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Abstract: 13 

Previous theory and experiment has shown that introducing strong (nonlocal) beyond-nearest-neighbor 14 

interactions in addition to (local) nearest-neighbor interactions into rationally designed periodic lattices 15 

called metamaterials can lead to unusual wave dispersion relations of the lowest band. For roton-like 16 

dispersions, this especially includes the possibility of multiple solutions for the wavenumber at a given 17 

frequency. Here, we study the one-dimensional frequency-dependent acoustical phonon transmission of 18 

a slab of such nonlocal metamaterial in a local surrounding. In addition to the usual Fabry-Perot 19 

resonances, we find a series of bound states in the continuum. In their vicinity, sharp Fano-type 20 

transmission resonances occur, with sharp zero-transmission minima next to sharp transmission maxima. 21 

Our theoretical discussion starts with a discrete mass-and-spring model. We compare these results with 22 

solutions of a generalized wave equation for heterogeneous nonlocal effective media. We validate our 23 

findings by numerical calculations on three-dimensional metamaterial microstructures for one-24 

dimensional acoustical wave propagation. 25 

  26 
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Introduction 27 

The wave properties of ordinary crystals are determined by the atoms forming the crystal as well as by 28 

their interactions. Likewise, the wave properties of rationally designed artificial periodic lattices called 29 

metamaterials1-3 are determined by the interior of the metamaterial unit cells as well as by the 30 

interactions among the unit cells4-6. A bulk of literature has used the approximation of considering 31 

interactions among only the nearest neighbors7-9. Interactions beyond the nearest neighbors have been 32 

considered to test the validity of this approximation10. However, in metamaterials, the interactions 33 

beyond the nearest neighbors can be designed rationally and can be made strong10-14. This additional 34 

design freedom has lately been used to realize unusual dispersion relations of the lowest acoustic or 35 

elastic metamaterial band15-18. For example, the latter can resemble the unusual dispersion relation, 36 

𝜔(𝑘), of sound waves in superfluid helium19, 20 that starts with an angular frequency of the wave, 𝜔, 37 

proportional to its wavenumber, 𝑘, followed by a maximum (the “maxon”) and a minimum (the “roton”) 38 

versus 𝑘21, 22. Such unusual phonon dispersion relations have been observed experimentally using three-39 

dimensional macroscopic metamaterials for airborne sound at audible frequencies17, 18 and using three-40 

dimensional microstructured metamaterials for elastic waves  at ultrasound frequencies17. 41 

However, structures and devices in applications usually exploit multiple dissimilar materials and the 42 

interplay between them and their interfaces. A paradigmatic textbook heterostructure geometry is a slab 43 

with thickness 𝐿 of material A clad between two semi-infinite half spaces of material B. For usual local 44 

materials A and B, it is well-known that this setting leads to Fabry-Perot resonances connected to unity 45 

wave transmission, |𝑇(𝜔)| = 1, through the slab at particular angular frequencies 𝜔 = 𝜔𝑖 of the incident 46 

wave23. At these particular frequencies, the phase that the wave accumulates in one round trip through 47 

the slab is an integer multiple of 2𝜋. For a slab with a sufficiently large number of unit cells within, this 48 

condition translates into 2𝑘𝐿 = 𝑛𝑖2𝜋, where 𝑘 = 𝑘(𝜔𝑖) is the single wavenumber in material A at the 49 

angular frequency 𝜔𝑖  and 𝑛𝑖  is an integer. Fabry-Perot resonances with high quality factors have 50 

numerous applications, e.g., as optical filters or interferometry24. 51 

Here, we discuss the case that material A in the slab is replaced by a nonlocal metamaterial. At a given 52 

angular frequency 𝜔 , such medium generally supports more than a single wave mode with single 53 

wavenumber 𝑘. For different wavenumbers 𝑘𝑗(𝜔), with 𝑗 = 1, 2,…𝑁, at a given angular frequency 𝜔, the 54 

behavior is richer than for local material slabs. We start by discussing the problem using a previously 55 

introduced simple discrete one-dimensional (1D) mass-and-spring model15. Apart from the nearest-56 

neighbor interactions via Hooke’s springs, it contains 𝑁-th nearest-neighbor interactions with integer 𝑁 ≥57 
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2. Here, we emphasize the example of 𝑁 = 3, which is the smallest 𝑁 for which the roton-like minimum 58 

fully lies inside of the first Brillouin zone (for 𝑁 = 2 it lies right at the Brillouin zone border). We find a 59 

series of sharp Fano-type resonances in the frequency-dependent transmission |𝑇(𝜔)| in the frequency 60 

region for which multiple solutions 𝑘𝑗(𝜔) for the wavenumber exist. We show that the linewidth of the 61 

Fano-type resonances tends to zero towards special points in material-parameter space corresponding to 62 

bound states in the continuum (BIC)25. BIC physics in general, not related to beyond-nearest-neighbor 63 

interactions in periodic lattices, has a long history in acoustics26, elasticity27, 28, as well as optics29, 30, and 64 

has recently attracted renewed attention in the metamaterials community31. We refer the reader to the 65 

review articles25, 29 for an introduction to and comprehensive reviews of the BIC field. Next, we discuss the 66 

nonlocal slab transmission on the level of a 1D effective-medium approximation for the displacement field 67 

of the heterogeneous 1D mass-and-spring model, which leads to a phenomenological generalized wave 68 

equation containing spatial derivatives up to order 2𝑁. Finally, we present numerical calculations for 69 

three-dimensional nonlocal metamaterial microstructures for wave propagation along one direction, 70 

again showing BIC behavior. 71 

 72 

Results and Discussion 73 

Mass-and-spring model. Figure 1(a) illustrates the infinite one-dimensional mass-and-spring toy model 74 

that we have discussed previously15. Herein, identical masses 𝑚, periodically arranged with period or 75 

lattice constant 𝑎, are connected to their immediate neighbors along the 𝑥-axis on the left and on the 76 

right by linear elastic Hooke’ springs with spring constant 𝐾1. In this form (i.e., for 𝐾𝑁 = 0), Fig. 1(a) 77 

corresponds to the paradigmatic one-dimensional model for acoustical phonons in usual local media as 78 

described in any solid-state-physics textbook32. For the nonlocal case, the masses in Fig. 1(a) are 79 

additionally connected to their 𝑁-th nearest neighbor on the left and on the right by Hooke’s springs with 80 

spring constant 𝐾𝑁 . Shown is the example of 𝑁 = 3 . This is the lowest integer for which roton-like 81 

dispersion relations15 can occur within the first Brillouin zone of the model. For 𝑁 = 2, the roton-like 82 

minimum is right at the boundary of the first Brillouin zone. Clearly, the model can be extended to contain 83 

multiple orders of beyond-nearest-neighbor interactions33. Here, for simplicity, we only consider nearest 84 

neighbors plus neighbors with 𝑁 = 3. We will see that the resulting behavior of slabs is extremely rich 85 

and complex already. The beyond-nearest-neighbor springs in Fig. 1 are meant symbolically, an actual 86 

feasible realization is discussed in Section V.  87 
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As an example for 𝑁 = 3, Fig. 1(b) shows a slab of relative thickness 𝐿/𝑎 = 6 of such nonlocal material 88 

clad between a local mass-and-spring model. The thinnest possible slab corresponds to 𝐿/𝑎 = 𝑁, for 89 

which only a single 𝑁-th nearest-neighbor spring is left. For simplicity and clarity, we depict and study in 90 

what follows the case that the lattice constant 𝑎, the masses 𝑚, and the spring constants 𝐾1 are constant 91 

throughout the entire structure considered. We notice that, for a given well-defined integer ratio 𝐿/𝑎, 92 

the left and right boundaries of the nonlocal slab in Fig. 1(b) cannot be defined unambiguously anymore. 93 

