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Abstract— In the field of fuel cells, early detection of faulty 

conditions can significantly improve the lifetime. Then, signal 

analysis techniques such as electrochemical impedance 

spectroscopy combined with machine learning algorithms can 

generate a representation of the system state of health space using 

data in known conditions. Although the onboard measurement of 

EIS can be done by controlling the harmonic content of the power 

converter at the output of the fuel cell, the implementation of in-

vehicle diagnostic algorithms is still limited by the absence of a 

large database listing the evolution of performance throughout the 

life cycle. This paper presents a fast-diagnostic method able to 

consider the occurrence of new data to adapt the dimensional 

space representing the health state and compensate for the lack of 

data. Available measurements come from two low-temperature 

proton exchange membrane fuel cell technologies characterized by 

two laboratories. The results presented in the paper show that the 

automatic parameter selection provides performances as good as 

the ones obtained by an expert. The feasibility of the approach has 

also been demonstrated on a low-cost embedded platform. 

 
Index Terms— Clustering methods, Fault diagnosis, Feature 

Selection, Fuel cells, Standardization 

I. INTRODUCTION 

One of the promising technologies in the context of low 

greenhouse gas emission technologies is the proton exchange 

fuel cell (PEMFC). PEMFCs are energy converters that 

transform hydrogen and oxygen into electricity, heat, and water. 

Their electric efficiency is generally about 50% at the beginning 

of life. Currently, PEMFCs are of particular interest in the fields 

of transportation and stationary applications and the low-

temperature proton exchange membrane fuel cell is one of the 

most developed technologies.  

The development of fuel cells is hampered by their limited 

lifetime as well as their susceptibility to defects. The U.S. 

Department of Energy's ultimate goal is to increase the lifetime 

of PEMFCs to 8,000 and 80,000 hours for transportation and 

stationary applications [1]. 

To achieve and improve these lifetime goals, monitoring, and 

diagnostic tools suitable for fuel cell systems should be used to 

detect early and allow correction of any abnormal condition that 

may occur.  
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One of the most widely used fuel cell characterization 

techniques is Electrochemical Impedance Spectroscopy (EIS). 

According to [2], EISs provide information on many fuel cell 

conditions, such as membrane degradation, catalyst activity 

decrease, reactant poisoning, humidification, and aging. The 

principle of an EIS is to inject a small AC disturbance and 

analyze the voltage response of the fuel cell to extract its 

impedance. The operation is repeated for different frequencies 

of disturbances. The obtained impedances are then analyzed in 

Nyquist and Bode diagrams to determine some physical 

parameters such as membrane resistance, gas diffusivity, or 

polarization resistance. However, the utilization of EIS in 

automotive applications is complex. According to [3], a device 

capable of injecting an AC signal is too expensive for 

automotive applications. One of the solutions is to use the 

DC/DC converter connected to the fuel cell terminals to 

generate the disturbance. It allows the collection of the EIS 

online, at a low cost without additional equipment [4]. The 

design and realization of EIS through the converter have been 

studied in European projects, the Health Code project [5], and 

the RUBY project [6] suit. 

Once the impedances are obtained, the diagnosis algorithms 

can be used to determine the State of Health (SoH) of the fuel 

cell. 

Diagnosis methods can be classified as model-based and 

non-model-based (data-driven) approaches. A review of these 

methods is proposed in [7], [8]. However, it is worth noting that 

in the two approaches, artificial intelligence can be used to 

establish a relationship between inputs and outputs without 

using any physical knowledge. Indeed, PEMFCs are considered 

complex systems due to the interaction of several phenomena 

(thermal, electrical, fluidic ...), which makes accurate modeling 

difficult. For this reason, the model-based approach is 

questionable for the real-time diagnosis of this system. 

Generally, a database is needed to train with known data (off-

line part) before being able to analyze unknown data (online 

part) and return the SoH of the system. For batteries, large 

databases are already available in open source as referenced in 

[9]. Currently, the number of open-access fuel cell databases is 

low, which is a bottleneck for data-driven algorithm 

development. To take this limitation into account, the diagnosis 

All authors are with Université de Franche-Comté, CNRS, institut FEMTO-

ST, FCLAB, F-90000 Belfort, France. Their respective e-mails are: 

damien.chanal@femto-st.fr, nadia.steiner@univ-fcomte.fr, 

didier.chamagne@univ-fcomte.fr and marie-cecile.pera@univ-fcomte.fr  



2 

 

 

 

algorithms must be able to re-train quickly on new data 

acquired during operation. 

In several scenarios, model-based and non-model-based 

approaches have been applied to diagnose fuel cell systems. In 

[10], a computational efficiency approach based on fuzzy logic 

combined with clustering is proposed to detect several levels of 

flooding and drying in a fuel cell stack. Authors in [11] 

proposed to use a probabilistic Bayesian neural network to 

detect faulty conditions in a PEMFC system. Four faults were 

tested, 3 related to the auxiliaries (fan, cooling system, and 

hydrogen supply line) and one to the increase of the fuel 

crossing inside the fuel cell. In [12], an online implemented 

support vector machine used to monitor individual cells in a 

fuel cell is presented. The approach shows good performance to 

detect pressure anomalies, drying, and air starvation conditions. 

Another approach based on fuzzy and pattern recognition 

named Visual Block-Fuzzy Inductive Reasoning is presented in 

[13]. The authors compare their method with a model-based 

methodology to detect 5 faulty conditions linked to the stack 

voltage, the oxygen management, and the compressor. Also, 

results obtained show favorable performances for the Visual 

Block-Fuzzy Inductive Reasoning approach.  

The common feature of the data-driven approach is the 

impossibility of extrapolating to unknown conditions without a 

re-training step which is not always possible. For that purpose, 

an interesting approach to the diagnosis using Fuzzy C-Means 

clustering is presented in [14]. The approach shows good 

performances for two different databases. According to the 

authors, the choice of clustering allows improving both the 

training time because of the simplicity of use and the capacity 

to process large databases that are generally the penalizing 

points of the other diagnostic methods. However, a limitation 

of this method is the need for empirical tests for the feature 

selection step but also the user expertise to determine the 

number of clusters in the classification step. To improve these 

points which have a huge impact on the results and limit the 

usability of the method, this paper introduces the use of a 

specific robust criterium to have an autonomous algorithm that 

can quickly retrain itself when measuring new data and a low 

need for user expertise. 

Section 1 is dedicated to the presentation of the so-called 

classical approach presented in Fig. 1. The different steps 

leading to the classification of the EIS spectra will be detailed 

followed by a presentation of the databases used. 

Section 2 is dedicated to the description of different methods 

of data standardization. These methods can impact the results 

by reducing the importance of outliers and the computation 

time. 

