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Open phononic systems including resonators radiating inside an unbounded medium support
localized phonons characterized by a complex frequency. In this context, the concept of elastic
quasinormal mode (QNM) arises naturally, as in the cases of nanophotonic and plasmonic open
systems. Based on a complex, unconjugated form of reciprocity theorem for elastodynamics, the
eigenfunction expansion theorem expressed on the elastic QNM basis yields an accurate approxi-
mation to the response function, for an arbitrary excitation. The description of the elastic Purcell
effect then requires defining a complex-valued modal volume for each QNM. For validation, we first
consider the case a vibrating nylon rod radiating in water. As a second test example, we consider
a slender nickel ridge on the surface of a fused silica substrate, before extending our attention to a
nanoscale tuning fork composed of two such ridges. In all cases, the response estimated from only
a few elastic QNMs agrees with the solution to the elastodynamic equation.

I. INTRODUCTION

Resonating elements are ubiquitous in systems sup-
porting wave propagation, including photonics, plasmon-
ics, acoustics and phononics. The description of wave
radiation from discrete resonators in interaction with an
open, infinite substrate or a surrounding medium is thus
an important problem. Fundamental questions in this
regard include the description of radiation loss from a
resonant source, and the enhancement by its environ-
ment of the spontaneous emission rate from a quantum
system, known as Purcell effect1, as well as its exten-
sion to classical waves2–6. In photonics and plasmonics,
the radiation from resonating objects whose dimensions
are smaller than the wavelength is indeed strongly in-
fluenced by the surrounding media. Here, we consider
the similar case of small resonators coupled to elastic
waves, or acoustic phonons in the long wavelength limit.
In phononics, arrangements of small size resonators on
a surface are often considered, either as crystal arrays7,
acoustic metamaterials8, or simply systems of a few cou-
pled resonators at the micro- and nanoscale9.

An important issue with open systems is the definition
and proper use of complex eigenmodes satisfying radia-
tion boundary conditions at infinity. An open system
is not conservative because energy can escape it. As
a result, the dynamical matrix describing wave propa-
gation is not Hermitian and the eigenfunctions are no
longer normal modes but quasinormal modes (QNMs)
whose frequencies are complex10. Quasinormal mode
analysis allows one to rely on only a few QNMs to pro-
vide an approximate description of the response, even
though they do not respect the orthogonality property
of normal modes. QNMs are used in the description
of gravitational waves emitted by perturbed black holes
or relativistic stars11–13. They are widely employed in
photonics14 and plasmonics15 as a practical reduced-
order (few-parameter) model based on the resonant fre-

quencies.
In this paper, following ideas from Ref.2, we elabo-

rate on the concept of elastic quasinormal mode and
its application in phononics. Though there have been
previous attempts at defining elastic QNMs based on
Green’s functions techniques16, we instead derive our
results from basic solutions of the elastodynamic wave
equation and a complex, unconjugated form of the reci-
procity theorem valid for open systems. This approach
significantly avoids reference to an energy conservation
principle. Furthermore, we have used the concept of the
perfectly matched layer (PML) to approximate radiation
at infinity and thus obtain QNMs of resonators with ar-
bitrary shape. Of particular relevance is the use of the
superposition of a few QNMs to predict the elastody-
namic response to an arbitrary excitation of a resonator.
In the process, we define a complex modal volume and
give an expression of the response near resonance that is
similar to Purcell’s.

II. QUASINORMAL MODE EXPANSION

A. Normal modes

In this subsection, we summarize some important
properties of the modes of closed and lossless elastody-
namic systems, that belong to the class of normal modes.
The purpose is mainly to highlight which properties are
not conserved in open systems.
Normal modes are eigenmodes of closed structures.

Mathematically, for elastic waves they are the eigenso-
lutions inside a finite domain Ω (see Figure 1(a)) of the
elastodynamic equation

ω2
nρun = −∇ · (c : Sn), (1)

Sn = ∇un, (2)

with exterior boundary conditions on ∂Ω (typically free
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or clamped). The elastic tensor c has four indices and is
symmetrical, ρ is the mass density, u is the displacement
field, and S is the strain tensor. In the absence of loss,
eigenfrequencies ωn are real and eigenvectors un are or-
thogonal. By projection on normal mode number m, the
orthogonality relation can be written

ω2
n

∫
Ω

u∗
m · ρun =

∫
Ω

S∗
m : c : Sn = 0 if m ̸= n. (3)

For m = n, the equality of kinetic and elastic energy of
the normal mode is

ω2
n

∫
Ω

u∗
n · ρun =

∫
Ω

S∗
n : c : Sn. (4)

The total energy of normal modes is bounded

H(un) =
1

2

(∫
Ω

S∗
n : c : Sn + ω2

n

∫
Ω

u∗
n · ρun

)
= ω2

n

∫
Ω

u∗
n · ρun < ∞. (5)

If normal modes are known, the eigenexpansion the-
orem states that any solution u to the elastodynamic
equation at frequency ω

−∇ · (c : ∇u)− ω2ρu = F (6)

can be written u(ω) =
∑

m αm(ω)um with the frequency-
dependent coefficients αm(ω). Combining the equations
above, especially the orthogonality relation, it is easy to
see that

u(ω) =
∑
m

1

ω2
m − ω2

∫
Ω
u∗
m ·F∫

Ω
u∗
m · ρum

um. (7)

The formula thus expresses the response of the elastic
system to any excitation F, simply from its projection
on each normal mode and the superposition of poles cen-
tered on the real eigenfrequencies.