Six of the seven masses in the slab have only third-nearest-neighbor springs to one side. Further inside of 94 

the nonlocal slab (in Fig. 1(b) only the middle mass), the masses have long-range interactions to their left 95 

and to their right-hand side. For the phenomenological effective-medium description to be discussed 96 

below, this obvious fact means that the boundaries between the local and the nonlocal medium cannot 97 

be considered as being sharp or discontinuous anymore. The boundaries are rather smeared out, which 98 

is a direct consequence of the nonlocality of the slab. This simple observation will become important for 99 

an intuitive interpretation of our results and for the effective-medium description described below. 100 

Before discussing the nonlocal slab, let us briefly recapitulate the expected transmission, 𝑇(𝜔), of a slab 101 

of a local material embedded in a different local material, at the real-valued angular frequency 𝜔. We 102 

define the complex-valued transmission as the ratio of the transmitted displacement amplitude or output, 103 

𝑢out, and the displacement amplitude incident onto the slab, 𝑢in, i.e.,   104 

 𝑇(𝜔) =
𝑢out

𝑢in
. (1) 105 

The phase of 𝑇(𝜔 ) clearly depends on at which lattice site exactly we take the incident and the 106 

transmitted displacement, respectively. This dependence drops out when considering the modulus, 107 

i.e., |𝑇(𝜔)|. Therefore, we consider |𝑇(𝜔)| in what follows. As pointed out in the introduction, for a local 108 

slab in a local surrounding, |𝑇(𝜔)|  generally exhibits Fabry-Perot resonances with |𝑇(𝜔𝑖)| = 1 at 109 

particular angular frequencies 𝜔𝑖  which fulfill the standing-wave condition23 110 

 𝑘(𝜔𝑖)𝐿 = 𝑛𝑖𝜋,  (2) 111 

with integer 𝑛𝑖. Clearly, this reasoning implies that the slab contains sufficiently many unit cells, such that 112 

the wavenumber 𝑘  can assume nearly any value. For these particular angular frequencies, the wave 113 

accumulates a phase in one round trip within the slab that is an integer multiple of 2𝜋. For the special 114 

case that the impedances between the two materials are matched, we have |𝑇(𝜔)| = 1 for all angular 115 

frequencies. 116 
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Let us apply this intuitive reasoning to a nonlocal slab with sufficiently many unit cells inside. As we have 117 

shown previously15 and as can be seen from roton-like dispersion relation shown in Fig. 2(a), one generally 118 

has three solutions (for 𝑁 = 3 ) for each direction (left/right or +𝑘/−𝑘 ) for the (real part of the) 119 

wavenumber at a given angular frequency, i.e., 𝑘(𝜔𝑖) → 𝑘𝑗(𝜔𝑖) and 𝑛𝑖 → 𝑛𝑖𝑗  with 𝑗 = 1,2,3. Intuitively, 120 

a standing-wave condition Eq. (2) has to be fulfilled for each one of them simultaneously to obtain a 121 

“special” behavior of |𝑇(𝜔)| at certain angular frequencies 𝜔𝑖 . Below, we will connect this “special” 122 

behavior to bound states in the continuum (BIC). For arbitrary parameter choices of 𝑚, 𝐾1, 𝐾3, and 𝑎, and 123 

hence arbitrary dispersion relations 𝜔(𝑘), it is unlikely that the condition Eq. (2) can be fulfilled three 124 

times simultaneously for any one angular frequency 𝜔𝑖. However, as pointed out above (see Fig. 1(b)), 125 

the boundaries of the nonlocal slab are not sharp (see above discussion on Fig. 1(a)), and, hence, the 126 

effective slab thickness, 𝐿𝑗
eff, may be different from 𝐿 in Eq. (2), i.e., we have to replace 𝐿 → 𝐿𝑗

eff  in Eq. (2). 127 

Together, we obtain 128 

 𝑘𝑗(𝜔𝑖)𝐿𝑗
eff = 𝑛𝑖𝑗𝜋 . (3) 129 

Unfortunately, there is no obvious and unambiguous way to calculate the effective slab thicknesses 𝐿𝑗
eff 130 

and thereby the special frequencies 𝜔𝑖  from Eq. (3) and the given dispersion relation 𝑘(𝜔). Nevertheless, 131 

this simple reasoning connects the textbook treatment of Fabry-Perot resonances for ordinary local slabs 132 

to the more unusual resonances in nonlocal slabs discussed in this paper. 133 

Before we discuss the problem more rigorously, especially including the possibility of only a small number 134 

of unit cells within the slab, let us address a subtlety of the dispersion relation connected to the finite-135 

thickness slab that turns out to be important for an intuitive interpretation of our results. For the infinitely 136 

extended periodic nonlocal mass-and-spring model (see Fig. 1(a)), Newton’s law for the displacement 𝑢𝑙 137 

of the mass 𝑚 at site 𝑙 along the 𝑥-axis reads 138 

 𝑚
𝜕2𝑢𝑙 

𝜕𝑡2
= 𝐾1(𝑢𝑙+1 − 2𝑢𝑙 + 𝑢𝑙−1) + 𝐾𝑁(𝑢𝑙+𝑁 − 2𝑢𝑙 + 𝑢𝑙−𝑁), 𝑙 = −∞,… , 0, …+∞. (4) 139 

Without further assumptions or approximations, the plane-wave ansatz 𝑢𝑙 = �̃� exp (𝑖(𝑘𝑥 − 𝜔𝑡)), with 140 

𝑥 = 𝑙𝑎 and constant prefactor �̃�, leads to the phonon dispersion relation 𝜔(𝑘) given by15 141 

 𝜔2(𝑘) =
4

𝑚
 (𝐾1 sin

2 (
𝑘𝑎

2
) + 𝐾𝑁 sin

2 (
𝑁𝑘𝑎

2
)  ).  (5) 142 

Clearly, when taking the square root on both sides of Eq. (5), we obtain two signs for 𝜔. As usual, we 143 

follow the convention to consider positive (real parts of the) angular frequencies. For an infinite non-144 

dissipative nonlocal medium, according to Bloch’s theorem32, the wavenumber must be real. However, 145 
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for a finite-thickness nonlocal slab, the wavenumber is not necessarily real because evanescent modes 146 

may appear. For the considered transmission Gedankenexperiment, the angular frequency is purely real 147 

