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Abstract: Metamaterials are artificial materials in which the atoms of ordinary solids are 

replaced by tailored functional building blocks. Therefore, previous work has emphasized 

tailoring the inside of the building blocks, for example by exploiting local resonances, to realize 

unusual effective metamaterial properties. However, the wave properties of a metamaterial are 

not only determined by its building blocks but also by the interactions between these building 
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blocks. Here, reconfigurable “plug-and-play” electromagnetic metamaterials are introduced for 

which the building blocks are essentially trivial standard BNC connectors and the effective 

metamaterial properties are solely achieved by tailoring the local and especially the nonlocal 

interactions mediated by standard coaxial cables. Unprecedented dispersion relations of the 

lowest band with multiple regions of slow waves and backward waves are demonstrated. 

Importantly, the dispersion relation of such metamaterials dominated by nonlocal interactions 

is not limited by the principle of causality in the same way as for metamaterials designed by 

local resonances of building blocks. 
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1. Introduction 

In metamaterials, the atoms of ordinary materials are replaced by designed functional 

building blocks that can be arranged periodically in analogy to atoms in a crystal. In addition, 

the building blocks clearly need to be connected by some sort of interaction to support wave 

propagation. Designing local resonances of the building blocks combined with simple 

interactions has led to a large variety of optical,[1,2] mechanical,[3,4] and acoustical 

metamaterials[5,6] with interesting wave properties, which can be expressed by the wave’s 

dispersion relation 𝜔(𝑘), i.e., by the dependence of the wave’s angular frequency 𝜔 versus its 

wavenumber 𝑘. However, whatever the specific design may be, the frequency dependence of 

the metamaterial’s response function must obey causality, i.e., an action at time 𝑡0 only leads 

to reactions at future times 𝑡 > 𝑡0. Mathematically, causality leads to fundamental restrictions 

of the real and imaginary parts of the response function via the Kramers-Kronig relations.[7] 

These restrictions concern the possible bandwidth of targeted effective properties and the 

connection to unavoidable losses or damping in the vicinity of the local resonances. These 

restrictions have, for example, been discussed in great detail for the case of metamaterials with 

negative[8-10] and zero[11,12] effective refractive index.  

Here, we follow the polar opposite design paradigm for tailoring the dispersion relation 

𝜔(𝑘) of electromagnetic metamaterials for the lowest band. We consider essentially trivial and 

conceptually point-like building blocks (BNC cable connectors) without any resonances in the 

relevant frequency regime and rather design the metamaterial dispersion relation by tailoring 

the local and nonlocal interactions among these building blocks in real space by using coaxial 

cables with designed cable lengths between nodes. In Fourier space this means that we tailor 

the effective wavenumber dependence (“spatial dispersion”) of the metamaterial response 

function rather than its frequency dependence directly. We nickname such reconfigurable 

“plug-and-play” metamaterials based on networks of coaxial cables cable-network 

metamaterials.  

Nonlocality in electromagnetism[13-19] is distinct from Bragg resonances as, e.g., used in 

photonic crystals.[20] Our present builds on networks of waveguides exhibiting spatial 

dispersion in electromagnetism[21,22] and acoustics.[23,24] Networks of coaxial cables as 

waveguides have recently been used in the context of non-Abelian topological charges and edge 

states in metamaterials.[25] Why coaxial cables? In our design approach, one first needs to decide 

on how to realize the local and nonlocal interactions among the conceptually point-like building 

blocks of the metamaterial. At first sight, any waveguide appears suitable. However, we ideally 

want the waveguide to be loss-free and broadband. In particular, we do not want any cut-off 
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frequency of the waveguide as this would, from the start, prohibit tailoring of the dispersion 

relation from zero frequency upwards. Furthermore, it is highly desirable that the waveguide 

supports only a single mode over the entire bandwidth. Otherwise, a waveguide of a certain 

