteorological features starting from the announced above.

5.3. Features engineering and ML modelling
The integrated dataset of cleaned wind turbine data and MERRA-2 data were upgraded

with the columns of meteorological features given a ‘Look back’ parameter. One started with
‘Look back’ = 1, thus lagged features consist of the data shifted by 1 h back (t-1). Moreover,
three  other  features  were  generated  and  mapped  into  numbers  and  incorporated  into  the
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dataset, i.e. hour of the day, month of the year, and season. Cardinal and intercardinal wind
directions (that constitute categorical feature) were mapped into the numbers as well. All the
features were normalized and standardized relying on formula (1) and (2), respectively. The
cyclic features (hours of the day, days of the month, month of the year, and wind direction)
were transformed based on formula (3). GEOS FP datasets were processed in the same way as
the integrated dataset. The one proceeded with different ‘Look back’ parameter values, i.e.
from 1 up to 7. After changing the ‘Look back’ both the integrated dataset and GEOS FP
datasets  were  reconfigured  in  order  to  take  into  account  the  new  lagged  features.  All
meteorological features retrieved from MERRA-2 and GEOS FP relating to a given grid point
were indexed with that point number, e.g. WS50M1 concerns wind speed at 50 meters at a
point 1.

Three GB implementations were used for training the model and wind turbine output
power prediction, i.e. CatBoost, LightBoost, and XGBoost (see Section 2). Moreover, in order
to  compare  the performance of  GB models  and their  predicting  accuracy with other  ML
algorithms it was decided to introduce three other models that rely on: LSTM, Decision Tree
and Random Forest (see Section 2). The basic criterion for selecting these approaches was the
need to ensure the same idea of prediction process in terms of: learning from the data, input
dataset that consists of wind turbine data and MERRA-2 data for training the model, and
GEOS FP weather forecast data for prediction of the wind turbine output power.

All the models in question were trained using all features included into the input dataset.
Hyper-parameters  optimization  and  tuning  were  performed  for  each  learning  algorithm.
Concerning GB models the grid-search approach was used for hyper-parameters optimization
and tuning to  ensure  their  optimal  performance.  The models’  performance was measured
thanks to two error metrics, i.e. RMSE and MAE. All the models were trained and tested
using identical  training  and testing  datasets.  The same GEOS FP meteorological  forecast
datasets were used for wind turbine output power prediction relying on all the models (see
Subsection 5.2).

5.4. Results and discussion
Following  many  experiments  during  the  models’  training  (different  ‘Look  back’

parameter assumption, hyper-parameters optimization and tuning, different architectures of
LSTM model) and their testing and evaluation, the best performance of the models in terms of
both RMSE and MAE is achieved for ‘Look back’ = 5 and summarized in Table 5.2. Since
‘Look back’ = 5 the total number of processed features is 501.

Table 5.2. The learning algorithms performance (the best score is in bold)
Learning
algorithm

RMSE
[kW]

MAE
[kW]

CatBoost 76.18 54.87
LightBoost 76.84 55.24
XGBoost 77.02 55.61

LSTM 78.73 57.85
DecisionTree 111.26 79.38
RandomForest 77.97 56.14

Table 5.2 shows that GB models have the best performances as compared to the other
models.  Among  three  GB  models,  their  performance  is  comparable  but  CatBoost
implementation is at the top (best results of RMSE and MAE in bold). On the other hand, the
Decision Tree model has the worst performance. In regard to the LSTM model and to the
Random Forest model, their performance is very close to that of the GB models.
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The CatBoost model assures the best performance (see Table 5.21). With this model,
one can see in Figure 5.2 the 10 best features. These 10 features all concern wind speeds. Four
of them refer to an altitude of 50 m above ground at all grid points (WS50M2, WS50M4,
WS50M3,  WS50M1).  Three  wind speeds  concern  an  altitude  of  10  m above  zero  plane
displacement high at grid points 3 (WS10M3) and 2 (WS10M2), and 4 (WS10M4). Moreover
there are three lagged features, i.e. two for t-1 (WS50M4_T1 and WS50M2_T1), and one for
t-2 (WS50M4_T2). Among these features, there are three that dominate in most – WS50M2,
WS50 M4 and WS50M4_T1.

