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Abstract:  

In classical Cauchy elasticity, three-dimensional materials exhibit six eigenmodes of deformation. 

Following the 1995 work of Milton and Cherkaev, extremal elastic materials can be classified by the 

number of eigenmodes, 𝑁, out of these six that are “easy”. Using Greek number words, this leads to 

hexamode (𝑁 = 6), pentamode (𝑁 = 5), tetramode (𝑁 = 4), trimode (𝑁 = 3), dimode (𝑁 = 2), and 

monomode (𝑁 = 1) materials. While hexamode materials are unstable in all regards, the possibility of 

pentamode metamaterials (“meta-fluids”) has attracted considerable attention throughout the last 

decade. Here, inspired by the 2021 theoretical work of Wei, Liu, and Hu, microstructured three-

dimensional polymer-based tetramode metamaterials are designed and characterized by numerical band-

structure calculations, fabricated by laser printing, characterized by ultrasound experiments, and 

compared to the theoretical ideal. An application in terms of a compact and broadband polarizer for 

acoustical phonons at ultrasound frequencies is demonstrated. 
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1. Introduction  

According to Hooke’s law,[1] linear elastic materials react with a deformation, the amplitude of which is 

proportional to the amplitude of the force field exerted onto them. The generalization of the one-

dimensional Hooke’s spring constant to three-dimensional materials leads to the classical Cauchy 

elasticity tensor.[1, 2] In three dimensions, this elasticity tensor can be represented by a 6 × 6 matrix (in 

Voigt notation).[1, 2] Therefore, Cauchy elastic materials generally exhibit six orthogonal eigenmodes of 

deformation. For special extremal cases, some of the corresponding eigenvalues may be very small 

compared to the others or even zero. This means that these eigenmodes are “easy” in the sense that no 

force or energy is required to induce the corresponding deformation. [3] The number of easy eigenmodes, 

𝑁 = 1, 2, 3, 4, 5, and 6, can be used to name extremal materials in Cauchy elasticity.[3-6] Using Greek 

number words, this leads to hexamode (𝑁 = 6), pentamode (𝑁 = 5), tetramode (𝑁 = 4), trimode (𝑁 =

3), dimode (𝑁 = 2), and monomode (𝑁 = 1) materials. While hexamode materials correspond to the 

absence of an elastic material and are hence trivial, the other five classes of extremal elastic materials 

potentially provide us with unusual and interesting mechanical properties. 

About a decade ago, following a theoretical suggestion by Milton and Cherkaev,[3] man-made 

architectures called pentamode metamaterials were introduced experimentally.[7] Ideally, five of their 

elastic eigenmodes have strictly zero eigenvalues. In practice, the eigenvalue of one eigenmode is orders 

of magnitude larger than that of the other five eigenmodes. This behavior was achieved by 

approximating ideal hinges within a diamond-like lattice by thin connections between double-cone 

elements.[7, 8] In this manner, the compression of all double-cone elements is uneasy, whereas all other 

material deformations are easy. This equivalently means that the wave speed of longitudinally polarized 

phonons is much (ideally infinitely) larger than the wave speed of all transverse acoustical phonons, 

leading to a broad frequency interval in which only longitudinal phonons can propagate.[8-10] Propagating 

transverse acoustical phonons are forbidden in this interval. Such behavior can be used for cloaking[11-

14] or as a longitudinal polarizer[9]. As usual[15], transverse (longitudinal) phonons mean that the phonon 

displacement-vector �⃗�  is polarized perpendicular (parallel) to the phonon wavevector �⃗� . 