Section 3 presents a way to improve the feature selection and 

some popular clustering validation indices. The classic feature 

selection is based on the use of ranked features and empirical 

tests to determine how many have to be used while the 

improved selection uses a simple threshold. The clustering 

indices are used to automate the clustering part of the diagnostic 

approach allowing the addition of new data. 

The results are presented in section 4. The parameters that 

allow the user's expertise to be reduced as much as possible and 

the generalization of the algorithm are highlighted. 

II. PRESENTATION OF THE DIAGNOSIS APPROACH  

A. The approach  

The method developed in the Health Code project is based 

on the use of a Fuzzy C-means classifier to detect the SoH of a 

fuel cell from EIS measurements performed online through a 

relevant control of the fuel cell output converter. A global 

presentation of the diagnosis approach is given in Fig. 1 and 

detailed in this section, however, more information about this 

method and data are available in [14]. The offline processing is 

composed of the following steps: First, features from the EIS 

are extracted. These features are standardized which is the step 

this paper is focused on. Then, a selection of the ones containing 

the best information to discriminate the SoH of the fuel cell is 

done. Finally, data are classified using Fuzzy C-means 

clustering. 

In the developed algorithm the extracted features are: the 

minimum and maximum magnitudes of impedance respectively 

named (mm) and (Mm); the difference between the maximum 

and minimum magnitude (ΔMag); the polarization resistance 

(R_pola); the minimum and maximum phase respectively (mp) 

and (Mp); the phase at a frequency of 0.1 Hz (P1); the 

difference between P1 and Mp (ΔPha). Also, an analysis of the 

phase during a linear part of the Bode diagram is done ([0.1 -1] 

Hz). Equation (1) describes phase as the first-order equation of 

frequency (f): 

 𝑃ℎ𝑎𝑠𝑒 =  𝐴 ×  𝑓 +  𝐵 (1) 

Coefficients A and B are extracted as features. 

The standardization method used was based on quantile 

information to make data follow a uniform distribution. This 

method was selected because of its ability to handle outliers and 

noisy data. The feature selection approach used the Pearson 

Correlation Coefficient (PCC) to filter data with a high linear 

correlation and then an ANOVA F-Test to rank features. Once 

the generation of features is done, the diagnosis algorithm 

consists of using a Fuzzy C-means clustering to create clusters 

that will be used to detect the SoH of training data. During this 

step, the experience of the user is required. As a matter of fact, 

 
Fig. 1. Global principle of diagnosis tool developed in [14]  
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to optimize the creation of clusters, for each fault, the user will 

give only data associated with the faults and enter the desired 

number of clusters (in the presented diagnosis it was the number 

of faults' level tested). It permits optimizing the localization of 

clusters for each fault even if it modifies the non-supervised 

character of Fuzzy C-means. Concerning one of the studied 

faults, fuel poisoning, a specific data clustering is made to 

identify CO poisoning in the first place. It is easy to detect as it 

exhibits positive values of the imaginary part of the impedance. 

The online step consists in using the information obtained 

during the off-line step. For that purpose, the best fest features 

to extract, bounds of standardization, and cluster centers 

coordinates are transferred to the system implemented online. 

In order to associate a known condition with new measured 

data, the algorithm proceeds in two steps. First, it extracts the 

best features and standardizes them according to the 

information received from the offline part. Second, it computes 

the Euclidean distance between the transformed features and 

the previously computed cluster centers. The associated SoH 

corresponds to the closest cluster. 

B. Datasets’ presentation 

Two datasets are tested in this paper. They came from two 

fuel cell stacks tested during the European project Health Code. 

For each stack, the number of spectra retained for each 

condition is presented in Fig. 2. 

The first one is a short hydrogen-oxygen stack that is 

supposed to replicate the operations of a real backup system 

coupled with an electrolyzer. A total of 5 conditions have been 

tested: nominal, flooding, drying, hydrogen starvation, and 

oxygen starvation. For the nominal and flooding conditions, 

acquired spectra are considered as one level according to the 

analysis by an expert. For other conditions (i.e drying and 

starvations), spectra are separated into 3 levels (low, medium, 

and high) depending on the experimental conditions and time 

exposure to the degradation.  

The second stack is a hydrogen-air technology intended to be 

implemented in a micro-CHP system fed by natural gas. Seven 

conditions have been tested: nominal, flooding, drying, anode 

starvation, cathode starvation, and poisoning (carbon monoxide 

& sulfur). Only one level has been associated with the nominal 

conditions. Regarding the water management conditions (i.e 

flooding and drying) two levels have been determined which 

correspond to faults occurring at the anode and cathode sides. 

Two levels have also been determined for the starvation 

conditions. They are associated with low and moderate/high 

degradation levels. Concerning the poisoning faults, several 

rates of poisoning have been studied. For carbon monoxide 

contamination, 4, 8, 12, and over 80ppm were tested. Spectra 

are grouped into 4 levels however because the recovery of CO 

poisoning is complicated (platinum reduction), the exposure 

time has a high impact on spectra, so this separation is not 

representative. The same study has been done for sulfur 

poisoning using 4 rates: 4, 6, 8, and 10ppm, and because the 

recovery of sulfur poisoning is impossible (platinum 

dissolution), it is not possible to recover original performances 

between two consecutive experimental tests. For this reason, 

like with carbon monoxide, the choice of 4 levels is only 

informative and not representative of reality.  

Table I shows the input variables used for EIS measure. 

III. STANDARDIZATION METHODOLOGIES 

One of the key points in the development of machine learning 

algorithms is the generation of good-quality features. Indeed, a 

good feature generation decreases the predominance of possible 

outliers and noises, reduces the computation time but also 

improves the accuracy and the robustness of the results. In the 

case of classification algorithms that rely on distance 

calculations, the choice of a relevant standardization method is 

crucial. It consists in adjusting data values when they are not in 

the same range to eliminate distortions of the SoH space and 

make them comparable. The magnitude of features affects 

algorithms’ performances, especially when some features have 

much larger values than others. There are three main families 

of methods to standardize data: Normalization, Linear scaling, 

and Nonlinear transformation. A short presentation of the main 

standardization of each family is presented below. Each 

algorithm presented is implemented in Scikit-learn [15] and the 

interested reader can refer to [16]–[18]. 

A. Normalization 

In general, it is the features of the dataset which are 

standardized, however, it is also possible to standardize each 

sample so that its norm equals 1. This method of standardization 

is named normalization. It is interesting to normalize samples 

when the objective is to quantify the similarity of any pair of 

samples.  