length 𝑙 supporting a certain number of modes would represent not just a single fixed interaction 

but rather an interaction that depends on how the incident field exactly couples into the 

waveguide. A possible choice for the waveguides are standard coaxial cables (see Figure 1) 

with a wave impedance of 50 Ω and a wave speed of about 2/3 of the vacuum speed of light 

from zero frequency to some Gigahertz.[26] Wave propagation losses are typically as low as 

some 0.01 dB/m.[26] The electric field of the single propagating mode is radially polarized and 

is concentrated to the region between the two concentric cylindrical metallic conductors. This 

region is typically filled with a dielectric, serving as a spacer and holder. Conceptually, this 

region could be filled by vacuum. If the metal acts like a perfect electric conductor, the 

properties of this coaxial waveguide would be strictly frequency independent in the considered 

regime. Nevertheless, the finite wave speed means that the interaction mediated by a coaxial 

cable must obey the principle of causality, leading to a generalized form of the Kramers-Kronig 

relations[27,28] for frequency- and wavenumber-dependent response functions. 

 

2. Dispersion bands of nonlocal cable-network metamaterials 

Figure 1 schematically illustrates an example of a cable-network metamaterial built from 

coaxial cables and BNC connectors. For simplicity, we depict an arrangement that is periodic 

along only the 𝑥-direction, with period or lattice constant 𝑎. Cables with length 𝑙1 connect the 

nearest-neighbor connection points, cables with length 𝑙𝑁 connect 𝑁-th (𝑁 = 2, 3, …) nearest 

neighbors. We have obtained (for derivation see Supporting Information Note 1) the dispersion 

relation 𝜔𝑖(𝑘)  ( 𝑖 = 1, 2, … ) of the cable network metamaterial by considering its Bloch 

periodicity and Kirchhoff’s law of current continuity at the connection nodes from the analytical 

implicit equation  

cos (𝑁𝑘𝑎) − cos (𝜔𝑖
𝑙𝑁

𝑐𝑁
)

𝑍𝑁 sin (𝜔𝑖
𝑙𝑁

𝑐𝑁
)

+
cos(𝑘𝑎) − cos (𝜔𝑖

𝑙1

𝑐1
)  

𝑍1 sin (𝜔𝑖
𝑙1

𝑐1
)

= 0.                                                      (1) 



  

5 

 

 

Figure 1. Illustration of a metamaterial composed of a network of coaxial cables. Rendered 

scheme of a one-dimensional periodic arrangement of building blocks (BNC connectors) with 

period 𝑎 along the 𝑥-direction. Adjacent building blocks are connected by coaxial cables of 

length 𝑙1 (local connections, blue). In addition, the 𝑁-th nearest neighbors are connected by 

coaxial cables of length 𝑙𝑁  (nonlocal connections, red). The case of 𝑁 = 2 is shown as an 

example. Note that the geometrical arrangement of the cables within one unit cell is irrelevant. 

It is only the ratio 𝑙1/𝑙𝑁 and the order of nonlocal interaction 𝑁 which determine the shape of 

the dispersion relation of the waves propagating along the 𝑥-direction within the metamaterial 

(see Figure 2 and 3). One inset is a magnified view onto one BNC connector. The other inset 

shows an oblique view onto a cut single coaxial cable composed of two concentric metal 

cylinders (gray) and its radially polarized electric-field lines (green). The coaxial cable is one 

example for a frequency independent broadband low-loss single-mode electromagnetic 

waveguide.  

Causality, which demands that an action on one end of a cable at one point in time leads 

to a time delayed future response at the other end that is compatible with the theory of relativity, 

is fulfilled via the finite cable wave speeds 𝑐1 and 𝑐𝑁. Clearly, the lattice constant 𝑎 merely 

scales the wavenumber axis 𝑘. For identical cables, the impedances are equal, 𝑍1 = 𝑍𝑁 = 𝑍, 

and drop out. We further have 𝑐1 = 𝑐𝑁 = 𝑐. The choice of 𝑐 merely scales the frequency axis. 

