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Nodal points can be artificially synthesized using glide-reflection symmetries at crystal interfaces.
This property was first demonstrated for a square-lattice phononic crystal at the X point of the first
Brillouin zone (wavenumber k = ±π/a with a the lattice constant), for a half-lattice-constant glide.
Here we show that the nodal point can be moved to the Γ point (k = 0) considering quarter-lattice-
constant glide-reflection symmetry. Applying a continuous grading along the x-axis is further shown
to leave the band structure mostly unaffected. In particular, the topological interface waves survive
in the case that glide-reflection symmetry is only locally valid around the graded interface. As a
result, the glide dislocation can be compensated for over a distance of a few crystal rows, to recover
an apparently periodic crystal.

I. INTRODUCTION

Topological metamaterials have recently arisen as
novel avenues for tailoring the properties of artificial
crystals, including photonic and phononic crystals1–7.
Mathematically, the topological properties that charac-
terize different phases of a crystal are derived from Bloch
waves, or eigenvectors, including their Berry phases8,9.
The Berry phase, a geometrical phase defined for peri-
odic systems, complements the usual phase of the eigen-
value, that depends on the Bloch wavevector k defined
in the first Brillouin zone. Edge waves can be obtained
along domain walls separating two topologically different
phases of the same crystal10–15.

In this paper, we consider the case of time-reflection
symmetric (TRS) waveguides created by a glide disloca-
tion in a two-dimensional (2D) phononic crystal16. Be-
cause of the dislocations, these systems have only one
periodicity (1D) left, but they still inherit the phononic
band properties of the parent 2D crystal, hence constitut-
ing the bulk crystal from which the boundary, or inter-
face, is created. The space group of a 1D periodic struc-
ture is also known as a frieze group. There are a total of
7 frieze groups, among which only the two groups p11g
and p2mg possess a half-lattice glide-reflection symmetry
(GRS). Recently, it has been shown that crystal inter-
faces belonging to these two frieze groups support a pair
of non-interacting, or backscattering-free, guided waves
with a smooth dispersion covering a large part of the 2D
phononic band gap16. The band structure topology of
those crystal interfaces is protected by the GRS. Glide-
reflection symmetry belongs to nonsymmorphic symme-
tries, i.e. symmetries that do not leave a fixed point
invariant inside the unit cell. Band inversion is obtained
at the X point of the first Brillouin zone, i.e. at its edges.
The crossing-point of the two guided bands is one exam-
ple of a nodal point of the 1D band structure, similar to
Dirac points in 2D and 3D crystals.

In this paper, we further extend the theory of the
glide-reflection symmetric phononic crystal interface in

two different directions. First, we show that the nodal
point can be moved from the X point to the Γ point of
the first Brillouin zone, by introducing a quarter-lattice-
constant glide-reflection symmetry, when the 2D crystal
unit cell is extended by a factor two along the interface
direction (the extended lattice constant ax = 2a, with a
the original lattice constant). The extended unit cell con-
tains two different inclusions per unit cell, separated by
a, such that taken separately they both lead to a similar
complete phononic band gap range. Moving the nodal
point to the Γ point, that is to a zero or integer value of
the reciprocal lattice constant, may find applications for
normal incidence excitation of the 1D waveguide. Sec-
ond, we discuss the locality of the constraint of GRS of
the crystal interface and show that it can be deformed
continuously to compensate for the glide dislocation away
from the interface, while keeping in an approximate and
local sense the topological properties of a buried GRS
interface.

II. QUARTER-LATTICE-CONSTANT
GLIDE-REFLECTION SYMMETRY

Let us first recall a few facts regarding the half-
lattice-constant glide-reflection symmetric crystal inter-
face. Figure 1a depicts the spatial arrangement of the
crystal interface. The glide-reflection symmetry acts on
coordinates as (x, y) → (x + a/2,−y). Applied twice, it
results in a translation of the crystal structure by exactly
one lattice constant a, or

Ga/2 ◦Ga/2 = Ta (1)

in terms of symmetry operators. The latter property is
the origin of the degeneracy at the X point of the first
Brillouin zone (k = π/a). Indeed, in reciprocal space
Ga/2(k)

2 = exp(ika) with k the Bloch wavevector, so
that

Ga/2(π/a)
2 = −1. (2)
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FIG. 1. Schematic representation of glide-reflection symmet-
ric (GRS) crystal interfaces, with a the lattice constant of the
initial 2D crystal and g the glide parameter. (a) half-lattice-
constant GRS interface and (b) quarter-lattice-constant GRS
interface.