Figure 5.2. Features importance ranking for CatBoost model

The correlation among wind turbine output power and ten meteorological features that
extremely important for the CatBoost model are shown in Figure 5.3.
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Figure 5.3. Heatmap of the features for CatBoost model

Figure 5.3 confirms a strong correlation: (i) between wind turbine output power and
relevant meteorological features (coefficient of Pearson correlation from 0.806 for WS10M2
up to 0.831 for WS50M4), and (ii) among all of meteorological features (from 0.84 between
WS10M2 and WS50M4_T2 up to 0.981 between WS50M4_T1 and WS50M4_T2).

Following the investigation of  different  number of  features  used in  models  training
process carried out by the authors, it can be concluded that the best performance of the models
is assured by the use of all the available features instead of a few ones of higher importance in
the ranking.

Since ‘Look back’ = 5 assures the best performance of the models in question, the time
horizon of the wind turbine output power prediction is 235 h ahead. The error measures of
wind turbine output power prediction calculated for all 14 days (i.e. 28.04.2020, 31.08.2020,
07.09.2020,  23.09.2020,  05.10.2020,  19.10.2020,  03.11.2020,  27.11.2020,  09.12.2020,
28.12.2020,  04.01.2021,  25.01.2021,  02.02.2021,  08.02.2021)  relying  on  6  models  are
provided in Appendix A, B, and C, for time horizon prediction of 48, 120 and 235 h ahead,
respectively. The appendixes contain the calculated error measures as follows: RMSE, RRSE
(NRMSE_sd),  NRMSE_m,  MAE,  and  RAE.  The  best  scores  of  the  errors  are  in  bold.
Following the appendixes the range of error values calculated for individual predictions is
very large. The most spectacular comparison of the range of error values refers to the relative
errors,  i.e.  RRSE, NRMSE_m and RAE. For  example,  RRSE ranges from about  0.3 (for
08.02.2021) to greater than 1.4 (for 09.12.2020). The longer the prediction time horizon is, the
smaller the error range is, and the higher the lower limit is contrary to what happens in the
case of short- termshort predictions.

Table 5.3 shows the number of accepted predictions relying on the models in question
assuming that the acceptance criteria of wind turbine output power prediction are consistent
with those given in Subsection 5.4 (RMSE and MAE lower than 20% of nominal power of
wind turbine, and RRSE(NRMSE_sd), NRMSE_m, NRMSE_mm and RAE lower than 1).

Table 5.3. The number of accepted predictions relying on all the models considered (the best scores are in
bold)

Learning
algorithm

Number of accepted predictions for a time
horizon (% of total number of predictions):

48 h 120 h 235 h
CatBoost 11 (78.57%) 9 (64.29%) 6 (42.86%)
XGBoost 10 (71.43%) 10 (71.43%) 6 (42.86%)

LightBoost 10 (71.43%) 9 (64.29%) 6 (42.86%)
LSTM 8 (57.14%) 8 (57.14%) 5 (35.71%)

Decision Tree 5 (35.71%) 4 (28.57%) 2 (14.29%)
Random Forest 11 (78.57%) 10 (71.43%) 5 (35.71%)

In Table 5.3 the best numbers of accepted predictions are in bold. With this table one
can conclude as follows:

 the CatBoost  model  and the  Random Forest  model  provide the most  acceptable
predictions for 48 h ahead (78.57%), XGBoost model and Random Forest  – for
120 h ahead (71.43%), and GB models – for 235 h ahead (42.86%),

 there are not any learning algorithms that produce 100% of accepted predictions,
 the  longer  the  time horizon  of  prediction  is,  the  lower  the  number  of  accepted

predictions is.     
A comparison of the wind turbine output power prediction relying on all the models is

shown in Table 5.4, giving time horizons of 48 h, 120 h, and 235 h. The values of absolute
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errors (in kW and % of wind turbine rated power) are averaged over fourteen absolute errors
presented in Appendix A, B and C.  