B. Elastic quasinormal modes

As noted in introduction, quasinormal modes are a
generalization of normal modes for open and lossy sys-
tems. The basic equation (1) defining them is the same,
but c and ρ are now complex valued, and possibly dis-
persive, Ω is an infinite domain (see Figure 1(b)), and
outgoing-wave boundary conditions are considered at in-
finity. As a result, the orthogonality relation (3) is lost,
as are the finiteness of the total energy (5) and the eigen-
expansion of equation (7). All eigenfrequencies are now
complex valued, since the matrices involved are not sym-
metric anymore. As we will show in the next subsection,
an expansion over elastic quasinormal modes formula re-
placing (7) can be obtained anyway.

There are different ways to obtain QNMs in practice.
A rigorous way is to use Green’s function techniques17,

Radiation 
medium

∞

PML

a b c

FIG. 1. Definition of supporting domains for wave resonance
and propagation. (a) Finite, closed domain supports nor-
mal modes. (b) Infinite, open domain supports quasinormal
modes. (c) These can be approximated by closing the domain
of computation with a perfectly matched layer (PML), that is
the truncated image of the infinite domain in (b) in a complex
coordinate transformation.

for instance based on some approximation in the finite
region (e.g. finite element analysis), coupled to an exte-
rior analytic solution when it is known. They can be
plane waves for planar geometries, Bessel and Hankel
functions for cylindrical geometries, or spheroidal har-
monics in three-dimensional homogeneous space. Since
we consider vector elastic waves in anisotropic elastic me-
dia, such an approach is cumbersome. Fortunately, there
is an efficient way to circumvent the issue, though it is
an approximate solution. That solution is to approxi-
mate the infinite radiation medium with a finite perfectly
matched layer (PML). PML is here implemented as a
coordinate transformation in the complex plane. Some
eigenvalue solver can then be used to obtain the com-
plex eigenmodes of the now ’closed’ system (see Figure
1(c)) but with complex-valued material constants. A sin-
gle finite element mesh can be prepared to describe the
resonator and the radiation medium. However, this ap-
proach is not always as easy as it seems, since perfectly
matched layers have their own eigenmodes, from which
the QNMs have to be sorted.
As a note, in the previous subsection on normal modes

we have written the integrals rather casually, without
mention of the integration variable. For quasinormal
modes, because of the presence of the PML, the domain
of integration Ω is still finite but obtained from a complex
coordinate transformation from an infinite domain; the
coordinate transformation is characterized by a Jacobian
matrix J that is itself a function of spatial coordinates.
The weak form representation of Eq. (1) is

ω2
n

∫
Ω

v · ρun|J |dr =

∫
Ω

S(v) : c : S(un)|J |dr (8)

with v a test function and with the strain defined as
S(u) = J−t∇u. Note the absence of complex conjuga-
tion compared to the normal mode case of Eq. (4). The
expression for the Jacobian J depends on the PML form
that is chosen; in this work we have used the polyno-
mial PML model discussed in Ref.18. As a note, J is a
function of space coordinates but also of frequency.

https://doi.org/10.1103/PhysRevB.107.144301
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In practice, we have used in this work the following
algorithm to obtain one QNM at a time, as inspired by
the inverse power iteration19. We start with a guess for
the eigenfrequency ω0 that is close to a maximum of the
frequency response. Formally, we assume that a stiffness
matrix K and a mass matrix M have been prepared from
Eq. (8). The initialization of the algorithm is stochas-
tic: solve (K − ω2

0M)u0 = F for a random excitation F.
Then the linear problem (K−ω2

nM)un+1 = Mun is iter-
atively solved and the solution converges to the nearest
eigenvector. At the end of the n-th iteration, the eigen-
vector is normalized by its infinite norm |un|∞. The
next candidate eigenfrequency is evaluated as ω2

n+1 =
un ·K ·un/un ·M ·un. Compared to the Rayleigh quo-
tient iteration, the main difference is that there is no
complex conjugation on the left vector / matrix prod-
uct. Convergence of this iteration is very fast but the
solution depends acutely on the distance in the complex
plane between the initial frequency and the target QNM
frequency. Note the method is compatible with disper-
sive media (resulting from the presence of the PML), i.e.
K and M are simply updated at the n-th iteration as
K(ωn) and M(ωn).

In the following subsection we assume that all neces-
sary QNMs have been obtained and that they form a
complete basis for representing solutions to the elastody-
namic problem. Examples of QNMs obtained with the
algorithm of this subsection are given in Section III for
two representative examples.