Hence the eigenvalues of the GRS operator are ±i with
complex-conjugated eigenvectors u and u∗. Since the
GRS operator and the (real-valued) dynamic operator
for elastodynamics commute, they share common eigen-
vectors and we conclude that bands are degenerate by
pairs at the X point.

Let us now elaborate the quarter-lattice-constant glide-
reflection symmetric crystal interface from the previous
configuration. Figure 1b depicts a unit-cell extended by
a factor two in the x-direction, composed of the previous
inclusion (labelled A) and of a slightly different inclu-
sion labelled A’. We assume that the complete phononic
band gap is almost preserved when changing the inclu-
sion from A to A’, in an adiabatic sense. As an example,
we consider in Fig. 2a the square lattice crystal of steel
rods in water, with diameter d = 0.9a for inclusion A
and d′ = 0.8a for inclusion A’. Inclusion A is exactly the
same as in Ref.16 whereas inclusion A’ is slightly reduced
while essentially preserving the band gap width. When
combined together in the double unit cell without any
glide, inclusions A and A’ lead to a fully opened complete
band gap. When the glide parameter is set to g = ax/2,
as shown in Fig. 2b, degeneracy of all bands by pairs at
the point X is obtained. Since the number of bands has
been doubled, however, there are no really practically us-
able guided waves appearing inside the band gap. When
the glide parameter is set to g = ax/4, a quarter of the
new lattice constant, nodal points appear at the Γ point
of the Brillouin zone, as Fig. 2c shows. In particular,
there is a pair of non-interacting guided waves, whose
bands cross near the center of the complete band gap. In
the latter case, the glide operator must be applied four
times to result in a translation of the crystal structure
by exactly one lattice constant ax. In reciprocal space,
we then have Gax/4(k)

4 = exp(ikax). At the Γ point

Gax/4(0)
4 = 1, (3)

so that there are four eigenvalues, (±1,±i). The first two
eigenvalues do not lead to a degeneracy, so that half of
the bands remain non degenerate in Fig. 2c. The last two
eigenvalues, however, again lead to a degeneracy by pairs
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FIG. 2. Glide-reflection symmetric crystal interface created
by extending the unit-cell of a square-lattice phononic crystal
of steel rods in water. The unit-cell extended along the x-axis
contains an inclusion with diameter d = 0.9a and an inclusion
with diameter d′ = 0.8a. The rectangular extended unit-cell
has horizontal length ax = 2a. Periodic boundary conditions
relate the left and right sides of the unit-cell. There are 10
steel rods along the y direction. (a) When the glide parameter
g = 0, a large complete phononic band gap extends essentially
over the phononic band gap with a single inclusion. (b) When
g = ax/2, all bands are degenerate by pair at the X point of
the first Brillouin zone. (c) When g = ax/4, half the bands
are degenerate by pair at the Γ point whereas the other half
are not.



3

A B C

FIG. 3. Real part of the normalized modal shapes for pres-
sure, for the guided Bloch waves marked A, B, and C in Fig.
2c. The colorbar varies from blue (minimum) to red (maxi-
mum).

of bands (symmetric / antisymmetric with respect to the
GRS). Degeneracy occurs for k = 0 or an integer num-
ber of reciprocal lattice constants, hence at the Γ point.
This pair of guided interface waves is perfectly usable for
single-mode guidance. The corresponding modal shapes
are shown for the pressure part of the Bloch waves in Fig.
3. In particular, the lower guided band (A label) holds
a GSR anti-symmetric guided wave, whereas the upper
guided band (B label) holds a GSR symmetric guided
wave. The band with label C is non degenerate and al-
most flat.

As a note, the quarter-lattice-constant GRS identifies
with the half-lattice-constant GRS when d = d′, which
is also consistent with the fact that ax/4 = a/2. Hence,
the topological invariant that is behind the appearance of
guided waves along the interface is the same, the π jump
of the 2D Zak phase17,18 of Bloch bands of the initial 2D
crystal. In practice, moving the nodal point from the X
to the Γ point of the first Brillouin zone could be useful
for the external excitation of the crystal interface under
normal incidence.

III. GRADED GRS CRYSTAL

Symmetry protection by the glide-reflection ensures
that the band structure is not strongly affected under a
limited continuous deformation of the crystal lattice. In
Ref.16 the continuous transition from the square lattice
to the oblique lattice was considered as an illustration of
this principle, that goes far beyond resistance to crystal
disorder. Of course, the continuous deformation should
also preserve mostly the complete phononic band gap, for
the spectral range of appearance of the guided interface
waves to remain in operation.