Table. 5.4. Averaged absolute errors (RMSE and MAE) of the wind turbine output power prediction
relying on all the models, given time horizon of 48 h, 120 h, and 235 h (the best scores are in bold)  

Error
measure

Learning
algorithm

48 h ahead 120 h ahead 235 h ahead
Average

value
% of rated

power
Average

value
% of rated

power
Average

value
% of rated

power

RMSE

CatBoost 104.03 13.00 113.30 14.16 169.05 21.13
XGBoost 104.77 13.10 114.85 14.36 168.66 21.08

LightBoost 105.28 13.16 114.85 14.36 169.47 21.18
LSTM 116.98 14.62 126.14 15.77 168.36 21.04

DecisionTree 135.96 17.00 143.88 17.98 186.48 23.31
RandomForest 106.53 13.32 114.47 14.31 165.96 20.75

MAE

CatBoost 80.40 10.05 82.79 10.35 117.34 14.67
XGBoost 82.10 10.26 84.48 10.56 118.08 14.76

LightBoost 79.45 9.93 83.14 10.39 116.89 14.61
LSTM 92.94 11.62 94.49 11.81 120.02 15.00

DecisionTree 102.24 12.78 102.21 12.78 130.60 16.33
RandomForest 82.82 10.35 85.36 10.67 116.17 14.52

In Table 5.4 the best scores of the averaged errors are in bold. It shows that the GB
models provide the best predicting accuracy for a time horizon of 48 h and 120 h ahead. The
differences  in  error  values  are  slight  in  respect  to  three  GB  implementations.  The  best
prediction results are provided by the CatBoost model (the best scores of: (i) RMSE for 48 h
and 120 h, and (ii) MAE for 120 h). The LightBoost model can be considered the second
ranked model (the best score of MAE for 48 h). The accuracy of the Random Forest model is
similar to the GB models but slightly less efficient as far as 48 h and 120 h predictions are
concerned. The Random Forest model turned out to be the best for predictions of 235 h ahead
(the best scores of RMSE and MAE). Its accuracy is only slightly better than that of the GB
models and the LSTM model. The Decision Tree model seems to be the worst one regardless
of the time horizon of prediction.   

 There are two reasons for an imperfect output power prediction, i.e. the performance of
the learning algorithm (see the errors in Table 5.2) and the differences between GEOS FP
meteorological forecasts against MERRA-2 data. 

Since  the  CatBoost  model  assures  the  best  performance  (see  Table  5.2)  and
demonstrates one of the best accuracy of the wind turbine output power prediction, Figure 5.4
depicts the plots of true and predicted output power for 10 selected days.
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Figure 5.4. Comparison of true and predicted wind turbine output power for 235 h ahead (the day and time of
prediction are provided above the plot) obtained relying on CatBoost model
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6. Conclusions
This  work  presents  an  in-depth  investigation  of  the  wind  turbine  output  power

prediction by using historical data (both wind turbine data and MERRA-2 data), GEOS FP
meteorological forecast and GB algorithm. Three implementations of the GB algorithm were
compared to create optimized predictive models, i.e. CatBoost, XGBoost, and LightBoost. In
order to measure the performances of the GB models and the accuracy of the predictions other
ML algorithms were tested: LSTM, Decision Tree and Random Forest. The basic criterion to
select these approaches was the need to ensure the same idea of prediction process in terms
of: learning from the data, input dataset that consists of wind turbine data and MERRA-2 data
for training the model, and GEOS FP weather forecast data for prediction of the wind turbine
output power. The approach of the wind turbine output power prediction was achieved in
several steps defined by: input data preprocessing and cleaning, feature engineering, training
and testing the models and finally obtaining the output power prediction for each hour of time
horizon ahead. To maximize the performance of the models, hyper-parameter tuning was used
by manual and grid search (grid search optimization process was applied to GB models). The
approach presented in the work is applicable regardless of the site (onshore, offshore) of wind
turbine for  which the prediction is  made. The type and the technical  specification of  the
investigated  turbine  are  also  irrelevant.  The  only  thing  that  may  have  an  impact  on  the
accuracy of the prediction is to ensure that the models training is repeated as new data about
both the wind turbine operation and MERRA-2 data is obtained and incorporated into input
dataset. To sum up, the following facts can be highlighted based on the results of the wind
turbine output power prediction:

 data must be preprocessed and cleaned before they become input data in the model
training process,

 the greater number of features in input dataset is, the better the performance of the
models is; the inclusion of a few additional categorical features (season, hour of the
day, cardinal/intercardinal wind direction) in the input dataset can also improve the
performance of the models,

 the  GB  models  achieve  the  best  performance  compared  to  the  other  models
investigated,

 assuming the criteria of power prediction acceptance, the GB models demonstrate the
evidently higher number of accepted predictions as compared to the LSTM model
and the Decision Tree model, regardless of the time horizon of the prediction; the
number of accepted predictions relying on the Random Forest model is comparable
to the GB models,

 The  GB  models  (especially  the  CatBoost  implementation)  provide  the  smallest
averaged absolute  errors  of  the  wind turbine  output  power  prediction  for  a  time
horizon of 48 h and 120 h ahead,

 The GB models and the Random Forest  model provide the comparable averaged
absolute errors of the wind turbine output power prediction for 235 h ahead.       

The  output  power  prediction  errors  obtained  relying  on  the  approach  and  learning
algorithms (especially GB models) presented in this work for the assumed time horizons (48
h, 120 h and 235 h) ahead are at a much lower level than prediction errors derived thanks to
models proposed by other authors.        
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Appendix A. Wind turbine output power prediction errors for prediction horizon of 48 h (the best scores are in bold)

Error measure Learning
algorithm

Day of prediction
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RMSE [kW]

CatBoost 47.44 57.83 74.4 84.63 107.09 92.45 40.36 89.31 116.13 116 155.41 142.44 207.19 125.78
XGBoost 49.77 59.37 73.37 97.18 110.66 91.55 41.14 86.58 117.19 107.13 177.6 151.9 199.99 103.29

LightBoost 46.5 67.43 74.2 96.84 112.21 85.96 40.97 90.82 113.22 113.47 168.16 137.81 214.35 112.03
LSTM 55.64 65.31 102.63 76.81 111.29 101.21 39.89 96.12 221.32 129.56 177.92 173.35 200.8 85.8

DecisionTree 73.05 75.74 108.87 141.22 180.46 84.57 79.13 106.93 134.27 172.95 162.52 173.59 257.3 152.9
RandomForest 54.05 56.22 68.7 96.94 123.48 91.64 43.44 100.89 122 124.22 131.71 117.07 243.49 117.54

RRSE
(NRMSE_sd)

CatBoost 0.814 0.67 0.444 1.072 0.64 0.786 0.605 0.699 1.466 0.831 0.773 0.686 0.764 0.429
XGBoost 0.854 0.687 0.438 1.231 0.661 0.779 0.616 0.677 1.479 0.767 0.883 0.731 0.738 0.352

LightBoost 0.798 0.781 0.443 1.226 0.67 0.731 0.614 0.71 1.429 0.812 0.836 0.663 0.791 0.382
LSTM 0.955 0.756 0.613 0.973 0.665 0.861 0.598 0.752 2.794 0.928 0.885 0.834 0.741 0.292

DecisionTree 1.254 0.877 0.65 1.789 1.078 0.719 1.185 0.837 1.695 1.238 0.808 0.836 0.949 0.521
RandomForest 0.928 0.651 0.41 1.228 0.738 0.779 0.651 0.789 1.54 0.889 0.655 0.563 0.898 0.401

NRMSE_m

CatBoost 0.63 0.476 0.333 0.554 0.346 0.546 0.469 0.534 0.457 0.177 0.774 0.369 0.758 0.335
XGBoost 0.661 0.489 0.328 0.637 0.358 0.541 0.478 0.518 0.461 0.163 0.884 0.394 0.732 0.275