C. Sauvan’s method transposed to elastic waves

Sauvan et al.2 base their derivation of the QNM ex-
pansion on a particular form of the electromagnetic reci-
procity theorem, the unconjugated form expressed for
two arbitrary solutions at different frequencies. We will
keep the latter idea but work directly with the elastic
equations of motion; the usual form of the reciprocity
theorem for elastic waves is recalled for completeness in
appendix A. We consider the weak form of the equations
of motion for a solution u1 at frequency ω1 with the test
function chosen as another solution u2 at frequency ω2,
i.e.∫

S2 : c(ω1) : S1 − ω2
1

∫
u2 · ρ(ω1)u1 =

∫
u2 ·F1 (9)

and the same equation with indices 1 and 2 permuted.
Their difference then leads to∫

S2 : [c(ω1)− c(ω2)] : S1

−
∫

u2 · [ω2
1ρ(ω1)− ω2

2ρ(ω2)]u1

=

∫
u2 ·F1 − u1 ·F2. (10)

This is a reciprocity relation without complex conjuga-
tion, valid for an arbitrary frequency-dependent material

distribution. Note that the integration variable is not
written explicitly in this section, for compactness of ex-
pressions, but all integrals have an implied |J |dr factor
as in Eq. (8). We also use the notation Sn = S(un) for
the strain tensor.

Next we take solution 2 as QNM number n and so-
lution 1 as the current solution u depending on ω as a
continuous parameter, such that∫

Sn : [c(ω)− c(ωn)] : S(u)

−
∫

un · [ω2ρ(ω)− ω2
nρ(ωn)]u

=

∫
un ·F,∀n. (11)

The QNMs constitute a basis for the solution (per the
eigenfunction expansion theorem), according to which we
can write

u(ω) =
∑
m

αm(ω)um. (12)

Inserting the eigenfunction decomposition we obtain∑
m

Bnm(ω)αm(ω) =

∫
un ·F = Fn,∀n (13)

with

Bnm(ω) =

∫
Sn : [c(ω)− c(ωn)] : Sm

−
∫

un · [ω2ρ(ω)− ω2
nρ(ωn)]um. (14)

If the QNMs are known, the Bnm(ω) coefficients are eas-
ily computed, and the αm(ω) are obtained by solving a
small linear problem as a function of frequency, formally
α(ω) = B(ω)−1F. By small, we mean that the size of the
problem depends on the number of quasinormal modes
that are used in practice in the expansion. It is clear that
Bnm(ωn) = 0 by construction. Applying the reciprocity
relation (10) with ω1 = ωm and ω2 = ωn, we also have
Bnm(ωm) = 0 for m ̸= n. For all other frequencies, how-
ever, Bnm(ω) has in principle a non vanishing value that
must be taken into account in the solution. It is then
apparent that matrix B(ω) is singular at each QNM, in
the complex plane, but is always invertible for ω taken
along the real axis. Finally, equation (12) gives the gen-
eral solution, i.e. the frequency response of the system
to an arbitrary body force distribution.

As a note, if the material constants are non dispersive,
the formulas is simplified as

Bnm(ω) = (ω2
n − ω2)

∫
un · ρum. (15)

Anyhow, the orthogonality relation of normal modes does
not apply and matrix B(ω) is not diagonal. The explicit
expansion (7) still does not apply.

https://doi.org/10.1103/PhysRevB.107.144301
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More can be said regarding the form of the solution
close to a resonance, that is in the vicinity of a particular
ωn. Sauvan’s trick

2 for this purpose is indeed to pole Eq.
(13) by defining

Anm(ω) =
1

ω − ωm
Bnm(ω)

=
1

ω − ωm

[∫
Sn : [c(ω)− c(ωn)] : Sm

−
∫

un · [ω2ρ(ω)− ω2
nρ(ωn)]um

]
. (16)

At the pole center, we are basically dividing zero by zero
in view of producing a finite quantity (the pole strength).
More precisely, Anm(ωn) = 0 if m ̸= n and else

Ann(ωn) =

∫
Sn :

∂c

∂ω
(ωn) : Sn

−
∫

un ·

∂(ω2ρ(ω))

∂ω
(ωn)un. (17)

In the non dispersive case, we have

Ann(ωn) = −2ωn

∫
un · ρun, (18)

but in the viscoelastic case we have

Ann(ωn) = −2ωn

∫
un · ρun + ı

∫
Sn : µ : Sn, (19)

with µ the phonon viscosity tensor. Note that Anm(ω)
is generally complex for all frequencies, even in the non
dispersive case, since the wave solution inside the PML
region is complex valued.

Sufficiently close to the n-th QNM, and assuming the
spectrum is separated, a single damped pole dominates
the response locally and we can approximate

αn(ω) ≈
1

ω − ωn

Fn

Ann(ωn)
+ Σn(ω). (20)

This simple pole form is similar to the one obtained based
on the resolvent method20. It does not apply, however,
to the Hamiltonian, or total energy, but to the frequency
response directly. Note that when computing the fre-
quency response along the real axis, ωn ∈ C∗ and ω ∈ R,
so that the frequency response is finite for all ω.