Here we consider a continuous deformation of the crys-
tal lattice that is added to the glide dislocation of the
interface. Specifically, the vertical sides of the supercell
of the crystal interface are transformed from xm = ma
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FIG. 4. The phononic crystal interface is continuously graded
along the x-direction, in addition to the half-lattice constant
dislocation. Periodic boundary conditions relate the left and
right sides of the unit-cell. There are 10 steel rods along the
y direction. (a) In presence of the strict glide-reflection sym-
metry, the band structure for the crystal interface is almost
unchanged compared to the non-graded crystal. (b) With a
combination of inversion symmetry and half-lattice glide, but
a vertical grading slope on the interface, local glide-reflection
symmetry applies only to the first few crystal rows but the
band structure is almost unaffected. The pair of guided inter-
face waves almost do not interfere at the X point of the first
Brillouin zone.

to xm = ma + h(y) for y > 0. In the example con-
sidered in Fig. 4, function h(y) = (g/2) sin2(πy/(2na))
with n the number of crystal rows. In order to respect
glide-reflection symmetry, one must have h(−y) = h(y).
As a result, the glide dislocation is conserved vertically
and the bottom and top sides of the supercell are glided
by g. As Fig. 4a illustrates, the band structure of the
graded GRS crystal interface is very similar to the origi-
nal one (i.e., compared to Fig. 2b of Ref.16). The modal
shapes for the guided Bloch waves are further similar to
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the ungraded case and are not reproduced here.
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FIG. 5. Transmission through a phononic crystal interface
is continuously graded along the x-direction, in addition to
the half-lattice constant dislocation. The two cases of strict
and local glide-reflection symmetry are considered. Pressure
waves in water are excited and detected along circles of arc
centered on the entrance and on the exit of the interface (S:
source; R: receiver). Continuous transmission is observed in
either case. Pressure fields are shown for four particular fre-
quencies, in the local GRS case.

Compensating for the glide away from the interface,
for instance to recover the original, perfectly periodic 2D
crystal, requires antisymmetry of the grading function:
g(−y) = −g(y). Indeed, for the example considered
in this section, we would have h(−na/2) = −g/2 and
h(na/2) = +g/2, so that the horizontal displacements at
bottom and top cancel the glide g. This choice, however,
breaks glide-reflection symmetry and should lead to the
opening of a band gap for guided waves at the X point
of the first Brillouin zone.If the slope of function h(y)
is vertical along the interface, i.e. if dh

dy (0) = 0, then

the gap opening can be minimized, because the interface
still appears locally glide-reflection symetric, at least for

the first few crystal rows around the interface. In the
example of Fig. 4b, this property is verified.
Transmission through the finite graded crystal inter-

face was investigated numerically, as summarized in Fig.
5, to check the above property. The entrance of the
waveguide is excited from a curved focusing line source,
with prescribed acceleration. The pressure at the exit
of the waveguide is collected on a similar, symmetrically
placed curved line. A radiation boundary condition is
imposed on the outer circular boundary enclosing the
computation domain. The frequency response function
(FRF) is defined as the ratio of collected to emitted pres-
sure; it includes the effect of reflections at the entrance
and the exit of the waveguide, and the direct emission
of pressure waves to the left of the line source. Notably,
it is found that the responses for strict and local glide-
reflection symmetry are almost coincident, except for the
spectral range around the X-point crossing of interface
waves, and that no wave cancellations occur as a func-
tion of frequency. As a note, the non-zero reflection co-
efficients at the entrance and the exit of the waveguide
lead to spectral interference and cause the appearance of
a channeled spectrum19.

IV. CONCLUSION

As noted in Ref. 16 the glide-reflection symmetric crys-
tal waveguide offers wide bandwidth, single mode opera-
tion, and symmetry-protected backscattering immunity.
In this paper, we have further extended the concept in
two directions. First, we have shown that the nodal point
created by GRS can be moved from the X to the Γ point
of the first Brillouin zone considering quarter-lattice-
constant glide-reflection symmetry for a unit-cell twice
extended in the x-direction and containing two slightly
different inclusions. Second, applying a continuous vari-
ation along the x-axis of the unit cell boundaries, it is
further observed that the band structure remains mostly
unafected. In particular, interface waves survive in the
case that glide-reflection symmetry is only valid locally
around the graded interface. As a result, the glide can
be compensated for a few crystal rows away from the
dislocation.
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