LightBoost 0.618 0.555 0.332 0.634 0.363 0.508 0.476 0.544 0.445 0.173 0.837 0.357 0.784 0.298
LSTM 0.739 0.538 0.459 0.503 0.36 0.598 0.463 0.575 0.87 0.197 0.886 0.45 0.735 0.229

DecisionTree 0.971 0.623 0.487 0.925 0.583 0.499 0.919 0.64 0.528 0.263 0.809 0.45 0.942 0.407
RandomForest 0.718 0.463 0.308 0.635 0.399 0.541 0.504 0.604 0.48 0.189 0.656 0.304 0.891 0.313

MAE [kW]

CatBoost 34.17 42.01 52.63 68.31 90.47 71.67 32.43 61.08 92.22 89.11 142.88 111.45 141.94 95.27
XGBoost 37.12 43.32 53.88 79.19 94.35 72.53 33.05 59.97 94.09 80.74 165.5 119.17 140.1 76.44

LightBoost 33 47.8 50.46 75.91 91.22 65.74 31.88 61.55 87.87 84.89 149.56 105.91 147.95 78.58
LSTM 46.74 48.78 66.05 64.1 88.37 85.75 32.31 68.74 196.78 93.12 167.52 139.38 138.77 64.71

DecisionTree 60.4 55.53 82.32 103.27 144.54 64.95 61.23 76.01 105.44 141.3 130.34 138.84 161.15 106.09
RandomForest 42.97 43.07 51.94 79.81 101.63 74.62 36.45 64.62 102.56 100.38 113.5 95.79 168.42 83.7

RAE

CatBoost 0.741 0.569 0.371 1.076 0.691 0.768 0.585 0.729 1.447 0.756 0.819 0.625 0.579 0.357
XGBoost 0.804 0.586 0.38 1.247 0.721 0.777 0.596 0.715 1.477 0.685 0.949 0.669 0.571 0.286

LightBoost 0.715 0.647 0.356 1.195 0.697 0.704 0.575 0.734 1.379 0.721 0.857 0.594 0.603 0.294
LSTM 1.013 0.66 0.466 1.009 0.675 0.919 0.583 0.82 3.088 0.791 0.96 0.782 0.566 0.242

DecisionTree 1.309 0.752 0.581 1.626 1.105 0.696 1.105 0.907 1.655 1.199 0.747 0.779 0.657 0.397
RandomForest 0.931 0.583 0.366 1.257 0.777 0.8 0.658 0.771 1.61 0.852 0.651 0.537 0.687 0.314
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Appendix B. Wind turbine output power prediction errors for prediction horizon of 120 h (the best scores are in bold)

Error measure Learning
algorithm

Day of prediction
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CatBoost 54 99.73 113.64 197.57 84.09 97.13 77.44 94.99 94.64 106.56 97.9 125.17 164.24 179.14
XGBoost 57.28 100.87 114.14 205.23 88.07 94.09 77.97 98.65 97.99 102.86 112.2 132.16 153.78 172.63

LightBoost 57.13 101.99 110.61 210.96 85.74 93.35 89.25 94.17 92.67 104.97 105.53 119.92 167.11 174.52
LSTM 57.5 110.71 118.49 199 93.23 104.5 79.85 112.73 173.85 118.65 111.68 138.63 153.65 193.43

DecisionTree 85.26 125.92 144.16 208.73 136.57 127.94 127.46 129.48 111 150.01 103.46 161.85 211.35 191.11
RandomForest 57.32 102.05 108.61 192.94 97.26 98.27 85.86 95.71 99.42 110.68 86.13 107.6 191.61 169.07

RRSE
(NRMSE_sd)

CatBoost 0.859 0.946 0.683 1.172 0.52 0.661 0.609 0.972 0.725 0.33 0.686 0.602 0.743 0.752
XGBoost 0.911 0.957 0.686 1.218 0.545 0.64 0.613 1.01 0.751 0.318 0.786 0.636 0.696 0.725

LightBoost 0.909 0.967 0.665 1.252 0.53 0.635 0.701 0.964 0.71 0.325 0.74 0.577 0.756 0.733
LSTM 0.915 1.05 0.712 1.181 0.577 0.711 0.627 1.154 1.333 0.367 0.783 0.667 0.695 0.813