The cable length 𝑙1 scales the frequency axis as well, such that only the dimensionless cable-

length ratio 𝑙1/𝑙𝑁 effectively determines the qualitative shape of the band structure. In general, 

the band structure contains one lowest “acoustical” (𝑖 = 1) branch and many “optical” (𝑖 =

2, 3, …) branches because a cable has more than one degree of freedom as the instantaneous 
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voltage along the cable axis is not necessarily constant. Figure 2 shows calculated band 

structures for the examples of 𝑁 = 2 (top row), 𝑁 = 4 (middle row), and 𝑁 = 6 (bottom row). 

The columns of the resulting “matrix” of panels in Figure 2 correspond to different ratios 𝑙1/𝑙𝑁 

as indicated. 

 

Figure 2. Calculated band structures of the cable-network metamaterial. We consider the 

dispersion relation 𝜔𝑖(𝑘) = 𝜔𝑖(−𝑘), with integer band index 𝑖 = 1, 2, …, of the cable-network 

metamaterial composed of nearest-neighbor and 𝑁-th nearest-neighbor interactions (cf. Figure 

1). The integer 𝑁 and the cable-length ratio 𝑙1/𝑙𝑁 determine the shape of the dispersion relation. 

The subpanels of this figure are arranged in form of a matrix. The three rows of this matrix 

correspond to 𝑁 = 2, 𝑁 = 4, and 𝑁 = 6. The three columns of this matrix correspond to the 

ratios 𝑙1/𝑙𝑁 =  0.01, 1/𝑁, and 1.35, respectively, at fixed 𝑙1 = 130 cm. For 𝑙1/𝑙𝑁 = 1.35 (cf. 

Figure 3), the lowest band 𝜔1(𝑘) exhibits multiple regions of slow and negative group velocity, 

equivalent to a negative refractive index for negligible losses. The band structure of the cable 

network 𝜔𝑖(𝑘) (black curves) results from a hybridization of the “bare” dispersion relations of 
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having only the local cables (blue curves) and those of having only the nonlocal cables (red 

curves). 

To obtain an intuitive understanding, we compare the dispersion relation of the nonlocal 

cable-network metamaterial with the “bare” dispersion relation for having only the local cables 

and that of having only the nonlocal cables. These are given by 𝜔 = 𝑣1𝑘 with wave speed 𝑣1 =

𝑐𝑎/𝑙1, and 𝜔 = 𝑣𝑁𝑘 with wave speed 𝑣1 = 𝑐𝑁𝑎/𝑙𝑁, respectively. Both are slowed down with 

respect to a straight cable (𝜔 = 𝑐𝑘) due to the geometrical detour of the cables (cf. Figure 1, 

also Figure S1) with respect to a straight connection between the connectors, analogous to the 

slowing down in labyrinthine metamaterials.[29] For the particular case of 𝑙1/𝑙𝑁 = 1/𝑁, the two 

bare wave speeds are identical, 𝑣1 = 𝑣𝑁. For all panels in Figure 2, we plot the bare local 

dispersion relation in blue and that of the bare nonlocal dispersion in red within the first 

Brillouin zone with |𝑘| ≤ 𝜋/𝑎. For the bare nonlocal dispersion relation (for which the first 

Brillouin zone is smaller and given by |𝑘| ≤ 𝜋/(𝑁𝑎)), we can add/subtract reciprocal lattice 

vectors according to 𝑘 → ±𝑚 2𝜋/(𝑁𝑎) with integer 𝑚. In each of the cases depicted in Figure 