Mathematically a norm is the total size or length of all vectors 

 

Fig. 2. Composition of the two datasets used of healthy and faulty 

conditions 
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TABLE I : INPUT VARIABLES FOR EIS MEASUREMENT 

Input Value for laboratories test 

Frequency 10 kHz – 10 mHz (log scale) 

Current value 

5 - 10% of DC  
H2/O2: 210 A 

H2/Air: 40 A 

Number of periods 1 – 20 (depending on frequency) 

Sampling frequency 
At least 100 times the injected 

frequency 
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in a vector space of matrices. The norm of a vector x can be 

calculated at several levels (p) by using the equation below: 

 ‖x‖p = √∑  |xi|
p

i

p
 (2) 

where 𝑝 ∈ R is the level of the norm and x is the vector to be 

normalized. In machine learning, the normalization uses 

generally 3 levels of the norm which are: L1 norm is the sum of 

absolute values of vector x (p=1). L2 norm corresponds to the 

second level of the norm (p=2) which is the sum of squared 

values of x. The infinite norm corresponds to the level when 

𝑝 → ∞. Once the norm is calculated, each member of the vector 

x is divided by the norm to obtain a unit vector. The formula is 

presented in (3): 

 xnormalized =
x

‖x‖p 
 (3) 

Normalization is a powerful process, which can be used for 

tasks where it is possible to observe variability between the 

different conditions to classify. It is well adapted for clustering 

and text classification, however, in the case of noisy data, 

normalizers are sensitive to outliers which can impact the norm 

calculation. 

B. Linear scaling 

Linear standardization methods are the most widely used 

methods to scale features. They are quite simple to implement 

and work well for most databases. In addition, linear scalers are 

very useful to accelerate algorithms that use descent gradients. 

Indeed, in the case where one feature is higher than the other, it 

is more difficult to converge to the optimal value of the 

function. Different linear scaling methods use several indicators 

to standardize.  

The first scaling method consists in scaling data in the range 

[0-  , it is also called “Min-Max feature scaling”. It consists of 

using minimal and maximal data as boundaries and rescaling 

data. Min-Max scaling is represented by (4): 

 xscaled = 
x - min(x)

max(x) - min(x)
 (4) 

One of the advantages of the Min-Max scaler is that it allows 

putting in the same interval features that can be very different 

while keeping all information since the distance ratios are kept. 

In the case of algorithms based on the distance between points, 

it allows comparison between items with small and large 

values. 

The second method of scaling data is called "Max Absolute 

Scaling". It uses the maximum absolute value of a vector x to 

scale the features in the range [0, 1] or [-1, 1] depending on 

whether they are negative values. This method consists in 

dividing the vector x by its maximal absolute value as shown in 

(5): 

 xscaled=
x

max(|𝑥|)
 (5) 

Max Absolute scaler is very similar to Min-Max scaler, 

nevertheless, it should be used for data that are already centered 

on zero.  

The third method of linear scaling is called "Standard scaler". 

The objective of this method is to transform the features so that 

they have a mean of zero and a standard deviation of one as 

shown in (6): 

 xscaled = 
x -  μx

σx
 (6) 

With µ the mean and σ the standard deviation.  

Standard scaler allows for data centering and makes easier 

the use of statistical machine learning algorithms such as 

Principal Components Analysis (PCA). The main disadvantage 

of the three linear scalers presented above is that they are very 

sensitive to outliers in the dataset.  

This is why standardization algorithms using statistics were 

developed. It is the case of a robust scaler that uses the median 

and interquartile range (IQR) of data to reduce the importance 

of outliers. The formula to standardize data is: 

 xscaled = 
x - median

IQR
 (7) 

Equation 7 looks similar to (6), however median and IQR are 

more robust to outliers than mean and standard deviation 

because they use the position of the data rather than the values.  

C. Non-linear transformation 

Even if the "robust scaler" permits the reduction of the 

importance of extreme values, it can be better to use non-linear 

transformations. These non-linear transformations allow 

transforming the data so that they change their distribution. 

Two types of standardization allow doing this: power 

transformations and quantile transformations. 

Power transformations are parametric and monotonic 

transformations. They are useful to stabilize the variance of 

features that are heteroscedastic and map data to make them 

more Gaussian-like. There are 2 main power transformations: 

Box-Cox and Yeo-Johnson transformations. Box-Cox 

transformer [19] is defined by (8): 

 xi

(λ)
 = {

xi
λ -  

λ
  if λ ≠  

 

ln(xi)  if  λ =  

 (8) 

With x vector to transform, and λ the power parameter of 

transformation which is determined through maximum 

likelihood estimation. 

Box-Cox transformer allows transforming a dataset into a 

Gaussian-like distribution. However, it is limited in that it 

allows only strictly positive values. Because data from EIS are 

positive and negative, it is not possible to use this transformer. 

This is not the case with the Yeo-Johnson transformer [20] 
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which has no restrictions. It is defined in (9): 

 xi

(λ)
  =

{
 
 

 
 

[(xi+ )λ- ]

λ
 if λ ≠  , xi ≥   

ln(xi+ )   if λ =  , xi ≥  

-[(-xi+ ) -λ- ]

( -λ)
  if λ ≠  , xi <  

- ln(-xi+ )   if λ =  , xi <  

 (9) 

The Box-Cox and Yeo-Johnson methods have the same 

objectives; however, they are slightly different. Indeed, in the 

case where the values are strictly positive, the Yeo-Johnson 

transformation is identical to the Box-Cox power 

transformation of (x+1). However, these two methods are 

regularly used in many domains such as machine learning. In 

[21], properties of Box-Cox transformation for pattern 

classification are presented. In [22], the effect of 

standardization is studied on speech emotion recognition; the 

Yeo-Johnson transformer is compared to linear scaling and 

normalizer. While in [23], the authors study the effect of linear 

scalers and non-linear transformers with K-nearest-neighbor 

and support vector machine algorithms. 

In addition to the power transformer which makes data 

Gaussian-like, the quantile transformer uses information 

contained in the quantile to make data follow a uniform or 

normal distribution. The quantile transformer formula is 

presented in (10): 

 𝐺−1(𝐹(𝑥)) (10) 

With F the cumulative distribution function of x and G-1 the 

quantile function of output distribution G.  

Quantile transformers are very useful to reduce the 

importance of outliers. The negative point of this function is 

that it distorts correlations and distances within and across 

features because it smooths the original distribution. 

Nevertheless, the characteristics measured at different scales 

are more easily comparable. In addition, it is worth noting that 

when a new sample is transformed with a quantile transformer, 

it is not possible to extrapolate it, unlike other standardization 

methods. Indeed, if the new data are larger or smaller than those 

used to determine the transformation boundaries, the 

standardized value is limited to the minimum or maximum 

fitted value. For example, in the case of a uniform distribution, 

the possible range is [0, 1], so if a new outlier appears, the 

standardized value will be 0 or 1. 