(by definition) and positive by convention. Nevertheless, we plot in Fig. 2 all mathematical solutions of Eq. 148 

(5) for the most general case of complex-valued 𝑘 and complex-valued 𝜔. Panel (a) is for a parameter set 149 

(see caption) for which Re(𝜔) versus Re(𝑘) shows a roton-like dispersion relation with a pronounced 150 

maximum and a pronounced minimum. Panel (b) is for a parameter set (see caption) for which Re(𝜔) 151 

versus Re(𝑘) shows no roton minimum in the phonon dispersion relation. Nevertheless, in Fig. 2(b), we 152 

still obtain three solutions (three modes) for the complex-valued wavenumber 𝑘 for real and positive 𝜔 153 

in the range of Re(𝑘) > 0. We repeat that Im(𝑘) ≠ 0 indicates evanescent modes that drop out for an 154 

infinite medium, but that we have to consider for a finite-thickness nonlocal slab. For a local medium 155 

with 𝐾𝑁 = 0, be it finite or infinite in thickness, this subtlety does not apply because Im(𝑘) = 0 holds 156 

true for any real-valued 𝜔 > 0. 157 

We note in passing that the behavior shown in Fig. 2 can be understood in terms of the roton minimum 158 

being an exceptional point34-36. In fact, any 𝑘-position of a minimum or maximum of 𝜔(𝑘) in the first 159 

Brillouin zone of any type of wave in any kind of lossless system is an exceptional point in the sense that 160 

two eigenmodes coalesce in both eigenvalues and eigenvectors for the angular eigenfrequency 𝜔 at the 161 

𝑘-position of the maximum or minimum. At the position of a saddle point (see Fig. 2(b)), even three 162 

eigenmodes coalesce. This exceptional degeneracy is lifted as soon as one introduces a perturbation. It is 163 

also lifted as soon as one considers finite imaginary parts of 𝑘 (i.e., evanescent waves). As a result, one 164 

black line emerges from the roton minimum for increasing imaginary part of the wavenumber in Fig. 2(a). 165 

In Fig. 2(b), two black lines emerge from the saddle point for Im(𝑘) > 0. 166 

Next, we discuss solutions for |𝑇(𝜔)| of the nonlocal slab. As our model contains no losses, the sum of 167 

kinetic and potential energy is conserved, and the reflectivity spectrum, |𝑅(𝜔)|, is directly connected to 168 

the transmission spectrum by the relation   169 

 |𝑅(𝜔)|2 + |𝑇(𝜔)|2 = 1. (6) 170 

This expression is only meaningful and valid for a local surrounding that supports only a single relevant 171 

mode (in either direction). This condition is automatically fulfilled for the discrete mass-and-spring model 172 

(cf. Fig. 1), but has to be taken with caution for the below approximate effective-medium description in 173 

which a very small but finite nonlocality needs to be added to the surrounding of the slab. We will come 174 

back to this point below. 175 
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To mathematically compute the transmission spectrum for the discrete model (see Fig. 1(b)), we proceed 176 

as follows. An incident wave with angular frequency 𝜔 impinges onto the slab from the left-hand side. We 177 

aim at computing the frequency-dependent reflection and transmission coefficients. We write the 178 

displacements corresponding to masses with label 𝑙 ≤ 0 (see Fig. 1(b)) as 179 

 𝑢𝑙 = 𝑢in exp(𝑖𝑘𝑙𝑎) + 𝑢ref exp(−𝑖𝑘𝑙𝑎), (7) 180 

where 𝑢in indicates the complex-valued amplitude of the incident wave, 𝑘 is the wavenumber, and 𝑢ref 181 

represents the unknown amplitude of the reflected wave, respectively. To ease readability, the time 182 

harmonic factor exp (−𝑖𝜔𝑡) is omitted here and throughout the following. It can be shown that the 183 

displacements of the masses with label 𝑙 ≤ −1 satisfy their balance equations automatically. Likewise, 184 

we represent the displacements of the masses with label 𝑙 ≥ 𝐿/𝑎 by, 185 

 𝑢𝑙 = 𝑢out exp(𝑖𝑘(𝑙 − 𝐿/𝑎)𝑎) , 𝑙 ≥ 𝐿/𝑎 (8) 186 

Here, 𝑢out  indicates the unknown amplitude of the transmitted wave. In total, we have 𝐿/𝑎 + 1 187 

unknowns, including 𝑢ref, 𝑢out, and the displacements, 𝑢𝑙, with 𝑙 = 1, 2… (𝐿/𝑎 − 1). These unknowns 188 

are obtained from 𝐿/𝑎 + 1 equilibrium equations for the masses with labels 𝑙 = 0, 2…𝐿/𝑎. As defined 189 

above, the transmission coefficient is obtained via 𝑇(𝜔) = 𝑢out/𝑢in.  190 

For example, for 𝐿/𝑎 = 4, we obtain the transmission spectrum 191 

 𝑇(𝜔) =
2𝑖 sin(𝑘𝑎)𝐾1

2(𝐾1(𝐾1+𝐾3)(𝐾1+5𝐾3)−2𝐾3(4𝐾1+𝐾3)𝑚𝜔
2+2𝐾3𝑚

2𝜔4)

𝐹1(𝜔)𝐹2(𝜔)
. (9) 192 

Herein, 193 

 𝐹1(𝜔) = exp(𝑖𝑘𝑎)𝐾1(2𝐾1 + 𝐾3 −𝑚𝜔
2) − (3𝐾1 −𝑚𝜔

2)(𝐾1 + 2𝐾3 −𝑚𝜔
2), (10) 194 

and 195 

 𝐹2(𝜔) = 2(exp(𝑖𝑘𝑎) − 1)𝐾1
3 +𝑚2𝜔4(𝑀𝜔2 − 2𝐾3) + (exp(𝑖𝑘𝑎) − 6)𝐾1𝑚𝜔

2(𝑀𝜔2 −𝐾3) +196 

𝐾1
2(9𝑚𝜔2 − 2𝐾3 + 2exp(𝑖𝑘𝑎) (𝐾3 − 2𝑚𝜔

2)).  (11) 197 

The corresponding explicit expressions become very lengthy for slab length 𝐿/𝑎 ≥ 5, and are hence not 198 

provided here. 199 

Fig. 3(a) depicts an example of the calculated transmission |𝑇(𝜔)| (gray scale) of the nonlocal slab (see 200 

Fig. 1(b)) versus 𝜔 and versus the spring-constant ratio 𝐾3/𝐾1. For simplicity, all other model parameters 201 

are fixed (see caption). For reference, panel (b) shows the phonon dispersion relation for the slab for 202 

selected values of 𝐾3/𝐾1 (see dashed lines). We find a complex behavior. In Fig. 3(a), for low frequencies, 203 