Such pentamode longitudinal elastic polarizer is distinct from a linear polarizer in optics, for which one 

transverse polarization is transmitted, whereas the orthogonal transverse polarization is suppressed.[16-

18] Longitudinal waves are usually absent in optics. Polarizers in optics can be realized by exploiting 

birefringent materials[19]. For example, a birefringent metamaterial can be constructed by a grid of 

parallel conducting metal wires with sub-wavelength spacing. Such grid polarizers are used in many 

commercial Fourier-transform spectrometers from the visible to the far-infrared of the electromagnetic 

spectrum.[18] According to the classification of Milton and Cherkaev[3], such an array of conductive metal 

wires (cf. Figure 1 in Reference[18]) corresponds to a dimode metamaterial in electrical conduction (they 

spoke of a “bimode” metamaterial). Electrical conduction in three dimensions is conceptually much 

simpler than elasticity[2] because one has only three orthogonal eigenmodes (rather than six in Cauchy 

elasticity). 

Here, building on previous theoretical work on tetramode metamaterials (called “quadramode” 

metamaterials there),[20, 21] we present theory and experiments on tetramode elastic metamaterials. These 

unusual microstructured man-made materials are realized by tailored three-dimensional lattices 

composed of double-cone elements with small (ideally zero) diameter 𝑑 at the points where the cone 

tips merge into small spheres connecting the cones. As an application, we show that tetramode 

metamaterials can be used as broadband polarizers for transverse metamaterial phonons. 

  



2. Metamaterial design and phonon bands 

Figure 1 illustrates the architecture of the tetramode metamaterial considered in this work. It is composed 

of only a single Cauchy-elastic constituent material and voids within. This constituent is shaped into 

double-cone elements that are arranged into a metamaterial unit cell that is placed onto a simple-cubic 

translation lattice with lattice constant 𝑎 . A tetragonal symmetry metamaterial crystal results. The 

crucial geometrical parameter of this tetramode metamaterial architecture is the size or diameter, 𝑑, of 

the regions where the tips of different cones merge into the small spheres with diameter 2𝑟 connecting 

the cones (see inset in Figure 1). In our previous work on pentamode metamaterials,[7-9] we did not use 

such small spheres but rather connected the cone tips directly. Here, we use the union of spheres and 

several cone tips to obtain a geometrically well-defined object. Furthermore, the spheres make the 

structure more tolerant against fabrication imperfections, for example if the cone tips do not meet 

perfectly in one point. In the case of 2𝑟 > 𝑑 or even 2𝑟 ≫ 𝑑, the shear stiffness of the connection is still 

mainly determined by 𝑑 and only weakly depends on 2𝑟. The larger diameter at the thick ends of the 

cones is 𝐷 > 𝑑. Clearly, the period 𝑎 merely scales the frequency and the wavenumber, such that the 

dimensionless parameters determining the qualitative behavior of the tetramode metamaterial are the 

three ratios 𝑑/𝑎, 2𝑟/𝑎, and 𝐷/𝑎. 

An ideal effective tetramode material results if one considers the limit 𝑑/𝑎 → 0 for the structure in 

Figure 1. This statement is illustrated by the numerical band-structure calculations (see Methods) 

depicted in Figure 2. In the three columns of Figure 2, we show three different band structures, for three 

different ratios of 𝑑/𝑎 , versus the wavenumber 𝑘z  with �⃗⃗� = (0, 0, 𝑘z).  This phonon propagation 

direction refers to the below experiments. Phonon band structure along the usual tour of the wave vector 

�⃗⃗� = (𝑘x, 𝑘y, 𝑘z) through the high-symmetry points (see inset) of the Brillouin zone of the simple-cubic 

lattice (which is not the Wigner-Seitz cell of the tetramode metamaterial crystal, cf. Figure 1) are shown 

in Figure S3. In Figure 2, the relevant bands are colored and labeled as x, y and z, corresponding to the 

dominant polarization direction of the displacement-vector field. Since for every mode, the displacement 

polarization is not pure, the designation as x-like, y-like or z-like is arguably more appropriate but is 

omitted for the sake of brevity. From the panels of Figure 2, it becomes clear that the maximum 

frequency of the two lowest bands is shifted to significantly smaller values as the ratio 𝑑/𝑎 decreases, 

compared to the maximum frequency of the third lowest band. As a result, the relative frequency range 

in which only the 𝑥-polarized transverse phonon mode can propagate becomes larger as the ratio 𝑑/𝑎 

decreases. To allow for direct comparison with the static elastic properties, we retrieve the effective 

elasticity matrix of the three cases in Figure 2 from fitting the dispersion relations in the long-wavelength 

limit (see Supporting Information). Their corresponding six eigenvalues are also shown in the middle 

row of Figure 2. As expected from the definition of the tetramode metamaterials, four out of the six 

eigenvalues are at least one order of magnitude smaller than the other two. 