IV. AUTOMATION OF PARAMETER SELECTION 

A second key point to consider when developing a Machine 

Learning algorithm is its ease of use. Indeed, from a 

computational cost point of view, a complex algorithm that 

takes a long time to train or retrain (for example neural 

networks) will require much more effort to set up than a simple 

algorithm. Moreover, another need for diagnosis algorithms to 

be used in a system throughout its lifetime is the need for a 

database containing a large number of different conditions at 

different times. Indeed, a nominal state at the beginning of life 

and a nominal state at the end of life might not be identical and 

can be easily classified as a faulty state if the fuel cell 

degradation is not listed in the database or updated during the 

lifetime (using a re-training of the algorithm).  

To reduce the need for empirical testing as well as to 

facilitate lifelong learning, two modifications have been made 

to the diagnosis approach presented in section II.A: the first one 

facilitates the automatic selection of the number of features to 

use and the second one automates the choice of the number of 

clusters characterizing a defect. 

A. Automatic feature selection 

As explained in section II.A, features are extracted from EIS 

spectra using physical knowledge. These are then standardized, 

and the best ones are selected using a filtering step with the 

Pearson Correlation Coefficient and then ranked with ANOVA 

F-Test. The combination of filtering and ranking steps reduces 

the number of features to use and obtains better results of 

classification as shown in [14]. However, it needs an empirical 

study to determine the best number of features to select. Indeed, 

using features containing little information can both increase 

the computation time unnecessarily but also distort the state of 

health space, and reduce classification performance. 

For that purpose, the proposed improvement consists in 

keeping the filtering and ranking steps, however, instead of 

empirically testing the features, the obtained scores are 

represented in percentages. Then, the algorithm selects all 

features which are below a threshold defined by the user. Three 

thresholds have been studied and their performances are 

compared in section V. Fig. 3 shows the synoptic of the 

automatic feature selection process as explained above and in 

section II.A. The use of a limit has the advantage of selecting 

only features containing sufficient information, thus reducing 

complexity and computation time.   

B. Automatic cluster number selection 

In the first developed approach, the number of clusters used 

to characterize a condition is defined by the user and is 

equivalent to the number of degradation levels tested in the 

database. However, this methodology implies a precise 

knowledge of the database and cannot be applied when the user 

wants to re-train the algorithm using the newly classified EIS. 

To overcome these difficulties, and to determine the optimum 

number of clusters (i.e., to solve a cluster validity problem), it 

is possible to use validation clustering indices. This section is 

devoted to the presentation of the fuzzy clustering used in this 

study as well as the presentation of the various clustering 

indices that have been retained. 

1. Fuzzy C-Means clustering algorithm 

The fuzzy C-Means clustering algorithm is one of the most 

used fuzzy clustering algorithms [24]. The fundamental aspect 

of fuzzy clustering is to determine the similarity measure in 

which the distances between pairs of data points are calculated. 

In fuzzy C-Means clustering, the models are treated as vectors 
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in Euclidean space.  

For a collection of n data in a dataset X = {x1, x2, …, xn} to be 

separated into c clusters, the objective function Jm to minimize 

is defined as shown in (11): 

 𝐽𝑚(𝑈, 𝑉) = ∑  ∑  (𝑢𝑖𝑗)
𝑚𝑐

𝑖=1
𝑛
𝑗=1 (𝑑𝑖𝑗)

2 (11) 

 𝑑𝑖𝑗 = ‖𝑥𝑗 − 𝑐𝑖‖ (12) 

where 𝑢𝑖𝑗 is the membership of the data j in the cluster i and  

𝑚 ∈ [1,∞] a fuzzifier that controls the fuzziness of 
membership of data. The membership can be calculated using 
(13): 

  𝑢𝑖𝑗 =
(1

𝑑𝑖𝑗
2⁄ )

1
𝑚−1

∑ (1
𝑑𝑖𝑗

2⁄ )

1
𝑚−1

𝑐
𝑖=1

 (13) 

And the cluster coordinates can be calculated using (14): 

  𝑐𝑖 = 
∑  (𝑢𝑖𝑗)

𝑚 . 𝑥𝑗 
𝑛
𝑗=1

∑  (𝑢𝑖𝑗)
𝑚𝑛

𝑗=1

 (14) 

2. Cluster validity indexes 

As shown above, the C-Means clustering algorithm needs the 

user's expertise to inform the number of clusters to use. As this 

is not always possible, it is necessary to use validation criteria 

for clustering. These criteria are designed to analyze the 

structure of the data and compare the results obtained for 

several numbers of clusters to determine which one is optimal. 

Among the validation criteria reported in the literature, this 

study focuses on the criteria below. Other cluster validity 

indexes can be found in the literature such as [25] and more 

recently [26], however, these indices introduce one or several 

thresholds used to exclude noisy data. Because we aim to 

propose a method that refers as less as possible to expert 

knowledge, these indices are not retained. 

In 1974, Bezdek proposed the first indices named Partition 

Coefficient (PC). PC computes the relative mean VPC of the 

fuzzy intersection between pairs of fuzzy subsets by their 

algebraic product. It is defined in (15): 

 𝑉𝑃𝐶 = 
1

𝑛
∑ ∑ (𝑢𝑖𝑗)

2𝑐
𝑖=1

𝑛
𝑗=1  (15) 

The best number of clusters is obtained by maximizing 𝑉𝑃𝐶  

A modification of VPC has been proposed by Dave in [29] to 

correct the monotonic tendency by applying a linear 

transformation. The Modified Partition Coefficient (VMPC) is 

defined in (16): 

 𝑉𝑀𝑃𝐶 =  1 −
𝐶

𝑐−1
(1 − 𝑉𝑃𝐶) (16) 

In addition to the partition coefficient, Bezdek defined another 
validation clustering index based on the Shannon entropy 
function [30]. This index is named Partition Entropy (PE) and 
its objective is to describe the fuzzy uncertainty contained in 
each data. To calculate this fuzzy uncertainty in a subset, it 
calculates the average of the fuzzy entropies VPE as shown in 
(17): 

 𝑉𝑃𝐸 = −
1

𝑛
∑ ∑ 𝑢𝑖𝑗

𝑐
𝑖=1

𝑛
𝑗=1  log𝛼 𝑢𝑖𝑗  (17) 

where 𝛼 ∈ (1,∞), in this study we retained only 𝛼 = 1 
because it is the most common value associated to log𝛼. The 
best number of clusters is obtained by minimizing VPE. 

To compensate for the monotonic tendency of PE to decrease 

with the augmentation of clusters, a first modification has been 

proposed in [30], [31] with the Scaled Partition Entropy (SPE). 

The idea of VSPE is to refine the lower limit of PE and is defined 

in (18): 

 𝑉𝑆𝑃𝐸 = 
𝑉𝑃𝐸

log𝛼 𝑐
 (18) 

Another adaptation of PE is presented in [31] with the 

Normalized Partition Entropy (NPE). NPE is Dunn’s 

normalized version of PE and such as for SPE, its objective is 

to counter the tendency of PE to monocratically decrease. VNPE 

is defined as shown in (19): 

 𝑉𝑁𝑃𝐸 = 
𝑉𝑃𝐸

(1−
𝑐

𝑛
)
 (19) 

 
Fig. 3. Flow chart detailing the full process of feature selection designed 
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Other validity indices which use other metrics than those 

based on PC or PE can be found in the literature. Some indices 

such as Fukuyama-Sugeno [32], fuzzy hypervolume [33], Xie 

and Beni [34], Kwon [35], PBM [36], and PCAES [37] can be 

cited. 