8 

transmission peaks occur that follow the expectation for ordinary Fabry-Perot resonances (labelled “FP” 204 

in Fig. 3). At higher frequencies, near specific special frequencies (see arrows in Fig. 3(a)), the resonances 205 

in transmission become more and more narrow. Exactly at these special frequencies and spring constant 206 

ratio 𝐾3/𝐾1, the resonances disappear. We interpret these special frequencies as being due to bound 207 

states in the continuum (BIC).  208 

To test this interpretation, we have performed additional numerical calculations of the eigenfrequencies 209 

and eigenmodes of the slab alone, i.e., without the surrounding (not shown).  We find eigenfrequencies, 210 

𝜔BIC, for which the corresponding eigenmodes exhibit strictly zero displacement amplitude at the left and 211 

right end of the slab for all times 𝑡. Obviously, an incident plane wave with non-zero amplitude impinging 212 

from the surrounding cannot couple to such an eigenmode. Correspondingly, the lifetime of this mode is 213 

infinitely long – provided that friction plays no role, as implied in our model, see Fig. 1 or Eq. (4). This 214 

means that the special frequencies of BIC resonances only depend on the slab properties, but not on the 215 

properties of the surrounding. The same holds true for usual Fabry-Perot resonances.  216 

To connect to our above intuitive discussion for sufficiently many unit cells within the slab, we can 217 

decompose the BIC modes of the slab corresponding to the BIC angular frequencies 𝜔𝑖  into the three (𝑗 =218 

1, 2, 3) eigenmodes with wavenumbers 𝑘𝑗(𝜔𝑖) of the nonlocal dispersion relation according to Eq. (5) to 219 

fulfill the three standing-wave conditions Eq. (3) simultaneously. However, the reverse is not true. Just 220 

any arbitrary linear combination of the three standing-wave solutions fulfilling Eq. (3) will generally not 221 

lead to a BIC mode as the displacement of the masses at the two ends of the slab is not necessarily strictly 222 

zero.  223 

For special (small) integer values of the relative slab thickness 𝐿/𝑎, the BIC resonance frequencies 𝜔BIC 224 

can be obtained analytically. We consider those (1 + 𝐿/𝑎) eigenfrequencies of the (1 + 𝐿/𝑎) coupled 225 

masses in the slab in Fig. 1(b) for which the corresponding eigenmode is such that the mass on the left-226 

hand side and the right-hand side of the slab have strictly zero displacement amplitude at all times 𝑡 (but 227 

the masses in between have nonzero amplitude). Such solutions occur only for special combinations of 228 

the three slab parameters 𝑚, 𝐾1, and 𝐾𝑁. For any 𝑁 and 𝐾𝑁 = 0, BIC solutions do not occur for any value 229 

of 𝐿/𝑎. For 𝐾𝑁 ≠ 0, 𝑁 = 3 and 𝐿/𝑎 = 3 (i.e., only a single third-nearest-neighbor spring), a BIC does not 230 

occur either. The simplest non-trivial case is 𝑁 = 3 and 𝐿/𝑎 = 4, for which we have only two third-231 

nearest-neighbor springs in the slab. It is straightforward to obtain the eigenstates for this system 232 

composed of five coupled masses. By demanding that the displacements of the two masses on the left 233 

end and on the right end of this chain are zero for all times (see Supplementary Note 1), we obtain 234 
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 (𝐾3/𝐾1)BIC = 1; 𝜔BIC = √
3𝐾3

𝑚
.  (12) 235 

For large relative slab thicknesses 𝐿/𝑎 we find BIC modes numerically as it seems hard to obtain closed 236 

analytical solutions. 237 

For frequencies and parameters near but not identical to these BIC conditions, an incident propagating 238 

plane wave can couple to the resonance mode localized within the slab. The interference of a continuum 239 

of propagating modes and a spectrally-sharp localized mode is well known to give rise to Fano-type line 240 

shapes37, the detailed form of which depends on the Fano coupling parameter. In Fig. 4(a), we show a 241 

zoomed-in view of one BIC point highlighted by the yellow box in Fig. 3(a). For 𝐾3/𝐾1 values below the 242 

BIC points and with increasing angular frequency 𝜔 , we find a transmission dip (zero transmission) 243 

followed by a transmission peak (complete transmission), whereas for 𝐾3/𝐾1  ratios above the BIC 244 

frequency, the sequence flips and we find a transmission peak followed by a transmission dip with 245 

increasing frequency. This behavior is more clearly seen from the selected cuts shown in Fig. 4(b) 246 

corresponding to three different 𝐾3/𝐾1 values.  247 

Further examples for other 𝐿/𝑎, represented likewise in Fig. 3(a), are shown in Supplementary Figure 1. 248 

We find BIC modes even if only two third-nearest neighbor Hooke’s springs are kept (𝐿/𝑎 = 4 and 𝑁 = 3, 249 

see Eq. (6)). In the opposite limit of a thick slab, 𝐿/𝑎 ≫ 1 (see Fig. 1(b)), in which we expect that we can 250 

consider the slab as an effective medium, the BIC resonances survive as well. This brings us to a possible 251 

effective-medium description. 252 

 253 

Effective-medium description. For an infinitely periodic nonlocal mass-and spring model and for 𝑁 = 3, 254 

we have previously argued17 that one gets the following general form for the displacement field 𝑢 =255 

𝑢(𝑥, 𝑡) within the long-wavelength limit (𝑘𝑎 → 0) 256 

 𝑚
𝜕2𝑢 

𝜕𝑡2
= 𝐴2

𝜕2𝑢

𝜕𝑥2
+ 𝐴4

𝜕4𝑢

𝜕𝑥4
+ 𝐴6

𝜕6𝑢

𝜕𝑥6
 . (13) 257 

In a previous study17, we have derived explicit expressions for the parameters 𝐴2, 𝐴4, and 𝐴6. However, 258 

it should be noted that one gets different explicit expressions for 𝐴2, 𝐴4, and 𝐴6 depending on which 259 

terms of the expansion one keeps. For example, even for the nearest-neighbor interactions alone (i.e., for 260 

𝐾1 ≠ 0 and 𝐾3 = 0) one can obtain finite terms for all three coefficients 𝐴2, 𝐴4, and 𝐴6 in Eq. (13). Unless 261 

𝐾1 ≪ 𝐾3 (which does not hold true for the parameters considered in this paper), these terms are not 262 

negligible compared to the ones originating from the third-nearest-neighbor interactions. Therefore, we 263 



10 

have assumed a phenomenological spirit and have considered the parameters 𝐴2 , 𝐴4 , and 𝐴6  in the 264 

general form Eq. (13) as fit parameters when plotting the phonon dispersion relations as gray curves in 265 

Fig. 4B and 4D in Martínez et al.17. Further examples are given in Wang et al.16.  266 

If one wants to go beyond this phenomenological treatment, one would have to expand the finite 267 

differences on the right-hand side of Eq. (4) to yet much-higher orders of spatial derivatives than in Eq. 268 