D. Modal volume and elastic Purcell effect

We can now define the modal volume of each elastic
QNM. Considering some point in space r0, this modal
volume is defined as

Vn =
Ann(ωn)

2ωn[ρ(r0)U2
n(r0)]

(21)

with the squared total displacement U2
n(r) = u2

1n(r) +
u2
2n(r) + u2

3n(r). With this definition, Vn is expressed in
units of cubic meters and can be thought of as measuring
the volume occupied by the particular mode. Note that
the modal volume thus defined is complex-valued. The
downside of this definition is the arbitrary choice for the
center position r0; following Ref.2, we pick the maximum
of the modal field associated with the QNM. Specifically,
since the displacements are also complex-valued, we se-
lect

r0 = argmax
r

|ρ(r)U2
n(r)|. (22)

A benefit of that choice is the insensitivity of the modal
volume to multiplication of the modal displacement by an
arbitrary complex number. Indeed, QNMs are defined up
to a complex multiplication constant only.
Furthermore, an elastic Purcell effect can be defined.

From (21) we have

u(ω) ≈ 1

ω − ωn

1

2ωn[ρ(r0)U2
n(r0)]

Fn

Vn
un. (23)

At resonance, ω ≈ ℜωn and ω − ωn ≈ −iℑωn. Introduc-
ing the quality factor Qn = −ℜωn/(2ℑωn), the response
at resonance is then

u(ℜωn) ≈ −i
1

ωnℜωn[ρ(r0)u2
n(r0)]

Qn

Vn
Fnun. (24)

Numerical factors aside, the response is proportional to
the Q-factor and inversely proportional to the modal vol-
ume, which are the usual signatures of Purcell’s effect1.
The formula is valid whatever the applied force, after
projection on the QNM, so it is not limited to quantum
emitters as with the original Purcell formula but it also
applies to an arbitrary body force excitation. It has been
obtained here without reference to power conservation5

or an orthogonality relation16.

III. APPLICATIONS

A. Vibrating solid rod in water

As a first illustration of the concept of quasinormal
mode in the context of phononics, let us consider a cylin-
drical rod made of nylon, immersed in water21. The
elastodynamic equation is replaced in this case by a cou-
pled acousto-elastic equation that considers the bound-
ary conditions at the interface between the vibrating solid
rod and the surrounding fluid medium in which radiation
occurs21. Nylon, an isotropic solid, is chosen because the
shear velocity (1150 m/s) is smaller than the longitudinal
velocity in water (1480 m/s), leading to enhanced local-
ization of elastic vibrations of the rod. The longitudinal
velocity in nylon (2400 m/s) is larger than in water, how-
ever. The cross-section of the nylon rod is chosen to be
elliptical in order to avoid the appearance of degenerate

https://doi.org/10.1103/PhysRevB.107.144301
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FIG. 2. Stochastic response for a solid nylon rod with el-
liptical cross-section vibrating in water, as a function of the
reduced frequency ωd/(2π). d is the diameter of the rod, or
length of the long axis of the ellipse. The short axis length is
0.8d. The exact forced response is plotted with the magenta
line, whereas the eigen-expansion solution is plotted with the
green line. There are five damped resonances in the frequency
range of interest, labeled from 0 to 4. The corresponding real
parts of the pressure of QNMs are shown, with the color bar
going from blue (negative values) to red (positive values). The
characteristics of QNMs are listed in Tab. I.

QNMs. Figure 2 shows the stochastic response20,21 of the
nylon rod radiating in water. The response is obtained
by solving the acousto-elastic equation subjected to a
random source distribution in the rod, as a function of
frequency. There are five damped resonances appearing
in the frequency range of the plot (there are more reso-
nances at higher frequencies). The resonance frequencies
listed in Table I are well separated. Quality factors are
moderate, in the range of a few tens at most. The fre-
quency response around each peak satisfies the model
of damped poles superimposed upon a background de-
scribed by the ad hoc term Σn(ω), Eq. (20).
The frequency response can be approached using a

linear superposition of the QNMs, following the the-
ory given in the previous section. Since coupled elasto-
acoustic systems are beyond the theory of Section IIC,
however, we derive in Appendix B an acoustic version of
that section, and then in Appendix C its coupled elasto-

TABLE I. Characteristics for the QNMs of a cylindrical nylon
rod immersed in water. The reduced frequency is ωd/(2π)
with d the diameter of the rod.

Mode 0 1 2 3 4

Reduced frequency (m/s) 548 562 790 850 919

Q 12 48 24 30 12

acoustic version. Fig. 2 shows the five QNMs (limited to
the pressure part in water) after convergence with rel-
ative error smaller then 10−12. The obtained QNMs
clearly satisfy symmetry properties that were only ap-
proximated by the maximum solutions in Ref. [21]. It is
apparent that the response is well approximated, espe-
cially near the main resonance frequencies. Some low-Q
QNMs may have been missed, however, because their
complex frequency lies close to the PML spectral range.
The zero-frequency contribution to the response, that is
not encompassed in the QNM set, can not be approxi-
mated. For the larger frequencies, a sixth QNM appear-
ing just above the frequency range of interest has not
been included but contributes to the response.