Fukuyama-Sugeno (FS) validity index is based on the 

difference between compactness and separation metrics. 

Compactness is calculated by the intra-cluster distance while 

separation is calculated by the inter-cluster distance. FS validity 

index VFS is defined by (20): 

 𝑉𝐹𝑆 = ∑ ∑ (𝑢𝑖𝑗)
𝑚𝑛

𝑗=1 ( ‖𝑥𝑗 − 𝑐𝑖‖
2
− ‖𝑐𝑖 − 𝑐̅‖

2)𝑐
𝑖=1  (20) 

where 𝑐̅ is the average of data represented by (21): 

 𝑐̅ =
1

𝑛
 ∑ 𝑥𝑗

𝑛
𝑗=1  (21) 

The optimal number of clusters is obtained when VFS reaches 
the minimum value. 

Gath and Geva proposed in 1989 the fuzzy hypervolume (FHV) 
validity index which uses the fuzzy covariance matrix and is 
developed in (22, 23): 

 𝑉𝐹𝐻𝑉 = ∑ [det(𝐹𝑖)]
1

2𝑐
𝑖=1   (22) 

 𝐹𝑖 = 
∑ (𝑢𝑖𝑗)

𝑚 (𝑥𝑗
𝑐
𝑗=1 −𝑐𝑖)(𝑥𝑗_𝑐𝑖)

𝑇

∑  (𝑢𝑖𝑗)
𝑚𝑛

𝑗=1

 (23) 

The optimal number of clusters is obtained when VFHV reaches 
the minimum value. 

In 1991, Xie and Beni proposed an index for clustering [34] 
using m=2. In 1995, this index has been modified by Pal and 
Bezdek [38] to accept different values of m as shown in (24): 

 𝑉𝑋𝐵 = 
∑ ∑ 𝑢𝑖𝑗

𝑚 ‖𝑥𝑗−𝑐𝑖‖
2𝑛

𝑗=1
𝑐
𝑖=1

𝑛
min
𝑖≠𝑗 ( ‖𝑐𝑖−𝑐𝑗‖

2
)

 (24) 

In (24), the numerator represents the compactness of the fuzzy 
partition, and the denominator the grade of the separation 
between clusters. The optimal number of clusters is obtained by 
minimizing VXB. However, Xie and Beni stated that the validity 
index decreases monotonically when the number of clusters is 
close to n. 

In 1998, Kwon proposed a validity index to eliminate the 
monotonically decreasing tendency when the number of 
clusters becomes very large. The equation is presented in (25): 

 𝑉𝐾 = 
∑ ∑ 𝑢𝑖𝑗

2 ‖𝑥𝑗−𝑐𝑖‖
2
+
1

𝑐
 ∑  ‖𝑐𝑖−𝑐‖̅

2𝑐
𝑖=1

𝑛
𝑗=1

𝑐
𝑖=1

min
𝑖≠𝑘

( ‖𝑐𝑖−𝑐𝑘‖
2)

 (25) 

The optimal number of clusters is obtained when VK reaches 
the minimum value. 

Pakhira proposed in 2003 the PBM validity index which is used 
for crisp clustering and propose a modified version that 
incorporates fuzzy distances called the PBMF validity index 

[36]. PBMF equation is shown in (26): 

 𝑉PBMF = 
1

𝑐
 ×  

𝐸1

𝐽𝑚
× 𝐷𝑐  (26) 

with 𝐸i = ∑ 𝑢𝑖𝑗‖𝑥𝑗 − 𝑐𝑖‖
𝑛
𝑗=1  (27) 

 𝐷c = max
𝑖,𝑗
‖𝑐𝑖 − 𝑐𝑗‖  (28) 

 𝐽m = ∑ ∑ (𝑢𝑖𝑗)
𝑚‖𝑥𝑗 − 𝑐𝑖‖

𝑐
𝑖=1

𝑛
𝑗=1   (29) 

The optimal number of clusters is obtained when VPBMF reaches 
the minimum value. 

In 2005, Wu and Yang proposed the partition coefficient and 
exponential separation index (PCAES) [37] which pays special 
attention to outliers and noisy data while validating the 
partitioning results. PCAES combines a measure of 
compactness and separation criteria of partitioning. In [37] 
PCAES is calculated as shown in (30): 

 𝑉𝑃𝐶𝐴𝐸𝑆 = ∑ ∑
𝑢𝑖𝑗

2

𝑢𝑀
− ∑ exp (

−min
𝑖≠𝑘

 {‖𝑐𝑖−𝑐𝑘‖
2}

𝛽𝑇
)𝑐

𝑖=1
𝑛
𝑗=1

𝑐
𝑖=1   (30) 

 *𝑢𝑀 = min
1≤𝑖≤𝑐

{∑ 𝑢𝑖𝑗
2}𝑛

𝑗=1  (31) 

 𝛽𝑇 = 
∑ ‖𝑐𝑖−𝑐‖̅

2𝑐
𝑖=1

𝑐
 (32) 

In (31), *𝑢𝑀 is calculated using minimal compactness, 
however, in [37], the authors state that *𝑢𝑀 is bounded between 
]0, 1] and calculate the most compact cluster partitioning 
coefficient. However, by calculating the minimal value it is the 
less compact cluster that the partitioning coefficient is 
calculating. We assume that this is an error and use the equation 
of 𝑢𝑀is proposed in [40] and detailed in (33): 

 𝑢𝑀 = max
1≤𝑖≤𝑐

{∑ 𝑢𝑖𝑗
2}𝑛

𝑗=1  (33) 

V. RESULTS 

To define if an algorithm is powerful or not, it is necessary 

to define metrics able to measure the correct classification of 

data. In addition to relevant metrics, it is better to evaluate the 

classification of data with different training and testing sets to 

have a fairer view of performances. A good method to measure 

the generalization ability without increasing the need of data is 

to use a cross-validation process. It is a statistical method that 

consists in dividing the database into several parts (k parts) to 

train it with k-1 parts and test it on the last part. It exists several 

ways to divide the dataset into k parts but the retained one is the 

“Leave  ne  ut” which consists of a training dataset with all 

data except one and proceeds by iteration to be able to test all 

data.  