DecisionTree 1.357 1.194 0.866 1.238 0.845 0.871 1.002 1.325 0.851 0.464 0.725 0.778 0.956 0.803
RandomForest 0.912 0.968 0.653 1.145 0.602 0.669 0.675 0.98 0.762 0.342 0.604 0.518 0.867 0.71

NRMSE_m

CatBoost 0.664 0.759 0.55 0.694 0.474 0.497 0.439 0.753 0.495 0.388 1.009 0.542 0.911 0.551
XGBoost 0.704 0.768 0.553 0.721 0.496 0.481 0.442 0.782 0.513 0.375 1.156 0.572 0.853 0.531

LightBoost 0.702 0.776 0.536 0.741 0.483 0.478 0.506 0.746 0.485 0.383 1.087 0.519 0.926 0.537
LSTM 0.707 0.843 0.574 0.699 0.525 0.535 0.453 0.894 0.91 0.432 1.151 0.6 0.852 0.595

DecisionTree 0.971 0.959 0.698 0.733 0.77 0.655 0.722 1.026 0.581 0.547 1.066 0.7 1.172 0.588
RandomForest 0.705 0.777 0.526 0.678 0.548 0.503 0.487 0.759 0.52 0.403 0.888 0.466 1.062 0.52

MAE [kW]

CatBoost 39.71 70.36 83.26 141.55 67.61 75.61 59.25 70.35 75.89 76.39 65.23 93.2 97.03 143.56
XGBoost 42.61 72.34 85.64 150.64 72.43 73.87 59.23 73.84 78.74 70.64 76.02 98.5 92.41 135.82

LightBoost 42.51 72.29 79.44 157.8 66.32 70.85 67.67 70.29 72.99 76.29 68.35 88.41 98.05 132.69
LSTM 45.51 79.05 84.84 146.12 74.66 84.95 60.43 86.21 144.22 89.15 78.94 105.78 92.63 150.34

DecisionTree 64.22 84.74 104.95 162.1 102.97 90.05 98.02 92.37 77.21 108.85 62.26 116.31 124.32 142.53
RandomForest 44.88 73.91 83.98 148.59 79.44 77.54 66.38 68.47 82.11 87.25 57.53 81.91 112.84 130.19

RAE

CatBoost 0.792 0.861 0.599 0.973 0.56 0.653 0.57 1.119 0.665 0.254 0.64 0.503 0.541 0.731
XGBoost 0.85 0.885 0.616 1.036 0.6 0.638 0.569 1.175 0.689 0.235 0.745 0.531 0.516 0.691

LightBoost 0.848 0.884 0.571 1.085 0.549 0.612 0.651 1.118 0.639 0.254 0.67 0.477 0.547 0.675
LSTM 0.908 0.967 0.61 1.005 0.619 0.734 0.581 1.372 1.263 0.296 0.774 0.571 0.517 0.765

DecisionTree 1.281 1.037 0.755 1.114 0.853 0.778 0.942 1.47 0.676 0.362 0.61 0.627 0.694 0.726
RandomForest 0.895 0.904 0.604 1.022 0.658 0.67 0.638 1.089 0.719 0.29 0.564 0.442 0.63 0.663
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Appendix C. Wind turbine output power prediction errors for prediction horizon of 235 h (the best scores are in bold)

Error measure Learning
algorithm

Day of prediction
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CatBoost 102.71 129.86 131.57 196.01 220.6 128.43 64.27 320.36 255.5 153.68 108.56 198.56 149.22 207.42
XGBoost 105.66 128.23 129.73 198.17 220.37 130.29 63.01 319.88 249.5 151.26 112.75 197.96 147.63 206.79

LightBoost 106.26 134.28 120.13 199.59 221.35 130 70.09 327.77 249.64 149.34 113.95 193.46 150.68 205.99
LSTM 102.74 132.33 118.52 190.54 218.12 127.05 64.54 284.31 275.38 168.35 113 194.61 152.71 214.79