2, the dispersion relation of the cable network (black curves) is a hybridization of these bare 

dispersion relations. In the limit of long nonlocal cables, 𝑙1/𝑙𝑁 ≪ 1, a stop band evolves, similar 

to a photonic crystal[20] or the hybridization of a local resonance with a propagating mode.[3] In 

the special case of 𝑙1/𝑙𝑁 = 1/𝑁, the first and the second band cross. In the most interesting 

case of short nonlocal cables, 𝑙1/𝑙𝑁 > 1 (to be used in the below experiments), the first and the 

second band exhibit a pronounced avoided crossing, leading to multiple maxima and minima 

of the lowest band 𝜔1(𝑘) versus 𝑘, with regions of negative group velocity 𝑣group = d𝜔/d𝑘 

in between. The effect of nonzero cable propagation losses is discussed in the Supporting 

Information (see Supporting Information Note 2 and Figure S2). 

 

3. Experiment results 

In our experiments, we choose 𝑎 = 5 cm , 𝑙1 = 130 cm = 26 × 𝑎 , 𝑙𝑁 = 96 cm, hence 

𝑙1/𝑙𝑁 = 1.35, and a total of 40 metamaterial unit cells, i.e., the total metamaterial length is 

40 × 𝑎 = 2 m. Different values of 𝑁 can simply be obtained by rearranging the cables in a 

“plug-and-play” manner. Different interaction strengths could be realized by different cable 

lengths. Photographs of the setup are shown in Figure S3 and S4. We excite the cable-network 

metamaterial by a sinusoidal voltage signal with about 1 V amplitude at angular frequency 𝜔 

from a function generator (Keysight, 33600A) connected to the left-hand side end of the 

metamaterial. The right-hand side end is terminated by a 50 Ω resistor, which is impedance-

matched to the 50 Ω coaxial cables. The T-connectors in the nearest-neighbor cables at the top 
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allow us to measure the voltage 𝑈𝑗(𝑡) (𝑗 = 1, 2, … , 40) at a point in each metamaterial unit cell 

by means of a fast digital oscilloscope (Siglent, SDS5054X). We use an identical 10 cm short 

BNC cable to connect to the oscilloscope for all unit cells (i.e., the oscilloscope needs to be 

moved for the different 𝑗 ). The oscilloscope is independently triggered by the function 

generator. The complex-valued Fourier components, �̃�𝑗(𝜔), at frequency 𝜔, is extracted from 

𝑈𝑗(𝑡). Fourier transformation of the  �̃�𝑗(𝜔) with respect to the real-space position 𝑥 = 𝑗𝑎 

yields the wavenumber 𝑘. The resulting modulus of the measured amplitude |�̃�(𝜔, 𝑘)| provides 

us with the metamaterial electromagnetic band structure – just like the scattering amplitude in 

inelastic neutron scattering on ordinary solids provides one with the phonon band structure.  

 

Figure 3. Measured cable-network metamaterial dispersion relations. The amplitudes  

|�̃�(𝜔, +𝑘)| ≡ |�̃�(𝜔, −𝑘)| shown on a normalized false-color scale are obtained from a double 

Fourier transform of the measured voltage signals 𝑈𝑗(𝑡) at the spatial positions 𝑥 = 𝑗𝑎  with 

𝑗 = 1, … , 40 on a metamaterial (cf. Figure 1) with 40 unit cells. The underlying raw data are 

depicted in Figure S5. Shown in the six panels are the six examples of 𝑁 = 1, 2, 3, 4, 5, and 6. 

The black solid curves are the band structures calculated for an infinitely periodic and lossless 

metamaterial (see Figure 1) for the same parameters as in Figure 2. 