A. Evaluation of algorithms 

One of the most useful ways to measure the effectiveness of 

a machine learning algorithm is to define multiple metrics. The 

interest in using several indices (5 in our paper) is to observe 

the most common types of errors to have a better understanding 
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of the algorithm and perhaps to add extra steps when detecting 

certain conditions to limit the risk of errors. In this study, widely 

used indices are computed to evaluate the performances and 

analyze the type of mistakes if any. The first index is the 

confusion matrix which allows observing the 4 cases of 

classification for a specific condition “f’ as shown in Table II: 

• “Tp” is the number of samples correctly assigned to “f” 

• “Fn” is the number of samples wrongly assigned to “f”  

• “Fp” is the number of samples wrongly not assigned as “f” 

• “Tn” is the number of samples correctly not assigned as “f” 

The second index is the accuracy score which provides a 

representation of the number of correct classifications under all 

samples. Equation (34) shows the formula to determine the 

accuracy score: 

  Accuracy= 
Tp + Tn

Tp + Tn + Fp + Fn
 (34) 

 The third index is the precision score which is useful to 

observe the ratio of correct positive classification to all 

positively detected classifications. The formula for the 

precision score is presented in (35): 

 Precision= 
Tp

Tp + Fp
 (35) 

 

Fourthly, the recall score, also called sensitivity, is defined 

as the ratio of correct positive classification to all occurrences 

of actual true conditions as shown in (36): 

 Recall= 
Tp

Tp + Fn
 (36) 

 

Finally, the F1 score is one of the useful indexes to evaluate 

an algorithm. It permits the measurement of the weighted 

average of precision and recall scores. The F1 score formula is 

presented in (37): 

 F1 score= 
2 × Recall ×  Precision

Recall + Precision
 (37)  

B. Impact of standardization 

The same standardization methods are applied to both 

datasets. The objective of this comparison is to visualize the 

impact of standardization on data with different characteristics, 

at the same scale as well as on data with outliers. Fig. 4 and Fig. 

5 show the results obtained using the H2/O2 and H2/Air 

databases respectively but also the number of features needed 

to obtain the best results. Data obtained with the H2/O2 stack 

have all the same order of magnitude, which is not the case with 

data from the H2/Air stack. This is due to the fuel poisoning 

faults which, at high concentrations, lead to impedance values 

much larger than in other operating conditions. Results were 

obtained using the “Leave One Out Cross-Validation” (LOO 

CV) methodology. This allows getting as close as possible to 

utilization in real life where the EIS would be tested 1 by 1, but 

also, to use a maximum of spectra for training since the number 

of available data is low. The study of standardization impact is 

based on the work done in [41]. 

As shown in Fig. 4 and Fig. 5, the standardized data allow 

for improving the efficiency of the diagnostic algorithm. 

Indeed, the choice of a correct standardization methodology 

allows for improving the F1 score by about 12% and 30% for 

H2/O2 and H2/Air stacks respectively.  The results in table form 

are presented in appendixes A and B. 

In the case of the H2/O2 stack, the best results are provided 

by the main linear scaling methods and nonlinear 

transformations. However, it is interesting to note that the three 

normalizers generate more confusion in the algorithms (a 7 to 

10% decrease in the F1 score compared to the case with raw 

data). This loss of performance means that samples are not 

different enough from each other to obtain good-quality 

features. Max  bsolute scaler doesn’t improve classification 

results compared to other scalers which provide a F1 score 

better than 90%. Nevertheless, only three methods obtain more 

than 95% of correct classification: Robust scaler, Yeo-Johnson, 

and Uniform Quantile Transformer. The specificity of these 

three methods is that they consider outliers that can be present 

in data even if they are all of the order of magnitude.  

TABLE II : REPRESENTATION OF CONFUSION MATRIX 

 Actual condition 

Detected 

condition 
True False 

True Tp Fp 

False Fn Tn 

 

 
Fig. 4. Validation results obtained for H2/O2 dataset (LOO CV) 

 
Fig. 5. Validation results obtained for H2/Air dataset (LOO CV) 
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 Regarding the H2/Air results, it can be observed that 

compared to the first database, normalizers improve 

classification results by 5-10% due to the presence of samples 

at different scales. However, in comparison to the first database, 

almost all standardization methods give results below 90%. In 

this configuration, poisoning fault highly impacts the 

standardization of data to have a correct standardization even if 

methods such as Robust scaler and Normal Quantile 

transformer are dedicated to reducing the outlier importance.  

The best methods are Yeo-Johnson and Uniform Quantile 

transformers which allow obtaining better than 90% of correct 

classification.  

The results obtained for both datasets confirm the weakness 

of normalizers and linear scalers in handling outliers. 

Normalizers need sufficiently different data to work, which 

makes them more efficient in dealing with these outliers, but 

the results obtained with them are insufficient compared to 

other standardization methods. Only the uniform quantile and 

Yeo-Johnson transformers perform well (>90%) for both 

datasets, making them good candidates for generic use.  

In the following, only the uniform quantile transformer will 

be retained. The Yeo-Johnson could have been used as well 

since both methods give similar results. 

C. Impact of automatic feature selection 

Once the standardization method is fixed for both databases, 

it is interesting to investigate how the automatization of the 

feature selection impacts the results. For this, three threshold 

values are tested to determine the minimum percentages of 

information to be retained in each feature. The thresholds tested 

are 10%, 5%, and 1%. In addition to the performances, the 

features selected will be analyzed too. For this, LOO CV will 

be run twice, the first one to detect the features selected by the 

algorithm most often and the second one to measure 

performance with fixed features to simulate an online 

evaluation. Fig. 6 shows the results obtained with the 2 datasets 

according to the threshold used to detect features containing too 

little information while Fig. 7 shows the percentage of feature 

number retained depending on the threshold used. Looking at 

the results, it is possible to observe that the threshold used has 

a moderate impact on the results. Indeed, compared to the 

results obtained in Fig 4 and Fig 5, the F1 score decreases by a 

maximum of only 5.5% and 2.6% respectively for H2/O2 and 

H2/Air datasets.  

It is possible to note that for both databases the maximum 

performance is reached using a limit of 5%. The algorithm 

succeeds in obtaining the same results as in Fig. 4 and Fig. 5. 

The limits of 10% and 1% lead to performance losses of about 

5-3% for the H2/O2 database and 1.3 - 2.6% for the H2/Air 

database. Even if the lost performances are quite low, this 

shows the importance of selecting the features correctly. Too 

many variables containing little information lead to an increase 

in the computation time as well as distortions within the health 

state space. On the contrary, a too-small space containing not 

enough information will not give good results.  

The threshold of 5% allows obtaining the same performance 

(i.e. keeping only the most important information). In the 

framework of this study, a limit of 5% seems to fit well, it 

allows keeping only the variables containing the main 

information. In addition, it is worth noting that in the case of the 

10% and 5% limits, the first 5 features are most often selected 

as opposed to the 1% limit which tends to add 2 other features. 