To further explain the results in Figure 2, Figure S1(a) illustrates how the metamaterial unit cell can 

support a finite shear stress along the 𝑥-direction. In contrast, Figure S1(b) shows that the architecture 

cannot support a shear stress along the 𝑦-direction. Likewise, it cannot support a normal stress along the 

𝑧-direction. As a result, elastic waves with 𝑦- and 𝑧-polarization of the displacement-vector become 

evanescent for frequencies larger than the maximum frequency of the corresponding bands in Figure 2, 

whereas waves polarized along the 𝑥 -direction are still propagating and are transmitted. This 

combination leads to a polarizer action that extracts from an arbitrary incident elastic wave with wave 

vector �⃗⃗� = (0,0, 𝑘z)  (cf. Figure 1) and displacement-vector �⃗⃗� in = (𝑢x, 𝑢y, 𝑢z) the transverse 

component with 𝑥-polarization, i.e., �⃗⃗� out = (𝑢x, 0,0) for all inputs. The measurements to be presented 

below directly record �⃗⃗� in and �⃗⃗� out in real space and real time. 

  



3. Comparison between experiment and numerical results 

We have manufactured the samples for these experiments by 3D laser printing (see Methods) using a 

commercial instrument (Nanoscribe, Photonics Professional GT) and a commercial photoresist 

(Nanoscribe, IP-S). Each sample is composed of 9 × 6 × 6 unit cells. A gallery of optical and electron 

micrographs with different magnifications and different viewing angles onto the polymer tetramode 

metamaterials is depicted in Figure. 3. The targeted geometrical parameters (cf. Figure. 1) are: 𝑑 =

4 µm, 𝐷 = 16 µm, and 𝑎 = 200 µm, hence 𝑑/𝑎 = 0.02. Yet smaller ratios of 𝑑/𝑎 would be desirable, 

but are not accessible due to the limited spatial resolution of the 3D laser printer. Figure 3 also includes 

a 3D rendered representation of experimental data acquired by confocal laser-scanning optical 

fluorescence microscopy (Zeiss, LSM980), showing a single tetramode metamaterial unit cell. Overall, 

the panels of Figure 3 evidence very high sample quality despite the considerable complexity of the 

tetramode architecture. However, certain imperfections are visible in Figure 3(d). This especially 

concerns the critical regions in which the cones merge with the spheres (see discussion above). While 

the cone cross section should be circular where cones and spheres meet, it is actually somewhat elliptical 

due to the imperfectly compensated ellipticity of the laser focus point-spread function in the 3D laser 

printer. We have been unable to eliminate these sample imperfections. In fact, it was hard to arrive at 

the level of quality apparent from Figure 3. Therefore, we rather account for the remaining sample 

imperfections in the theoretical modelling when comparing experimental and theoretical results below 

(also see Figure S3). 

The experiments presented in Figure 4 and 5 are conceptually simple, yet technologically demanding. 