Experimental results for 𝑁 = 1, 2, 3, 4, 5,  and 6  are shown in Figure 3. Herein, the 

amplitude |�̃�(𝜔, 𝑘)|  extracted from the experiment is shown on a false-color scale. Only 
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positive wavenumbers are shown due to the symmetry |�̃�(𝜔, +𝑘)| ≡ |�̃�(𝜔, −𝑘)|. Frequency 

𝜔/(2𝜋) has been varied in equidistant steps of 2 MHz. The 40 steps in wavenumber with step 

width Δ𝑘 = 2𝜋/(40 × 𝑎) immediately result from the finite number of 40 metamaterial unit 

cells. The additionally shown gray curves are the band structures obtained from the above 

implicit analytical formula for the cable-network metamaterial for infinitely many unit cells and 

for zero losses. Herein, the cable lengths are directly taken from the experiment and include the 

lengths added to the coaxial cables by the BNC cable connectors. Obviously, the overall 

agreement between theory and experiment is excellent, even for the extremely complex 

dispersion relation of the lowest band for 𝑁 = 6, for which we find three maxima and three 

minima of 𝜔1(𝑘) versus 𝑘 within the first Brillouin zone with |𝑘| ≤ 𝜋/𝑎.  

 

Figure 4. Effective metamaterial refractive indices. The refractive-index spectra 𝑛(𝜔) =

�̃�(𝑘(𝜔)) are deduced from the six data sets shown in Figure 3. At many frequencies 𝜔, modes 

with positive and negative refractive index coexist. 

Finally, from the calculated or measured dispersion relations of the lowest band 𝜔1(𝑘), 

we can immediately infer the effective refractive index 𝑛(𝜔) = �̃�(𝑘(𝜔))  (see Supporting 

Information Note 3). The result shown in Figure 4 for the same examples as in Figure 3 is 

multi-valued. In particular, it contains broad regions of negative refractive index, conceptually 

at zero loss, that have become possible due to using nonlocality for design and that would not 

be possible by using only local resonances, due to causality. 
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4. Conclusion 

We have introduced periodic electromagnetic metamaterials based on networks of coaxial 

cables and standard BNC connectors as a reconfigurable plug-and-play platform to obtain 

unprecedented effective electromagnetic wave’s dispersion relations of the lowest band by 

using nonlocality as a design tool. We emphasize that nonlocality is conceptually distinct from 

both, local resonances and Bragg reflections, which have previously been the main paths to 

artificial materials with interesting properties. Technologically, the presented system is 

extremely simple, such that it could well serve for educational purposes in university classes 

and schools. Scientifically, we foresee many possible future research avenues, including 

nonlocal interactions in higher spatial or synthetic dimensions, topological architectures, 

miniaturization towards optical frequencies, and hybrids of nonlocality and local resonances. 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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A “plug-and-play” reconfigurable metamaterial platform based on standard coaxial cables and 

BNC connectors is proposed. Particularly, interesting nonlocal effects can be straightforwardly 

implemented through coupling unit cells in the metamaterial to their beyond-nearest-neighbors 

via coaxial cables. As examples, metamaterials with nonlocal interaction from 2rd order to 6th 

order are assembled and highly unusual dispersion relations from metamaterials with only local 

interactions are experimentally demonstrated. 
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Note 1. Derivation of cable-network band structure 

We derive the band structure for finite propagation losses 𝛾 of the coaxial cables. To obtain 

the formula given in the main paper, one can simply set 𝛾 = 0. The case of 𝛾 ≠ 0 prepares us 

for the next section of the Supporting Information. 

We consider the model schematically shown in Figure S1 (also see Figure 1 of main paper) 

for the non-local cable-network metamaterial. The connectors in the cable-network 

metamaterials are orders of magnitude smaller than the corresponding wavelength. Therefore, 

we consider them as point-like objects, as indicated by the black dots in Figure 1. The connector 

at lattice site 𝑗  is linked to the connectors at the neighboring sites 𝑗 + 1 and 𝑗 − 1 through 

cables. Furthermore, we introduce 𝑁th order interactions through cables that link the connector 

at site 𝑗 and the connectors at sites 𝑗 − 𝑁 and 𝑗 + 𝑁. For the cables mediating the 1st order 