B. Ridge and tuning fork on a semi-infinite
substrate

We consider next an elongated nickel ridge attached
to a fused silica substrate. The ridge is infinitely long in
the third direction of space. We thus simplify the prob-
lem of a typical elastic resonator to a two-dimensional
geometry in this section, but the results would be sim-
ilar in three dimensions, for instance when describing
radiation from a vibrating rod9,22,23. Geometrical pa-
rameters are height h = 1000 nm and width w = 100
nm. The elongated ridge has low frequency bending res-
onances, of the clamped-free type with in-plane polar-
ization, but also pure shear resonances with out-of-plane
displacements. We choose this simple mechanical system
because despite its simplicity it has quite well defined
resonances with rather high quality factors, especially in
the case of the fundamental bending vibration mode. Be-
cause of anchoring to the silica substrate, however, the
resonances are damped by radiation in the semi-infinite
substrate and must hence be represented by quasinormal
modes rather than normal modes. For simplicity, mate-
rial loss is not considered and elastic constants are con-
sidered non dispersive. Notwithstanding, their inclusion
per the theory of section II would pose neither formal
difficulty nor additional computational burden. Material
constants for fused silica are ρ = 2203 kg/m3, c11 = 78.5
GPa, and c44 = 31.2 GPa. Material constants for nickel
are ρ = 8600 kg/m3, c11 = 277 GPa, and c44 = 76.3
GPa.

Figure 3 shows the frequency response of the nickel
ridge attached to the fused silica surface, obtained for a
body force in the ridge applied along the x-axis. The

https://doi.org/10.1103/PhysRevB.107.144301
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FIG. 3. A nickel ridge on a fused silica substrate. The ridge
is 100 nm wide and 1000 nm high. The frequency response
is obtained for a body force on the ridge applied along the
x-axis only (Fx = 1). The result of the superposition of the
four quasi-normal modes identified in the frequency range of
interest is plotted on top of the frequency response computed
as a function of frequency by solving the forced elastodynamic
equation. The modulus of the total displacement for the four
QNMs is plotted, together with the deformed mesh in-plane.
The colorbar scales from black (zero total displacement) to
green (maximum total displacement).

TABLE II. Characteristics of the elastic QNMs of Fig. 3.

Mode freq. (GHz) Q volume (µm2) polarization

0 0.0681 12600 0.0272 (0.997, 0.003, 0)

1 0.417 1000 0.0277 (0.979, 0.021, 0)

2 0.676 9 0.0923 (0, 0, 1)

3 1.12 60 0.0285 (0.959, 0.041, 0)

response shows three resonance peaks. When we look
for QNMs, we find that there are four resonances in the
frequency range of interest. These QNMs are depicted
in Fig. 3 and their characteristics are summarized in
table II. The third QNM is pure-SH (shear horizontal,
with pure out-of-plane polarization), whereas the other
three QNMs are bending modes; the third QNM hence
does not contribute to the response because it is polar-
ized orthogonal to the body force. The quality factors

w

h

d

0 1

3 7

x

y

FIG. 4. A pair of nickel ridges on a fused silica substrate.
The ridges are w = 100 nm wide and h = 1000 nm high,
and are separated by δ = 150 nm from center to center. The
frequency response is obtained for a body force on the left
ridge only, applied along the x-axis only (Fx = 1). The result
of the superposition of the eight quasi-normal modes identi-
fied in the frequency range of interest is plotted on top of the
frequency response computed as a function of frequency by
solving the forced elastodynamic equation. The modulus of
the total displacement for four of the QNMs is plotted, to-
gether with the deformed mesh in-plane. The colorbar scales
from black (zero total displacement) to green (maximum total
displacement).

of the different QNMs are quite different. Anyway, the
frequency response reconstructed by superposition of the
QNMs using the eigen-expansion (12) reproduces quite
accurately the exact computation. Only three QNMs are
sufficient in this case, since the body force is applied along
the x-axis. As a note, the eigen-expansion computation
is faster than the full frequency response computation by
a factor 10 in this case. It can also be performed for any
arbitrary applied body force.

The modal volumes (here expressed as the modulus of
the modal in-plane area) are much smaller for the bend-
ing QNMs compared to the SH QNM. All of them, how-
ever, are smaller than the ridge area, 0.1 µm2. There
are thus all clearly confined to the surface and localized
inside the ridge in the case of bending QNMs.

https://doi.org/10.1103/PhysRevB.107.144301
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TABLE III. Characteristics of the elastic QNMs of Fig. 4.

Mode freq. (GHz) Q volume (µm2) polarization

0 0.0674 240000 0.0536 (0.997, 0.003, 0)

1 0.0689 6700 0.0533 (0.997, 0.003, 0)

2 0.414 334 0.0569 (0.979, 0.021, 0)

3 0.421 4200 0.0524 (0.972, 0.028, 0)

4 0.659 3200 0.113 (0, 0, 1)

5 0.993 82 0.103 (0.01, 0.99, 0)

6 1.137 200 0.0365 (0.957, 0.043, 0)

7 1.369 10 0.474 (0, 0, 1)