(13) in order to quantitatively reproduce the results of the discrete mass-and-spring model. However, in 269 

this case, nothing is gained because the point of a meaningful effective-medium description is that it 270 

should be simpler than the underlying discrete model (or microstructure or atomic structure). Otherwise, 271 

one could rather continue working with the more complete discrete model. 272 

We assume the same phenomenological spirit here. However, importantly, for the slab geometry of 273 

interest in this paper, the coefficients 𝐴2, 𝐴4, and 𝐴6  are no longer constant versus the 𝑥-coordinate (see 274 

Fig. 1(b)). For this case of a heterogeneous nonlocal medium, it is straightforward to derive, starting from 275 

Eq. (4), the more general form 276 

 𝑚
𝜕2𝑢 

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝐴2(𝑥)

𝜕𝑢

𝜕𝑥
) +

𝜕2

𝜕𝑥2
(𝐴4(𝑥)

𝜕2𝑢

𝜕𝑥2
) +

𝜕3

𝜕𝑥3
(𝐴6(𝑥)

𝜕3𝑢

𝜕𝑥3
),  (14) 277 

in the limit of 𝑎 → 0 . The coefficients 𝐴2(𝑥) , 𝐴4(𝑥) , and 𝐴6(𝑥)  can be expressed by the model 278 

parameters 𝐾1(𝑥), 𝐾𝑁(𝑥) and spatial derivatives up to third order thereof  (see Supplementary Materials 279 

of Martínez et al.17 for the case of constant coefficients). However, again, the expressions for 𝐴2(𝑥), 280 

𝐴4(𝑥) , and 𝐴6(𝑥)  depend on which terms of the expansion one keeps. If one considers the 281 

mathematically strict limit of 𝑎 → 0, one gets discontinuous steps of the coefficients 𝐴2(𝑥), 𝐴4(𝑥), and 282 

𝐴6(𝑥) at the interfaces of the slab, leading to diverging derivatives on the right-hand side of Eq. (14). One 283 

possible strategy to solve Eq. (14) with such discontinuous jumps of parameters is to introduce additional 284 

continuity conditions (as described for low-order differential equations in many textbooks38) or to treat 285 

the derivatives in a distributional sense39. However, in the current paper, we rather assume continuous 286 

coefficients as detailed below. 287 

We rather make a second phenomenological assumption: We search for reasonable coefficients 𝐴2(𝑥), 288 

𝐴4(𝑥), and 𝐴6(𝑥) that lead to a behavior of the transmission |𝑇(𝜔)| of the nonlocal slab that at least 289 

roughly qualitatively resembles the behavior we have found for the discrete mass-and-spring model 290 

shown in Fig. 3 or Fig. 4. By “reasonable”, we mean that the dependencies 𝐴2(𝑥), 𝐴4(𝑥), and 𝐴6(𝑥) must 291 

assume constant values far away from the interfaces. However, we must assume phenomenological 292 

shapes of the transition in the smeared-out interface regions (see above discussion on Fig. 1(b)). 293 
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Intuitively, the smearing out extends over a length scale 𝑁𝑎 given by the nonlocal interaction of order 𝑁. 294 

Furthermore, the coefficients 𝐴4(𝑥)  and 𝐴6(𝑥)  must be extremely small in the local surrounding. 295 

Conceptually, they should be zero in a local medium. However, mathematically, they cannot be strictly 296 

zero there, because this would again lead to discontinuous jumps and hence divergences of spatial 297 

derivatives when attempting to solve Eq. (14).  298 

We do not expect a quantitative agreement with our results for the discrete heterogeneous mass-and-299 

spring model (see, e.g., Fig. 3) because this form of a phenomenological effective-medium description 300 

does not even capture the dispersion relation of the nonlocal model quantitatively (see Figs. 4B and 4D in 301 

a previous study17). The asymptotics for |𝑘| → 𝜋/𝑎 is incorrect, too40. Our effective-medium description 302 

can only capture roughly and qualitatively the fact that there is a roton minimum at a finite wavenumber 303 

within the first Brillouin zone. Nevertheless, we feel that it is interesting and relevant to identify a simple 304 

effective-medium description that can at least capture the existence of BIC behavior for nonlocal slabs.  305 

To compute the transmission spectrum of a nonlocal slab according to Eq. (14) within the effective-306 

medium description numerically, we proceed as follows. Figure 6(a) and (b) illustrate the discrete model 307 

and the corresponding continuum model. Here, 𝐿 = 9𝑎 serves as an example. In the discrete model (see 308 

Fig. 5(a)), all springs connecting two neighboring masses are the same. Therefore, we can naturally set 309 

𝐾1(𝑥) = 1 in the continuum model. The spatial dependence of the non-local spring constant 𝐾3(𝑥) needs 310 

to be manually constructed. We assume a smooth function for 𝐾3(𝑥) in the region of 0 < 𝑥 < 3𝑎, roughly 311 

corresponding to the boundary length scale of the discrete slab (compare Fig. 5(a) and (b)). Due to mirror 312 

symmetry of the discrete system, 𝐾3(𝑥) for 𝐿 − 3𝑎 < 𝑥 < 𝐿 is obtained by symmetry. For the central part 313 

of the slab, i.e., 3𝑎 < 𝑥 < 𝐿 − 3𝑎, and the two surroundings to the left and right of the slab, i.e., 𝑥 < 0 314 

and 𝑥 > 𝐿, 𝐾3(𝑥) becomes constant. This constant is determined by the value of the graded profiles at 315 

𝑥 = 0  and 𝑥 = 𝐿 . The effective coefficients, 𝐴2(𝑥),  𝐴4(𝑥) , and 𝐴6(𝑥)  of the continuum model are 316 

chosen phenomenologically as described above. 317 

Now, we consider a plane wave with angular frequency 𝜔 incident onto the left interface of the slab. Since 318 

the surrounding has small but non-zero coefficients 𝐴4 and 𝐴6, three reflected modes exist, one with a 319 

real wavenumber, corresponding to a propagating mode, and two with complex wavenumbers, denoting 320 

evanescent modes that exponentially decay away from the interface. The total displacement field can be 321 

written as 322 

 𝑢(𝑥) = 𝑢in exp(𝑖𝑘𝑥) + 𝑅1 exp(−𝑖𝑘1𝑥) + 𝑅2 exp(−𝑖𝑘2𝑥) + 𝑅3 exp (−𝑖𝑘3𝑥) , 𝑥 ≤ 0.  (15) 323 
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The wavenumber 𝑘1 is purely real, while 𝑘2  and 𝑘3  should have positive imaginary parts to ensure 324 

exponential decay for 𝑥 < 0. The three wavenumbers all satisfy the dispersion relation 325 

 𝜔2 = 𝐴2𝑘𝑖
2 − 𝐴4𝑘𝑖

4 + 𝐴6𝑘𝑖
6  (16) 326 

for 𝑖 = 1, 2, 3. In the transmission region, we start from the displacement field 327 