(local) interactions and the 𝑁th order (nonlocal) interactions, we assume the lengths 𝑙1 and 𝑙𝑁, 

the wave impedances 𝑍1  and 𝑍𝑁 , and the cable wave speeds 𝑐1  and 𝑐𝑁 . All the cables are 

assumed to have the same loss factor 𝛾 as indicated below. The lattice constant or period along 

the horizontal direction is denoted as 𝑎.  

mailto:yi.chen@partner,kit.edu
mailto:martin.wegener@kit.edu
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Figure S1. Scheme of the cable-network metamaterials (also see Figure 1). The black dots 

indicate point-like connectors. Each connector is connected to its immediate neighbor 

connectors to the left and right at a distance 𝒂 via cables (red lines) with length 𝒍𝟏. In addition, 

each connector is connected to its 𝑵𝐭𝐡-nearest neighboring connectors to the left and right, 

respectively, at a distance 𝑵𝒂 via the cables (blue lines) with length 𝒍𝑵. Here, 𝑵 = 𝟐 serves as 

an example. Note that the spatial period of the structure is 𝒂. 

We denote the voltage of the point-like connector at lattice site 𝑗  as 𝑉𝑗 , with 𝑗 =

−∞, … , −1, 0, +1, … , ∞. We model the wave propagation on an individual cable following 

transmission line theory.[1] The voltage distribution along the cable that links the two lattice 

sites 𝑗 and site 𝑗 + 1 is given by 

 𝑉𝑗
(1)(𝑠) = 𝐴𝑗

+exp(i𝑘1𝑠) + 𝐴𝑗
−exp(−i𝑘1𝑠), (S1) 

with 𝑘1 = 𝜔/𝑐1 + i𝛾  being the complex wave number. The parameter 𝑠  represents the 

propagation coordinate along the cable, with 𝑠 = 0 and 𝑠 = 𝑙1 corresponding to the lattice site 

𝑗 and lattice site 𝑗 + 1, respectively. 𝐴𝑗
+ and 𝐴𝑗

− are the complex amplitudes of the forward and 

backward propagating waves in the cable. The voltages of the cable ends are equal to the 

voltages at the point-like connectors. This leads us to 

 𝑉𝑗
(1)(0) = 𝑉𝑗, (S2) 

 𝑉𝑗
(1)(𝑙1) = 𝑉𝑗+1. (S3) 

Furthermore, we have the relation from Bloch’s theorem 

 𝑉𝑗+1 = 𝑉𝑗exp (i𝑘𝑎), (S4) 

where 𝑘 represents the Bloch wave number. From Equation (S2) - (S4), we obtain the two 

coefficients 𝐴𝑗
+ and 𝐴𝑗

− as 
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𝐴𝑗
+ =

exp (i𝑘𝑎) − exp (−i𝑘1𝑙1)

exp (i𝑘1𝑙1) − exp (−i𝑘1𝑙1)
𝑉𝑗,                                                                                      (S5) 

𝐴𝑗
− =

exp (i𝑘1𝑙1) − exp (i𝑘𝑎)

exp (i𝑘1𝑙1) − exp (−i𝑘1𝑙1)
𝑉𝑗.                                                                                      (S6) 

Next, the current distribution along the cable that links the sites 𝑗 and 𝑗 + 1 is obtained from 

𝐼𝑗
(1)(𝑠) =

1

𝑍1
(𝐴𝑗

+exp(i𝑘1𝑠) − 𝐴𝑗
−exp(−i𝑘1𝑠)),                                                                   (S7) 

with the complex wave number 𝑘1 = 𝜔/𝑐1 + i𝛾 and the impedance of the local cables 𝑍1as 

introduced above.  