Figure 4 next considers the case of a system of two
identical ridges, each identical to the one in Fig. 3, sep-
arated by only 50 nm (the center-to-center separation
between ridges is δ = 150 nm). As the two resonators
are placed very close, they couple through the substrate
and form a kind two-dimensional tuning fork. Per the
symmetry of the structure, that has a mirror plane in be-
tween the two ridges, it could be expected that each of the
elastic QNMs of the single ridge doubles into a symmet-
ric/antisymmetric pair of QNMs, similar to binding/anti-
binding dimers. It would then be expected that anti-
binding QNMs show an improved quality factor and the
converse conclusion for binding QNMs. The actual sit-
uation does not follow exactly this simple intuition (see
appendix D for a simple model supporting the above dis-
cussion). The elastic QNMs characteristics summarized
in Table III suggest that the binding/anti-binding dimer
picture applies to the first two pairs of bending QNMs
(pairs 0/1 and 2/3 correspond resectively to QNMs 0 and
1 of the single ridge). QNM 4 is similar to QNM 2 for the
single ridge, with the exception of a much larger quality
factor; maybe the binding QNM could not be found in
this case because of a too small quality factor. The situa-
tion is similar for QNM 6 that is similar to QNM 3 for the
single ridge. QNM 5, however, has an almost pure verti-
cal shear polarization and no counterpart in the QNMs
of the single ridge. QNM 7 also has no counterpart in
the QNMs of the single ridge.

It is checked again that the eigen-expansion formula
reproduces very closely the response to a given applied
force, taken again as Fx = 1 but applied only to the left
ridge. Only the six elastic QNMs that are polarized in the
(x, y) plane contribute, as for the single ridge. In prac-
tice, the eigen-expansion computation is faster than the
full frequency response computation by a factor 7 in this
case. This property can be employed to compute the re-
sponse to different body forces, since only the right-hand
side changes with the applied force in Eq. (13). Finally,
though we considered an isotropic elastic substrate in
this example, the method of solution works equally well
for an anisotropic elastic substrate. Appendix E summa-
rizes the characteristics of the QNMs when sapphire is
considered as a substrate instead of fused silica, all other
parameters remaining the same.

IV. CONCLUSION

Elastic quasinormal modes are the eigenmodes of res-
onant open phononic structures subject to radiation and
material loss. As they are non conservative solution to
the elastodynamic equation, their eigenfrequencies are
complex numbers. The approximation of the frequency
response function to an arbitrary body force from the set
of elastic QNMs appearing in the frequency range of in-
terest was considered. It was verified that only a small
number of QNMs are required. The derivation we have
followed uses a complex, unconjugated form of the reci-
procity relation for elastodynamics. It avoids assuming
energy conservation or a normalization relation and di-
rectly gives the frequency response by solving a small
linear problem at each frequency. The modal volume of
elastic QNMs defined in the process is complex-valued
and a formula describing the elastic Purcell’s effect was
obtained. The theory extends straightforwardly to acous-
tic waves in open fluid media containing resonators.
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Appendix A: Rayleigh-Lamb Reciprocity

According to Auld (chapter 10 of his book24, starting
with equation (10.106)), reciprocity for elastic waves is
obtained as follows. Equations of propagation are written
for stresses and velocity as

∇ ·T =
∂

∂t
(ρv)− F, (A1)

∇v =
∂S

∂t
, (A2)

S = s : T, (A3)

with s = c−1 the compliance tensor. Introducing a (v, T )
state vector with 9 components, equations are condensed
as(

0 ∇ ·

∇ 0

)(
v

T

)
=

∂

∂t

(
ρ 0

0 s :

)(
v

T

)
+

(
−F

0

)
. (A4)

Next one considers two different solutions to the equa-
tions, obtained for different forces but the same frequency
(and for material constants independent of frequency).
Taking the cross-scalar product and subtracting, one ob-
tains

∇ · (v1 ·T2 − v2 ·T1) = v2 ·F1 − v1 ·F2. (A5)
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This is a local expression, called Rayleigh or Lamb reci-
procity.

A more general expression is obtained by avoiding any
asumption regarding the time dependence, with two ad-
ditional terms that were cancelling in the monochromatic
case

∇ · (v1 ·T2 − v2 ·T1) = v2 ·F1 − v1 ·F2

+ T2 : Ṡ1 − T1 : Ṡ2

+ v1 ·

∂

∂t
(ρv2)− v2 ·

∂

∂t
(ρv1). (A6)

The latter form is compatible with dispersion of the ma-
terial constants.

Generally, when the integral form of this equation is
obtained by integration over an infinite domain of defi-
nition, the divergence does not contribute, thanks to the
radiation boundary conditions at infinity. For waveguide
problems, integration over the cross-section of the waveg-
uide leads to an orthogonality relation for guided waves,
that is a bilinear form similar to the Poynting vector ap-
pears from the divergence term.

As a remark, the expression of the reciprocity theo-
rem is numerically inefficient, unless the solutions are
known everywhere. Solving (A4) is possible by the finite
element method, but there are 9 equations, hence 9 un-
knowns compared to 3 with the displacement formulation
of Section IIC.