This shows that in general the most useful variables contain 

more than 10% of information but keeping the features 

containing between 5% and 10% of information allows having 

certain flexibility during the training which improves the final 

results.  

In addition to the number of features, it is interesting to study 

which features are selected for both datasets. In the case of the 

H2/O2 dataset, the ones retained are mp, Mp, Coefficient B, 

Coefficient A, and mm where Mm, R_Pola are added when the 

1% threshold is used. For the H2/Air dataset, it is: mp, Mp, 

Coefficient B, Coefficient A, ΔPha, with R_Pola and P1 if the 

1% threshold is used.  

It is interesting to note that several selected features are 

common to both databases: mp, Mp, Coefficient B, and 

Coefficient A (+ R_Pola). This shows that these features are 

relevant and allow good separation of the information. They 

provide respective information on the charge transfer of 

hydrogen oxidation reaction (mp), electrolyte membrane-

related degradation (Mp), and the charge transfer of oxygen 

reduction reaction (Coeff A & B). According to Fig. 3.3 in [42], 

these four features give information at frequency situated in the 

starvation and water management conditions which are the 

 
Fig. 6. Results obtained with automatic feature selection considering  3 

information thresholds (1, 5 and 10%) using LOO CV 

 
Fig. 7. Percentage of feature selected during the LOO CV depending of the 

threshold used 
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common faults between the two datasets.  

Other features retained (i.e mm, ΔPha, P1, and Mm) give 

respectively information about the total ohmic resistance of the 

FC stack; the height of the phase spectra; diffusion phenomena; 

and are used with incomplete spectra when the imaginary axis 

is not crossed by EIS spectra. With both datasets, the two 

features added when the 1% threshold is used are redundant 

which justifies the loss of performance. Indeed, Mm and R_pola 

give similar information because all spectra don’t cross the 

imaginary axis. Also, P1 in the H2  ir dataset doesn’t provide 

new information because it is calculated with Mp and ΔPha 

which are already selected. 

D. Impact of clustering validity indices 

Once the feature selection step is improved, it is interesting 

to focus on the clustering step. Indeed, the number of clusters 

defined by a user is limited by its knowledge of the database 

while the use of scores can allow detecting nuances that are 

invisible to the user. In this section, the cross-validation is run 

twice. For the first run, the algorithms are run with the 

automatization of feature selection and clustering steps to 

simulate the offline step. Then, the features and number of 

clusters are fixed, and the LOO CV process is run for a second 

time to simulate an online step. For each condition tested, the 

minimum number of clusters is fixed at 𝑐𝑚𝑖𝑛 = 2 and the 

maximum number of clusters c𝑚𝑎𝑥 ≅ √𝑛 which is considered a 

rule of thumb according to [38].  

 Fig. 8 and Fig. 9 present the most often number of clusters 

according to the cluster validity indices as well as the results 

obtained with the online step. Results show that several cluster 

validity indices provide good results close to the ones obtained 

when the true number of fault levels is used.   

In the case of the H2/O2 dataset, VPE, VNPE, and VPBMF indices 

do not properly capture the separation between the data. They 

concatenate data in only two clusters for all conditions. In 

addition, they give the lowest performances in classification. 

The best performances are given by the VMPC and VFS indexes 

with a F1 score of about 0.95. Both methods detect more 

clusters than needed for nominal and flooding conditions. This 

can be explained by the fact that only 1 fault level is tested while 

the minimum number of possible clusters is 2. However, for all 

other conditions tested the VMPC index correctly approximates 

the correct number of clusters (within ∓1 cluster). The VFS 

index detects 2 and 1 too many clusters respectively for the 

starvations (H2 and O2) and drying conditions. 

Regarding the H2/Air dataset, the worst performances are 

given by VFS and VFHV with a decrease in performance of 1.5 

and 2.8%. As with the H2/O2 database, they detect more clusters 

than necessary which shows a certain monotonic tendency that 

can be explained by a low amount of data. The VPE, VNPE, and 

VPBMF indices again detect 2 clusters for each condition as well 

as the VFPC, VXB, Vkwon, and VPBMF. However, they provide the 

same results as the ones given by VMPC, VSPE, and VPCAES (F1 

score ≅ 0.93).  

As the results above show, cluster validity can impact the 

performances of clustering algorithms. Too many clusters can 

generate more confusion between two conditions, while too few 

clusters can lead to not detecting a fault level which can 

generate confusion between the different conditions. In both 

databases, the VMPC index provides performances similar to the 

ones obtained with the correct number of fault levels. VMPC 

index is retained in the following of this paper. However, it is 

worth noting that the size of the two databases is relatively 

small and a similar study should be conducted with a larger 

sample size. Indeed, even if the best results are currently given 

by the VMPC index, a more robust and complex index (e.g. 

VPCAES or VPBMF) can provide better performances when the 

database size is larger because they are robust against the 

monotonic tendency. 

E. Analyze of misclassifications 

To better measure the impact of the automation steps on 

classification performance, it is interesting to look at the 

classification errors. Table III highlights the confusion obtained 

using the expert-obtained parameters (expert) and the results 

obtained with the automated steps (auto). Results show that 

generally, the same confusions appear between the expert 

approach and the automatic one.  

In the H2/Air dataset, the confusions are mainly between the 

two poisoning faults which can be explained by the low severity 

 
Fig. 9. Number of clusters selected and classifications performances 

according to the different clustering indices for the H2/Air dataset 
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Fig. 8. Number of clusters selected and classifications performances 

according to the different clustering indices for the H2/O2 dataset 
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of the fault condition. Both conditions have similar mechanisms 

at low intensity, so the features are similar.  

There is also the presence of false positives linked to the 

drying condition. Indeed, 3 conditions are detected as drying 

while they were labeled as nominal and flooding. In this case, 

the confusion can be explained by the low severity of conditions 

combined with the small number of data which impacts the 

cluster centers calculation highly during the LOO process (3 – 

8 – 6 for respectively nominal, flooding, and drying). Regarding 

the H2/O2 dataset, the same conditions have been confused (i.e. 

O2 starvation and H2 starvation) however, the automatic 

procedure generates confusion between drying and nominal 

conditions. Starvation conditions are easily confused due to the 

noise generated on spectra and their likeness. Drying 

confusions, as for the H2/Air dataset, can be explained by a low 

fault level combined with a small number of data (i.e. 8 for 

nominal and 8 for weakly drying conditions). In both cases, the 

automatic parameter selection does not generate aberrant 

confusion and remains very close to the optimal results obtained 

with an expert study. To analyze and understand the confusion 

generated by the automatic selection of parameters, it is 

interesting to plot spectra in Nyquist diagrams. Fig. 10 shows 

the misclassified spectra for the H2/O2 and Fig. 11 for the H2/Air 

dataset. Only low levels of poisoning are shown to improve the 

visibility of the graph. Moreover, no errors were detected for 

high levels of poisoning. It is possible to observe that all 

confusions are located at the intersections between 1 or more 

conditions. This confirms the difficulty of properly isolating the 

weak conditions because they are all located in the same area of 

SoH space.  