Likewise, we derive the voltage and current distribution along the nonlocal cable that links the 

connectors at lattice sites 𝑗 and 𝑗 + 𝑁 

𝑉𝑗
(𝑁)(𝑠) = 𝐵𝑗

+exp(i𝑘𝑁𝑠) + 𝐵𝑗
−exp(−i𝑘𝑁𝑠),                                                                          (S8) 

𝐼𝑗
(𝑁)(𝑠) =

1

𝑍𝑁
(𝐵𝑗

+exp(i𝑘𝑁𝑠) − 𝐵𝑗
−exp(−i𝑘𝑁𝑠)),                                                                 (S9) 

𝐵𝑗
+ =

exp (i𝑁𝑘𝑎) − exp (−i𝑘𝑁𝑙𝑁)

exp (i𝑘𝑁𝑙𝑁) − exp (−i𝑘𝑁𝑙𝑁)
𝑉𝑗,                                                                                  (S10) 

𝐵𝑗
− =

exp (i𝑘𝑁𝑙𝑁) − exp (i𝑁𝑘𝑎)

exp (i𝑘𝑁𝑙𝑁) − exp (−i𝑘𝑁𝑙𝑁)
𝑉𝑗,                                                                                  (S11) 

with the complex wave number 𝑘𝑁 = 𝜔/𝑐𝑁 + i𝛾  and the wave impedance of the nonlocal 

cables 𝑍𝑁 as introduced above. 

Next, we analyze the current flow to the point-like connector at lattice site 𝑗. The current 

that flows away from the connector at lattice site 𝑗 to lattice site 𝑗 + 1 is given by 𝐼𝑗
(1)(0). The 

current that flows into the connector at lattice site 𝑗  from the lattice site 𝑗 − 1  is 

𝐼𝑗
(1)(𝑙1) exp(−i𝑘𝑎). The exponential factor exp(−i𝑘𝑎) stems from Bloch’s theorem. Likewise, 

the current that flows away from the connector at lattice site 𝑗 to the lattice site 𝑗 + 𝑁 is given 

by 𝐼𝑗
(𝑁)(0) and the one that flows into the connector at lattice site 𝑗 from lattice site 𝑗 − 𝑁 is 

given by 𝐼𝑗
(𝑁)(𝑙𝑁) exp(−i𝑁𝑘𝑎). By further applying Kirchhoff's current continuity law to the 

connector at lattice site 𝑗, we obtain  

 𝐼𝑗
(1)

(0) − 𝐼𝑗
(1)(𝑙1)exp(−i𝑘𝑎) + 𝐼𝑗

(𝑁)
(0) − 𝐼𝑗

(𝑁)
exp(−i𝑁𝑘𝑎) = 0. (S12) 
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We note that Kirchhoff's voltage law (energy conservation) is implicitly included in the above 

assumption for the voltages. From Equation (S12), we obtain the implicit equation for the cable-

network metamaterial dispersion relation  

cos(𝑁𝑘𝑎) − cos(𝜔𝑙𝑁/𝑐𝑁 − i𝛾𝑙𝑁)

𝑍𝑁 sin(𝜔𝑙𝑁/𝑐𝑁 − i 𝛾𝑙𝑁)
+

cos(𝑘𝑎) − cos(𝜔𝑙1/𝑐1 − i𝛾𝑙1)

𝑍𝑁 sin(𝜔𝑙1/𝑐1 − i 𝛾𝑙1)
= 0.            (S13) 

For the case of zero losses, 𝛾 = 0, the dispersion relations 𝜔 = 𝜔𝑖(𝑘) with integer band index 

𝑖 = 1, 2, … shown in Figure 2 and 3 have been obtained by numerical solution of Equation (S13). 

The case of 𝛾 ≠ 0 is discussed next. 
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Note 2. Cable-network band structure in the presence of finite losses 

In the main paper, we have considered the ideal case of lossless cables. The experiments 

reported in the main paper come fairly close to this ideal. Nevertheless, it is interesting to ask 

what the effect of finite losses would be, e.g., due to propagation losses in the coaxial cables. 

In the preceding section, we have derived the general mathematical background for finite losses, 

i.e., for 𝛾 ≠ 0. 