DecisionTree 123.64 147.46 143.26 198.07 225.67 148.2 98.85 344.52 251.14 175.37 121.05 220.93 193.34 219.25
RandomForest 103.55 126.71 121.31 188.92 219.8 125.87 68.24 328.23 238.26 146.01 104.92 188.81 167.65 195.2

RRSE
(NRMSE_sd)

CatBoost 1.121 1.04 0.946 1.359 1.041 0.938 0.544 1.162 1.983 0.545 0.615 0.987 0.602 0.918
XGBoost 1.167 1.027 0.933 1.374 1.04 0.952 0.533 1.16 1.936 0.537 0.639 0.984 0.596 0.915

LightBoost 1.173 1.075 0.864 1.384 1.045 0.95 0.593 1.188 1.938 0.53 0.645 0.962 0.608 0.911
LSTM 1.125 1.056 0.849 1.31 1.027 0.923 0.541 1.049 2.121 0.587 0.637 0.966 0.611 0.947

DecisionTree 1.365 1.181 1.03 1.373 1.065 1.082 0.836 1.249 1.949 0.622 0.686 1.098 0.78 0.97
RandomForest 1.143 1.015 0.872 1.31 1.038 0.919 0.577 1.19 1.849 0.518 0.594 0.939 0.677 0.863

NRMSE_m

CatBoost 1.012 0.896 0.703 0.839 1.121 0.666 0.578 0.994 1.607 0.766 0.876 0.893 0.645 0.815
XGBoost 1.041 0.884 0.693 0.848 1.12 0.676 0.567 0.992 1.569 0.753 0.91 0.891 0.638 0.813

LightBoost 1.047 0.926 0.642 0.854 1.125 0.674 0.63 1.017 1.57 0.744 0.92 0.871 0.651 0.81
LSTM 1.014 0.923 0.628 0.815 1.092 0.655 0.582 0.905 1.723 0.824 0.894 0.887 0.662 0.834

DecisionTree 1.218 1.017 0.766 0.848 1.142 0.769 0.889 1.068 1.58 0.874 0.977 0.994 0.836 0.862
RandomForest 1.02 0.874 0.648 0.809 1.117 0.653 0.614 1.018 1.499 0.727 0.847 0.85 0.725 0.767

MAE [kW]

CatBoost 70.16 92.12 100.52 137.99 125.89 97.19 49.58 222.49 170.97 105.47 62.46 139.91 98.96 169
XGBoost 72.43 92.31 100.27 142.36 127.66 99.71 47.3 222.82 169.26 100.97 69.92 142.69 97.41 167.94

LightBoost 71.82 94.2 92.45 143.77 126.57 97.18 50.91 227.18 165.77 101.12 66.67 135.23 97.16 166.39
LSTM 72.04 95.42 89.85 136.27 127.6 99.12 47.7 203.85 208.41 118.33 72.08 141.13 96.57 171.84

DecisionTree 87.46 100.87 107.37 153.22 145.27 113.79 69.7 243.29 168.79 122.23 71.05 155.04 119.76 170.6
RandomForest 72.46 92.44 94.79 139.87 130.42 96.68 50.22 227.59 164.22 104.58 62.24 130.59 108.42 151.82

RAE

CatBoost 1.048 0.951 0.918 1.188 0.826 0.883 0.546 0.859 1.488 0.438 0.456 0.832 0.47 0.883
XGBoost 1.082 0.953 0.916 1.225 0.837 0.906 0.521 0.861 1.474 0.419 0.51 0.848 0.462 0.878

LightBoost 1.073 0.972 0.844 1.237 0.83 0.883 0.561 0.877 1.443 0.42 0.487 0.804 0.461 0.87
LSTM 1.065 0.987 0.816 1.158 0.833 0.894 0.522 0.805 1.793 0.476 0.521 0.84 0.451 0.894

DecisionTree 1.307 1.041 0.981 1.319 0.953 1.034 0.767 0.94 1.469 0.507 0.519 0.922 0.568 0.892
RandomForest 1.083 0.954 0.866 1.204 0.855 0.878 0.553 0.879 1.43 0.434 0.454 0.777 0.514 0.794
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