 𝑢(𝑥) = 𝑇1 exp(𝑖𝑘1𝑥) + 𝑇2 exp(𝑖𝑘2𝑥) + 𝑇3 exp(𝑖𝑘3𝑥) , 𝑥 ≥ 𝐿𝑎.  (17) 328 

Here, the three wavenumbers 𝑘𝑖, 𝑖 = 1, 2, 3 are the same as in Eq. (15). In the above two expressions, 𝑅𝑖  329 

and 𝑇𝑖, 𝑖 = 1, 2, 3, are the corresponding unknown reflection and transmission coefficients for the three 330 

modes.  331 

To solve the six unknown coefficients, 𝑅𝑖  and 𝑇𝑖, 𝑖 = 1, 2, 3, wave propagation inside the non-local slab 332 

must be considered. However, due to inhomogeneous material parameters, the displacement fields 333 

cannot be constructed analytically. Here, we implement a state-space approach for solving the high-order 334 

ordinary differential equation41. 335 

We first re-write the above sixth-order ordinary differential equation (14) into the following matrix form, 336 

 
d𝐒(𝑥)

d𝑥
= 𝐏(𝑥) ⋅ 𝐒(𝑥),  (18) 337 

 𝐒(𝑥) =

(

 
 
 
 

𝑢(𝑥)

𝐴2(𝑥)𝑢′(𝑥)

𝐴4(𝑥)𝑢′′(𝑥)

𝐴6(𝑥)𝑢′′′(𝑥)

(𝐴6(𝑥)𝑢
′′′(𝑥))

′
+ 𝐴4(𝑥)𝑢′′(𝑥)

(𝐴6(𝑥)𝑢
′′′(𝑥))

′′
+ (𝐴4(𝑥)𝑢

′′(𝑥))
′
+ 𝐴2(𝑥)𝑢′(𝑥))

 
 
 
 

,  (19) 338 

 𝐏(𝑥) =

(

 
 
 
 
 

0
1

𝐴2(𝑥)
0 0 0 0

0
𝐴2
′ (𝑥)

𝐴2(𝑥)

𝐴2(𝑥)

𝐴4(𝑥)
0 0 0

0 0
𝐴4
′ (𝑥)

𝐴4(𝑥)

𝐴4(𝑥)

𝐴6(𝑥)
0 0

0 0 −1 0 1 0
0 −1 0 0 0 1

−𝑚𝜔2 0 0 0 0 0)

 
 
 
 
 

.  (20) 339 

Here, the prime symbol ′ represents the spatial derivative with respect to the coordinate 𝑥 and 𝐒(𝑥) is 340 

called the state-space vector. 341 

Next, the slab is discretized into many thin layers. The left location and right location of the 𝑗th layer are 342 

denoted as  𝑥𝑗−1  and 𝑥𝑗 , respectively. Each layer is assumed to be homogeneous with its material 343 
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parameters being evaluated at its middle, i.e., 𝐴2 ((𝑥𝑗−1 + 𝑥𝑗)/2), 𝐴4 ((𝑥𝑗−1 + 𝑥𝑗)/2), and 𝐴6 ((𝑥𝑗−1 +344 

𝑥𝑗)/2), respectively. The discretized problem will converge to the original problem with graded material 345 

parameter distribution if the discretized layers are sufficiently thin. 346 

Within the  𝑗th layer, the matrix 𝐏(𝑥) becomes a constant matrix and the Eq. (19) has an exponential 347 

solution41. Furthermore, the two state-space vectors at both ends of the thin layer have the following 348 

transfer relation,  349 

 𝐒(𝑥𝑗) = 𝐭(𝑥𝑗) ⋅ 𝐒(𝑥𝑗−1), 𝑗 = 1, 2…,  (21) 350 

with 351 

 𝐭(𝑥𝑗) = exp ((𝑥𝑗 − 𝑥𝑗−1)𝐏(
𝑥𝑗−1+𝑥𝑗

2
)).   (22) 352 

Note that the state-space vector is continuous across the interface between two adjacent thin layers. 353 

Therefore, we can apply the transfer relation Eq. (21) sequentially to obtain the transfer relation between 354 

the two state space vectors at both ends, i.e., 𝑥 = 0 and 𝑥 = 𝐿𝑎, of the slab region, 355 

 𝐒(𝐿𝑎) = 𝐓 ⋅ 𝐒(0), 𝐓 = ∏ 𝐭(𝑥𝑗)𝑗 .   (23) 356 

The two state-space vectors 𝐒(𝐿𝑎) and 𝐒(0) are also obtained from the derived displacement fields Eqs. 357 

(21) - (22) for the incidence region and transmission region. Together with the transfer relation Eq. (23), 358 

the six unknown coefficients, 𝑅𝑖  and 𝑇𝑖, 𝑖 = 1, 2, 3 can be obtained. 359 

In Fig. 6(a), we show the numerically calculated transmission results by using the above effective-medium 360 

model for a slab with relative length 𝐿/𝑎 = 9. The other chosen parameters are given in the figure caption. 361 

By comparing Fig. 3(a) and Fig. 6(a), we see that the effective model can capture the BIC behavior as well 362 

as the usual Fabry-Perot resonance qualitatively well. The BIC behavior also occurs in the frequency range 363 

where multiple eigenstates coexist (the roton part of the dispersion relation). The agreement with respect 364 

to the discrete model cannot be quantitative because the dispersion relations for the discrete model and 365 

the effective-medium model do not match exactly (Fig. 6(b)). As for previous discrete model (see Fig. 4), 366 

Figure 7 shows an enlarged view of the BIC point enclosed by the yellow box in Fig. 6(a). While the BIC 367 

point appears in both, Fig. 4(b) and Fig. 7(b), the transmission line shapes are qualitatively different. 368 

Results for different relative slab thicknesses in the effective-medium model are shown in Supplementary 369 

Figure 2. There, one can again see the trend that, as the slab thickness increases, more and more BIC 370 

points appear. 371 
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 372 

Metamaterial microstructures. So far, we have only considered a conceptual discrete mass-and-spring 373 

toy model and an effective-medium simplification thereof. This model itself can hardly be called a 374 

metamaterial. We have previously discussed that acoustic metamaterials for airborne sound can be 375 

described approximately by the mass-and-spring toy model16. Therefore, in this section, we perform 376 

numerical calculations for a slab of a specific acoustic metamaterial.  377 

Figure 8(a) illustrates the considered metamaterial for airborne sound. The metamaterial is composed of 378 

acoustical cavities (blue cylinders) and acoustical tubes (green and red pipes). Based on our previous 379 

theoretical and numerical studies16, the acoustical cavities can be treated as masses in the discrete model 380 

in Fig. 1(a), and the green (red) acoustical tubes correspond to nearest-neighbor (third-nearest-neighbor) 381 

springs. The ratio between the strength of the third-nearest-neighbor interactions and that of the nearest-382 

neighbor interactions can be tuned through the geometry parameter 𝑅3/𝑅1. The metamaterial structure 383 

shown in Fig. 10(a) forms the basis for the following calculations. Figure 8(b) exhibits a specific realization 384 

of the discrete model in Fig. 1(b) by using the illustrated nonlocal metamaterial in Fig. 8(a). The length of 385 

the metamaterial structure in Fig. 8(b) is about 𝐿 = 5𝑎. The surrounding tubes have no cut-off frequency, 386 

which is similar to the continuum model in the preceding section. Viscosity of air usually leads to losses in 387 

acoustic systems42 and can influence the high-quality-factor resonances near the expected BIC points. 388 