 

Figure S2. Calculated band structures of the cable-network metamaterial with finite losses. (a) 

- (f) correspond to 𝑵 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, and 𝟔. The cable lengths and all other parameters are the 

same as for Figure 3 in the main paper, but the loss parameters 𝜸 in Equation (S13) is not zero 

and rather chosen to be 𝜸 = 𝟎. 𝟎𝟏𝟓 𝐦−𝟏. The black curves are solutions of Equation (S13) for 

which the frequency is purely real-valued. This frequency is plotted versus the real part of the 

complex Bloch wavenumber 𝒌. To allow for a direct comparison, the band structure for 𝜸 = 𝟎 

is shown by the gray curves (also cf. Figure 3).  

In Figure S2, we plot the resulting dispersion relations for the same parameters as in Figure 

2 of the main paper, but for a finite loss of 𝛾 = 0.015 m−1. This value corresponds to an 

attenuation of 0.13 dB/m, comparable to losses in common coaxial cables at a frequency of 

100 MHz. It becomes obvious that the modifications of the dispersion relation emerge from the 

maxima and minima of the dispersion relation. This is expected as the extrema are exceptional 

points.[2]  
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Note 3. Obtaining the effective refractive index 

In the absence of losses, the refractive index �̃�(𝑘) is real-valued. Its modulus results from 

the dispersion relation 

�̃�2(𝑘) = 𝑐2  
𝑘2

𝜔1
2(𝑘)

,                                                                                                          (S14) 

with 𝑐 being the speed of wave in the coaxial cables. If the phase velocity and the Poynting 

vector are parallel (antiparallel), the sign of the refractive index is positive (negative). In the 

absence of losses, the Poynting vector and the group-velocity vector point in the same direction. 

Therefore, for our conditions, the sign of the refractive index is identical to the sign of the slope 

d𝜔/d𝑘 in the dispersion relations 𝜔(𝑘) shown in Figure 3. From parametrically plotting 𝜔1(𝑘) 

on the horizontal axis and �̃�(𝑘) for positive 𝑘 on the vertical axis of a figure, one gets the 

dependence of the refractive index on frequency, 𝑛(𝜔) = �̃�(𝑘(𝜔)), which is multi-valued as 

illustrated in Figure 4 of the main paper for the same examples as in Figure 3. In particular, it 

contains broad regions of negative refractive index – conceptually at zero loss. We emphasize 

that the frequency dependence of the refractive index in Figure 4, which is due to nonlocal 

interactions, is qualitatively distinct from that one gets for local resonances. 
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Figure S3. Photograph of experiment setup. The left-hand side of the metamaterial is connected 

to a function generator and its right-hand-side end is terminated by a 𝟓𝟎 𝛀 resistor (see lower 

right-hand side inset). During the experiment, we measure the voltages at the top BNC T-

connectors (also cf. Figure 1) by successively connecting them to a digital oscilloscope via a 

𝟏𝟎 𝐜𝐦 short cable. Furthermore, we connect another channel of the digital oscilloscope directly 

to the function generator to synchronize the measurement while taking data at the different T-

connectors. A cable-network metamaterial with 𝑵 = 𝟐 (see the yellow line in lower left-hand 

side inset) is used as an example here, as in Figure 1 of the main paper. 
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Figure S4. Photographs of considered metamaterials. (a) - (f) correspond to 𝑵 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 

and 𝟔 (also cf. Figure S3). Band structures measured on these six samples are depicted in Figure 

3 of the main paper. 

  



  

22 

 

 

Figure S5. Real-space raw data corresponding to the band structures shown in Figure 3. (a) - 

(f) Measured voltage amplitude versus lattice site 𝒋 = 𝒙/𝒂 and frequency for 𝑵 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓,  

and 𝟔. The dispersion relations shown in Figure 3 have been derived by a spatial Fourier 

transformation of these real-space data. 
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