F. Computation time measuring 

Because this method needs to be easily implemented for 

practical use, it is necessary to test computation time on a low-

cost embedded system. For this, a Raspberry Pi (RPi) Model B 

rev 2, with a 1 core 700 MHz BCM2835 CPU and 512 MB of 

RAM has been used. A comparison has been done with a 

computer equipped with an Intel(R) Core (TM) i7-8650U CPU 

@ 1.90GHz   2.11 GHz and 16Go of RAM to show the possible 

computation times both with a cheap system and a more 

powerful system. The algorithms have been run in LOO cross-

validation 5 times. Training and prediction times have been 

measured for each loop of LOO CV and are shown in Fig. 12. 

It is possible to observe that considering the tested technologies, 

the execution times remain relatively low. Indeed, with a 

computer, the average training times are about 0.24 and 0.18 

seconds for each database. Using RPi, these times increase to 

about 14 and 10 seconds. Given the specificities of the RPi 

system, these run times are normal although they are 

significantly longer than those of a computer. The average 

prediction time for a computer is 0.016 - 0.018 seconds and for 

the RPi is 0.04 - 0.14 seconds. Except for the execution time of 

the H2/Air database on the RPi, the times are approximately the 

same between the two tested technologies. The increase in 

prediction time for the H2/Air database can be explained by the 

additional CO classification step that is not done with the 

oxygen database used. In comparison with the training times 

given by more powerful diagnosis methods such as neural 

networks that take several minutes on a recent computer, this 

approach has the advantage to be efficient and easier to re-train. 

This shows the possibility of using this approach to regularly 

retrain the diagnostic algorithm with fresh data acquired online. 
 

Fig. 10. Nyquist plots highlighting the misclassified EIS spectra using the 

automatic selection of parameters with the H2/O2 dataset (axes are 
hidden for confidentiality reasons) 

 
Fig. 11. Nyquist plots highlighting the misclassified EIS spectra using the 

automatic selection of parameters with the H2/Air dataset (axes are 

hidden for confidentiality reasons) 

TABLE III: CONFUSIONS OBTAINED FOR THE TWO DATABASES 

 
TRUE 

CONDITION 

DETECTED 

CONDITION 

NUMBER OF 

CONFUSIONS 

EXPERT 

H2/O2 
O2 starvation H2 starvation 4 

AUTO 

H2/O2 

O2 starvation H2 starvation 1 

H2 starvation O2 starvation 1 

Drying Nominal 2 

EXPERT 

H2/AIR 

Nominal Drying 1 

Flooding Drying 1 

CO Poisoning S Poisoning 1 

S Poisoning CO Poisoning 2 

AUTO 

H2/AIR 

Nominal Drying 2 

Flooding Drying 1 

S Poisoning CO Poisoning 2 
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VI. CONCLUSION 

This paper presents an improved diagnosis approach based 

on EIS-extracted features and an automatic selection of the best 

parameters applied for PEMFC. Several standardizations have 

been studied to determine which ones can be considered to best 

generalize the method. The non-linear Yeo-Johnson and 

uniform quantile transformers produce excellent results (>93%) 

for classifying the spectra of two different databases at any 

point (noise, fault tested, experimentation materials …). To 

reduce the need for user expertise, several thresholds have been 

investigated to distinguish variables containing a significant 

amount of information and disturbing variables. It appeared that 

deleting the variables containing less than 5% of information 

allowed keeping the main information while deleting the 

disturbing variables. Also, the extracted variables are equal to 

those determined by the empirical method. The last 

investigation carried out in this article was to measure the 

impact of various clustering validation indices on classification 

rates. Good knowledge of a database is not an obvious thing to 

do this is why using metrics to automatically detect the right 

number of clusters is one of the studied axes. They allow the 

algorithm to adapt if data is added during the operation and to 

reduce the user's expertise. As a result, several indicators allow 

reaching the same performances as those obtained after the 

analysis of the databases, while granting a fast calculation time. 

To reduce the measurement time of EIS spectra, future 

research will focus on reducing the number of frequencies to be 

used in the EIS measurement combined with the reconstruction 

of spectra by an equivalent circuit. This will reduce the 

experimental time without reducing the quality of the 

information that can be recovered to further improve the online 

implementation of the method. 

 

APPENDIXES 

A. Validation results for different standardization: H2/O2 

database 

B.  Validation results for different standardization: H2/AIR 

database 

 

TABLE VI: LOO CV VALIDATION RESULTS OBTAINED USING 

NON LINEAR TRANSFORMERS - H2/O2 DATASET 

 Yeo-Johnson 
Normal 

Quantile 

Uniform 

Quantile 

Accuracy [%] 96,6 94,3 95,5 

F1 score [%] 96,6 94,3 95,4 

Recall score 

[%] 
96,6 94,3 95,5 

Precision score 

[%] 
96,6 94,8 96,1 

Number of 

features 
6 6 5 

 

TABLE V: LOO CV VALIDATION RESULTS OBTAINED USING 

LINEAR SCALERS - H2/O2 DATASET 

 

Min-Max 

scaler 

Max 

absolute 

scaler 

Standard 

scaler 

Robust 

scaler 

Accuracy 

[%] 
94,3 85,2 92,0 97,7 

F1 score [%] 94,3 85,3 92,0 97,7 

Recall score 

[%] 
94,3 85,2 92,0 97,7 

Precision 

score [%] 
94,7 85,6 92,2 97,9 

Number of 

features 
5 5 5 6 

 

TABLE IV: LOO CV VALIDATION RESULTS OBTAINED USING 

RAW DATA AND NORMALIZERS - H2/O2 DATASET 

 Raw data Norm L2 Norm L1 Norm inf 

Accuracy 

[%] 
85,2 78,4 78,4 73,9 

F1 score [%] 85,2 77,9 77,9 73,5 

Recall score 

[%] 
85,2 78,4 78,4 73,9 

Precision 

score [%] 
85,9 79,6 79,6 76,2 

Number of 

features 
4 9 9 9 

 

 

Fig. 12. Execution times of the algorithms implemented on a RPi system 

and a computer 

TABLE VII: LOO CV VALIDATION RESULTS OBTAINED USING 

RAW DATA AND NORMALIZERS - H2/AIR DATASET 

 Raw data Norm L2 Norm L1 Norm inf 

Accuracy 

[%] 
77,6 84,2 85,5 86,8 

F1 score 

[%] 
77,4 84,9 85,7 86,4 

Recall score 

[%] 
77,6 84,2 85,5 86,8 

Precision 

score [%] 
81,6 85,9 86,2 86,6 

Number of 

features 
5 6 6 5 
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