Therefore, in what follows, we will show and discuss numerical results with and without losses.  389 

We simulate the sound wave propagation in the metamaterial shown in Fig. 8(b) by using the commercial 390 

software COMSOL Multiphysics. A plane-wave radiation condition is applied at the bottom of the model 391 

to mimic an incident plane wave. A perfectly matched layer is employed at the top to mimic a semi-infinite 392 

transmission region with no reflections43. All other boundaries are treated as acoustic rigid boundaries23. 393 

The linear acoustic equation in frequency, 394 

  ∇ ⋅ (∇𝑝𝜔(𝐫)) = −
𝜔2

𝑐air
2 𝑝𝜔(𝐫)  (24) 395 

is solved with the above specified boundary conditions. 𝜔  again represents the excitation angular 396 

frequency, 𝑝𝜔(𝐫) is the corresponding pressure field, and 𝑐air  is the speed of sound wave in air. The 397 

transmission coefficient 𝑇 is extracted from the pressure field in the transmission region.   398 

Results for the transmission behavior of the lossless microstructured slab are given in Fig. 9. Panel (a) 399 

depicts the transmission amplitude |𝑇|  versus the wave frequency 𝜔  and the geometry parameters 400 

𝑅3/𝑅1. Panel (b) exhibits the calculated lowest phonon band for the periodic metamaterial in Fig. 9(a) for 401 
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different ratios 𝑅3/𝑅1. In the numerical simulations, we fix the radius 𝑅1 = 0.1𝑎 and vary the parameter 402 

𝑅3. In analogy to the above mass-and-spring model and continuum model, Fabry-Perot resonances are 403 

observed in Fig. 9(a). Furthermore, a BIC behavior is clearly identified within that frequency range, for 404 

which multiple Bloch wave modes coexist. Near by the BIC point, very sharp Fano resonances appear – as 405 

for the discrete model as well as for the effective-medium model (see above). 406 

In Fig. 10, we show the calculated transmission amplitude |𝑇| as in Fig. 9(a), but with losses accounted for. 407 

Here, viscous damping in the acoustic pipes is treated via the “narrow region acoustics” in COMSOL 408 

Multiphysics. A quasi-BIC behavior is still observed from the plot. Here, the resonances near the BIC points 409 

have much smaller quality factors compared to the lossless case in Fig. 10(a). Nevertheless, the behavior 410 

is qualitatively similar to that of the discrete model and that of the effective-medium model, respectively. 411 

We expect that our findings for nonlocal elastic slabs can be translated to other systems. For example, a 412 

thin film of superfluid helium, for which rotons were originally discovered, in a local surrounding should 413 

show a similar overall transmission behavior according to our intuitive interpretation. The detailed 414 

mathematical description might be quite different though. Furthermore, the nonlocal discrete mass-and-415 

spring model discussed here can be exactly mapped onto an electrical circuit composed of lumped 416 

capacitors and inductors, where the capacitors correspond to the masses and two types of inductors to 417 

the nearest-neighbor and beyond-nearest-neighbor Hooke’s springs, respectively.  418 

Finally, we note again that the minimum in the roton-like dispersion relation corresponds to an 419 

exceptional point. Furthermore, we have shown that the roton-like dispersion relation leads to BIC for a 420 

nonlocal metamaterial slab. This BIC behavior has already occurred at frequencies near to those of the 421 

roton minimum of the slab. We speculate that further interesting behavior might occur if one tunes the 422 

system parameters such that the BIC frequency coincides with that of the roton exceptional point.  423 

 424 
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Figures and Captions 453 

 454 

Figure 1. Illustration of mass-and-spring model. (a) An infinite periodic one-dimensional mass-and-spring 455 

model composed of masses (light yellow), 𝑚, connected to their nearest neighbors by Hooke’s springs 456 

(blue) with spring constant 𝐾1 and additionally connected to their 𝑁-th nearest neighbors by Hooke’s 457 

springs (red) with spring constant 𝐾𝑁. Shown is the example of 𝑁 = 3, which we emphasize in this paper 458 

because it is the smallest integer for which one obtains a roton-like minimum inside of the first Brillouin 459 

zone. The lattice constant is 𝑎. (b) A slab of such nonlocal material clad between half spaces of an ordinary 460 

local mass-and-spring model with only nearest-neighbor interactions. The slab thickness is defined by the 461 

integer ratio 𝐿/𝑎. Shown is the example of 𝐿/𝑎 = 6 and 𝑁 = 3. Note that the boundaries of the slab are 462 

smeared out in the sense that only the center mass out of the (1 + 𝐿/𝑎) masses in the slab has two third-463 

nearest-neighbor connections. The remaining six masses have only one such connection. This smearing-464 

out is an immediate consequence of the nonlocality. 465 

  466 
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 467 

Figure 2. Dispersion relations of the mass-and-spring model. (a) Surface plot of real component of 468 

frequency 𝜔 versus the real and the imaginary components of the wavenumber 𝑘 following Eq. (5). For 469 

the conditions discussed in this paper, the angular frequency 𝜔 is purely real. The wavenumber 𝑘 is also 470 

purely real for a Bloch-periodic solution of an infinite periodic model. For a finite-thickness slab (see Fig. 471 

1(b)), evanescent modes can play a role and the imaginary part of 𝑘 is generally not zero. The imaginary 472 

part of the complex-valued angular frequency 𝜔 is shown by the false-color scale. Only the positive parts 473 

of the real and imaginary components of the wavenumber are shown here as the corresponding negative 474 

parts can be obtained by mirror symmetry. The four highlighted black lines on the surface lead to purely 475 

real angular frequency 𝜔. Among them, one corresponds to purely real wavenumber and the other three 476 

correspond to complex wavenumbers in the range of Re(𝑘) > 0. For a normalized frequency of 𝜔/𝜔0 =477 

1.0, in between the local maximum and roton minimum, three real wavenumbers (see the three gray dots) 478 

can be obtained from the dispersion relation. For 𝜔/𝜔0 = 0.2  below the roton minimum, a real 479 

wavenumber and a pair of complex conjugate wavenumber are obtained (see two yellow dots). 480 

Parameters are 𝐾3/𝐾1 = 1.0  and the normalization frequency is 𝜔0 = √4𝐾1/𝑚 . (b) Parameters 481 

corresponding to the critical case without roton minimum in the dispersion relation, i.e., 𝑚 = 1 and 482 