Appendix B: Sauvan’s method transposed to
acoustic waves

In this appendix, we parallel the derivation of Sec.
II for the case of acoustic waves in fluids. The acous-
tic equation at frequency ω replacing the elastodynamic
equation (6) is

−∇ · (ρ−1∇p)− ω2B−1p = ∇ · (ρ−1F) = g (B1)

for pressure field p(r) (a scalar field) and body force F(r).
B(r) is the elastic modulus and can be dispersive. The
scalar source field g(r) is introduced for convenience. Eq.
(9) becomes∫

∇p2ρ
−1
1 ∇p1 − ω2

1

∫
p2B

−1
1 p1 =

∫
p2g1 (B2)

with ρ−1
1 = ρ−1(ω1) and B−1

1 = B−1(ω1). Eq. (10) is
now ∫

∇p2[ρ
−1
1 − ρ−1

2 ]∇p1

−
∫

p2[ω
2
1B

−1
1 − ω2

2B
−1
2 ]p1

=

∫
p2g1 − p1g2. (B3)

This is an acoustic reciprocity relation without complex
conjugation, valid for an arbitrary frequency-dependent

material distribution. Note that as for elastodynamics
the integration variable is not written explicitly, for com-
pactness of expressions, but all integrals have an implied
|J |dr factor as in Eq. (8).
Next we take solution 2 as QNM number n and solution

1 as the current solution p depending on ω as a continuous
parameter, such that Eq. (11) becomes∫

∇pn[ρ
−1(ω)− ρ−1

n ]∇p

−
∫

pn[ω
2B−1(ω)− ω2

nB
−1
n ]p

=

∫
png,∀n. (B4)

The QNMs constitute a basis for the solution (per the
eigenfunction expansion theorem), according to which we
can write

p(ω) =
∑
m

βm(ω)pm. (B5)

Inserting the eigenfunction decomposition we obtain∑
m

Dnm(ω)βm(ω) =

∫
png = gn,∀n (B6)

with

Dnm(ω) =

∫
∇pn[ρ

−1(ω)− ρ−1
n ]∇pm

−
∫

pn[ω
2B−1(ω)− ω2

nB
−1
n ]pm. (B7)

If the QNMs are known, the Dnm(ω) coefficients are eas-
ily computed, and the βm(ω) are obtained by solving a
small linear problem as a function of frequency, formally
β(ω) = D(ω)−1g. It is clear that Dnm(ωn) = 0 by con-
struction. Applying the reciprocity relation (B2) with
ω1 = ωm and ω2 = ωn, we also have Dnm(ωm) = 0 for
m ̸= n. For all other frequencies, however, Dnm(ω) has
in principle a non vanishing value that must be taken
into account in the solution. It is then apparent that
matrix D(ω) is singular at each QNM, in the complex
plane, but is always invertible for ω taken along the real
axis. Finally, equation (B5) gives the general solution,
i.e. the frequency response of the system to an arbitrary
body force distribution.

If the material constants are non dispersive, the for-
mulas simplify to

Dnm(ω) = (ω2
n − ω2)

∫
pnB

−1pm. (B8)

Anyhow, the orthogonality relation of normal modes does
not apply and matrix D(ω) is not diagonal. The explicit
expansion (7) still does not apply.

More can be said regarding the form of the solution
close to a resonance, that is in the vicinity of a particular
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ωn. Defining

Enm(ω) =
1

ω − ωm
Dnm(ω), (B9)

Enm(ωn) = 0 if m ̸= n and else

Enn(ωn) =

∫
∇pn

∂ρ−1

∂ω
(ωn)∇pn

−
∫

pn ·

∂(ω2B−1(ω))

∂ω
(ωn)pn. (B10)

In the non dispersive case, we have

Enn(ωn) = −2ωn

∫
pnB

−1pn. (B11)

Enm(ω) is generally complex for all frequencies, even in
the non dispersive case, since the wave solution inside the
PML region is complex valued.

Sufficiently close to the n-th QNM, and assuming the
spectrum is separated, a single damped pole dominates
the response locally and we can approximate

βn(ω) ≈
1

ω − ωn

gn
Enn(ωn)

+ Σn(ω). (B12)

We can now define the modal volume of each acoustic
QNM. Considering some point in space r0, this modal
volume is defined as

Vn =
Enn(ωn)

2ωn[B−1(r0)p2n(r0)]
. (B13)

With this definition, Vn is expressed in units of cubic
meters and can be thought of as measuring the volume
occupied by the particular mode. Note that the modal
volume thus defined is complex-valued. The downside
of this definition is the arbitrary choice for the center
position r0; following Ref.2, we pick the maximum of the
modal field associated with the QNM. Specifically, since
the pressure is complex-valued, we select

r0 = argmax
r

|B−1(r)p2n(r)|. (B14)

Furthermore, an acoustic Purcell effect can be defined.
From (B14) we have

p(ω) ≈ 1

ω − ωn

1

2ωn[B−1(r0)p2n(r0)]

gn
Vn

pn. (B15)

At resonance, ω ≈ ℜωn and ω − ωn ≈ −iℑωn. Introduc-
ing the quality factor Qn = −ℜωn/(2ℑωn), the response
at resonance is then

p(ℜωn) ≈ −i
1

ωnℜωn[B−1(r0)p2n(r0)]

Qn

Vn
gnpn. (B16)

Appendix C: Eigen-expansion for acousto-elastic
resonances

A variational formulation for the coupled acousto-
elastic dynamic problem is21

ω2

∫
Ωe

v · ρeu−
∫
Ωe

S(v) : c : S(u)−
∫
σe

vnp

−ω−2

∫
Ωa

∇qρ−1
a ∇p+

∫
Ωa

qB−1p+

∫
σa

unq =

∫
Ωe

v ·F

(C1)

where (u, p) are the unknown coupled fields, (v, q) are
mixed test functions, and the indices ()e and ()a refer to
the disjoint elastic and acoustic domains of definition. σe

and σa refer to the same boundary separating the elas-
tic and acoustic domains, but reversely oriented. Hence
the boundary terms ultimately yield symmetric contri-
butions to the finite element matrices. The body force F
is applied only inside the elastic domain, for simplicity.
Upon applying the same procedure as in Section IIC

and Appendix B, the following form results for matrix B

Bnm(ω) =

∫
Ωe

Sn : [c(ω)− c(ωn)] : Sm

−
∫
Ωe

un · [ω2ρ(ω)− ω2
nρ(ωn)]um

+

∫
Ωa

∇pn[ω
−2ρ−1(ω)− ω−2

n ρ−1
n ]∇pm

−
∫
Ωa

pn[B
−1(ω)−B−1

n ]pm. (C2)

The eigen-expansion writes

u(ω) =
∑
m

αm(ω)um, (C3)

p(ω) =
∑
m

αm(ω)pm (C4)

where coefficients αm(ω) are obtained by solving∑
m

Bnm(ω)αm(ω) =

∫
Ωe

un ·F = Fn,∀n. (C5)

Those formulas were used to obtain the eigen-expansion
response of Fig. 2.

Appendix D: Radiation from single and coupled pair
of ridges on a surface

The single ridge is a vertically elongated structure, con-
nected to the substrate only by a short segment of length
w = 100 nm. As Figure 3 illustrates, the displacement
fields of elastic QNMs inside the ridge vary mostly along
the y-axis but are mostly uniform along the x-axis. Radi-
ation inside the substrate then originates from a mostly
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uniform force distribution along the line segment (the
interface between the ridge and the substrate). Given
the eigenfrequency, the wavelength inside the substrate
is λ = 2πv/ω, with v the phase velocity of relevant bulk
elastic waves, either shear or longitudinal. The short-
est wavelength is obtained for the shear bulk wave, with
velocity of 3763 m/s. For the largest eigenfrequency of
Table II, λ = 3.36 µm and hence the ridge is a deep sub-
wavelength structure for all considered frequencies. As
a result, radiation at infinity has the form of cylindri-
cal bulk waves originating from the short interface line
segment and is essentially monopolar.

Moving to the coupled pair of ridges separated by
center-to-center distance δ = 150 nm, surface coupling
leads to QNMs that are hybridizations of the single ridge
QNM. Owing to symmetry, hybridization leads to ei-
ther binding (two small sources radiating in phase) or
anti-binding (two small sources radiating in phase oppo-
sition). The former case leads to constructive interfer-
ence in the far field and hence enhanced radiation loss,
whereas the latter case leads to destructive interference
in the far field and hence to reduced radiation loss. These
simple considerations support the idea that anti-binding
QNMs have improved Q-factors, whereas binding QNMs
have deteriorated Q-factors, compared to the single ridge
structure.

Appendix E: Case of an anisotropic substrate

TABLE IV. Characteristics of the elastic QNMs of Fig. 3,
when sapphire replaces fused silica as a substrate.

Mode freq. (GHz) Q volume (µm2) polarization

0 0.0785 102400 0.0256 (0.996, 0.004, 0)

1 0.469 22927 0.0260 (0.977, 0.023, 0)

2 0.659 194 0.0686 (0, 0, 1)

3 1.22 15 0.0114 (0.947, 0.053, 0)

TABLE V. Characteristics of the elastic QNMs of Fig. 4, when
sapphire replaces fused silica as a substrate.

Mode freq. (GHz) Q volume (µm2) polarization

0 0.0783 4.16 106 0.0507 (0.996, 0.004, 0)

1 0.0787 45260 0.0506 (0.996, 0.004, 0)

2 0.469 7872 0.0519 (0.977, 0.023, 0)

3 0.470 227365 0.0515 (0.977, 0.023, 0)

4 0.623 314 0.149 (0, 0, 1)

5 0.888 11 0.179 (0, 0.94, 0.06)

6 1.209 81 0.0875 (0.113, 0.887, 0)

7 1.237 738 0.0513 (095, 0.05, 0)

In Section IIIB, we considered nickel ridges on a fused
silica substrate. Both materials were considered elasti-
cally isotropic, whereas the theory in Section II applies
to general anisotropic elastic media. For illustration, we
repeat in this Appendix the computation of QNMs for a
sapphire substrate. Sapphire (Al2O3) is a trigonal crys-
tal with point group 3̄m, with six independent elastic
constants (c11 = 49.7 GPa, c12 = 16.3 GPa, c13 = 11.1
GPa, c33 = 49.8 GPa, c44 = 14.7 GPa, c14 = −2.3 GPa).
The mass density is ρ = 3986 kg/m3. Tables IV and IV
list the characteristics the QNMs obtained for the single
ridge and for the pair of ridges, respectively. The modal
shapes are essentially the same as with fused silica.
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