 𝐾3/𝐾1 = 1/3. Note that still three solutions for the complex-valued 𝑘 in the range of Re(𝑘) > 0 occur at 483 

a given angular frequency 𝜔. 484 

 485 

  486 
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 487 

Figure 3. Phonon transmission results of the mass-and-spring model. (a) Calculated transmission 488 

amplitude |𝑇(𝜔)| of the discrete nonlocal mass-and-spring-model slab (see Fig. 1(b)) shown on a gray 489 

scale versus 𝜔 and 𝐾3/𝐾1. In the hatched region above the cut-off frequency 𝜔/𝜔0 = 1.0, waves cannot 490 

propagate in the surrounding medium. “FP” denotes Fabry-Perot resonances, “BIC” bound-states-in-the-491 

continuum points. Note the Fano-type line shapes of |𝑇(𝜔)| near the BIC points. Two “BIC” points are 492 

indicated. A zoom into one of them (see yellow box) is shown in Fig. 4(a). The normalization frequency is 493 

𝜔0 = √4𝐾1/𝑚 . Parameters are: 𝑚 = 1 , 𝐿/𝑎 = 9 . (b) Illustration of the corresponding dispersion 494 

relations of the slab region for purely real 𝜔 and purely real 𝑘 for different ratios of 𝐾3/𝐾1.  495 

 496 

  497 
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 498 

Figure 4. Zoomed-in view of the BIC and sharp resonances. (a) Zoomed-in view of the bound-states-in-499 

the-continuum (BIC point) highlighted by the yellow box in Fig. 3(a). (b) Cuts through the data in panel (a) 500 

at three selected ratios 𝐾3/𝐾1  (see dashed vertical lines in (a)). Extremely sharp resonance versus 501 

frequency 𝜔 occur for parameters close to the BIC point (yellow and purple curves). At the BIC point (red 502 

curve), the sharp resonance disappears as incident waves strictly do not couple to the BIC. 503 

 504 

  505 
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 506 

Figure 5. Illustration of the effective-medium model. (a) Discrete system with slab thickness 𝐿.  𝐿 = 9𝑎 507 

is used as an example. (b) Scheme of the continuum model composed of the slab region and the two semi-508 

infinite surroundings. The slab is further decomposed into a central uniform region, i.e., 3𝑎 < 𝑥 < 𝐿 −509 

3𝑎, and two graded regions, i.e., 0 < 𝑥 < 3𝑎, and 𝐿 − 3𝑎 < 𝑥 < 𝐿. The graded regions represent smooth 510 

transitions of the effective parameters to those in the two surroundings. In the region of 0 < 𝑥 < 3𝑎, a 511 

function that increases smoothly from an extremely small value to a finite value is assumed for 𝐾3(𝑥), 512 

indicating the third-nearest-neighbor constants. 𝐾3(𝑥)  for 𝐿 − 3𝑎 < 𝑥 < 𝐿  is obtained from mirror 513 

symmetry of the system. For the central uniform part of the slab, i.e., 3𝑎 < 𝑥 < 𝐿 − 3𝑎, and the two 514 

surroundings, i.e., 𝑥 < 0  and 𝑥 > 𝐿 , 𝐾3(𝑥)  becomes constant and is obtained from continuity. The 515 

parameter 𝐾1(𝑥)  is assumed to be constant throughout the 1D system, 𝐾1(𝑥) = 1 . The effective 516 

parameters of the continuum model are constructed from the two spring constants 𝐾1(𝑥) and 𝐾3(𝑥), i.e., 517 

from 𝐴2(𝑥) = 𝐾1(𝑥) + 9𝐾3(𝑥), 𝐴4(𝑥) = 6𝐾3(𝑥), and 𝐴6(𝑥) = 𝐾3(𝑥), respectively. 518 
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 520 

Figure 6. Phonon transmission results for the phenomenological effective-medium model rather than 521 

the discrete mass-and-spring model. (a) Phonon transmission results. Parameters are 𝐿 = 9𝑎  and 522 

𝐾3(𝑥)/𝐾1 = 1 − 1/(1 + exp(2(𝑥 − 3𝑎/2))) for 0 < 𝑥 < 3𝑎. The assumed 𝐾3(𝑥) ensures that the two 523 

surrounding regions exhibit extremely small non-local stiffness parameters (about two orders of 524 

magnitude smaller than for the slab). (b) Dispersion relations for the effective-medium model (solid 525 

curves). The dashed curves correspond to the data in Fig. 3(b) for the discrete mass-and-spring model and 526 

can be compared directly to the effective-medium model.  527 

 528 

  529 
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 530 

Figure 7. Zoomed-in view of the BIC and sharp resonances. (a) Zoomed-in view of the bound-states-in-531 

the-continuum (BIC) point highlighted by the yellow box in Fig. 6(a). (b) Cuts through the data in panel (a) 532 

at three selected ratios 𝐾3/𝐾1 (see dashed vertical lines in (a)). 533 

 534 

  535 
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 536 

Figure 8. Illustration of the considered 3D acoustical metamaterial for airborne sound. (a) Infinite 537 

periodic metamaterial with non-local interactions. The metamaterial is composed of acoustical cavities 538 

(yellow cylinders) and acoustical channels (blue and red pipes). Colors are for illustration only, all parts 539 

represent voids for air. The yellow cylinders, with height ℎ and diameter 𝑑, correspond to masses in the 540 

discrete mass-and-spring model, and the blue (red) pipes, with diameter 2𝑅1  (2𝑅3 ), represent the 541 

nearest-neighbor interactions (third-nearest-neighbor interactions). The helix part of the red pipes has a 542 

major radius, 𝐷/2. (b) A specific realization of the discrete model in Fig. 1(b) by using the metamaterial 543 

structure in (a). The two semi-infinite pipes at both ends represent the surrounding. Therefore, the 544 

surrounding medium has no cut-off frequency, analogous to the effective-medium model shown in Fig. 6. 545 

Geometry parameters are: ℎ = 0.5𝑎, 𝑑 = 0.6𝑎, 𝐷 = 1.5𝑎, 𝑅1 = 0.1𝑎, and 𝑎 = 0.1 m, respectively. For 546 

air, we choose the sound velocity 𝑐air = 343 m s
−1 and the mass density 𝜌air = 1.29 kg m

−3. 547 
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 549 

Figure 9. Phonon transmission results of the designed metamaterial. (a) Numerically obtained 550 

transmission spectrum |𝑇| for the metamaterial structure shown in Fig. 8(b) versus exciting frequency 551 

𝜔/(2𝜋)  and versus the ratio 𝑅3/𝑅1 . Damping is neglected. The bound-states-in-the-continuum (BIC) 552 

point is marked by the red arrow. (b) Calculated phonon dispersion relation for three selected ratios 553 

𝑅3/𝑅1 (see legend). The lowest acoustic band exhibits a pronounced roton-like behavior. For comparison, 554 

the dispersion relation of the surrounding (a straight line) is depicted by the black solid curve. 555 
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 557 

Figure 10. Numerically obtained transmission spectrum |𝑻| with viscous damping in the acoustic pipes 558 

is accounted for. As a result, the resonances around the BIC point are smeared out, but the overall 559 

qualitative behavior remains unchanged. 560 

 561 
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