The tetramode metamaterial samples are glued onto piezoelectric actuator assemblies, which are 

showcased in Figure 4(b) and Figure 4(e). By applying a time-harmonic voltage to the respective 

actuator at variable angular frequency 𝜔, with 𝜔/(2𝜋) from 0 up to 300 kHz, it reacts with a time-

harmonic displacement-vector field at the interface between actuator and metamaterial sample. This 

constitutes the input displacement �⃗⃗� in = (𝑢x, 𝑢y, 𝑢z). Generally, depending on the frequency, all three 

components are nonzero. We measure the local input displacement �⃗⃗� in = (𝑢x, 𝑢y, 𝑢z) as well as the 

local output displacement �⃗⃗� out = (𝑢x, 0,0) in real time by a dedicated optical setup (see Methods and 

Supporting Information). This setup allows for measuring the components 𝑢x and 𝑢y by optical confocal 

image acquisition and subsequent digital image cross-correlation analysis.[22] The measurement of the 

𝑢z component is conducted by laser Doppler vibrometry.[23] The latter has not previously been used by 

us. 

In the experiments, two actuator orientations for the excitation of elastic waves are chosen. In the first 

orientation, the main actuator axis is aligned with the sample z-axis and in the second orientation along 

the sample y-axis. The intention behind these orientations is to better showcase the sample performance 

as a larger input displacement can naturally result in a larger measurable suppression of the unwanted 

displacement polarization.  

Examples for the frequency of 𝜔/(2𝜋) = 180 kHz  are shown in Figure 4. Here, the measured 

displacement trajectories, taken at the locations highlighted in red and blue respectively, are shown next 

to several oblique-view micrographs of the tetramode metamaterial sample.  

The input displacement trajectories (red boxes) contain significant components along all three spatial 

directions, whereas the output displacement trajectory (blue boxes) on the sample top center exhibit 

𝑢y(𝑡) and 𝑢z(𝑡) components versus time 𝑡, the amplitudes of which are very small compared to that of 

𝑢x(𝑡). This behavior corresponds to the anticipated polarizer action. We have also recorded the output 

displacement trajectories at other positions closer to the sample’s edges (not depicted). We find that the 

polarizer behavior deteriorates due to edge effects, which correspond to a large number of back-folded 

bands in the band structure of the tetramode metamaterial beam with finite cross section shown in Figure 

3(c) and Figure 4(a). Therefore, in what follows, we concentrate on measuring the output displacement 



trajectory in the middle of the top of the sample. If larger usable areas should be required in an 

application, the tetramode metamaterial sample footprint would need to be increased. 

Figure 5 summarizes the results of experiments as the example shown in Figure 4, but for many different 

excitation frequencies. For reference, we depict in the left column band structures for tetramode 

metamaterial beams that are infinitely periodic along the 𝑧-axis (also cf. Figure 2). The right-hand side 

column refers to our experiments, which are compared to numerical calculations shown in the middle 

column of Figure 5. For the experiment, the displacement ratios versus frequency show a suppression 

of the unwanted 𝑢y component of about two orders of magnitude (highlighted by the light green area) 

for frequencies above 50 kHz. The unwanted 𝑢𝑧 component is suppressed by more than one order of 

magnitude (see light green area) for frequencies above 120 kHz. Both behaviors are in good agreement 

with theory, but theory tends to predict even slightly better suppressions. We assign this difference to 

remaining sample imperfections. 

It is interesting to compare the measured broadband-polarizer performance with that of other types of 

polarizers. The only other published setting that we are aware of and that theoretically allows for 

separating elastic waves with different polarizations is Reference.[24] There, different refraction angles 

at an interface for the different polarizations could be used in the sense of a phonon polarizer. However, 

experiments are elusive. For optical polarizers, suppression usually refers to the ratio of transmitted 

intensities, which are proportional to the square of the electric field.[25] By analogy, we should square 

the above mentioned displacement ratios, leading to a suppression of the transverse polarization of about 

four orders of magnitude. This value is better than that of most wire-grid polarizers used in Fourier-

transform spectrometers (see discussion in the introduction). A comparison in regard to the suppression 

of the longitudinal polarization is not possible because electromagnetic waves are usually transversely 

polarized. 

 

4. Conclusions 

Extremal Cauchy-elastic metamaterials exhibit a certain number of easy modes. Ideally, these are 

connected to zero force or energy needed for the corresponding deformation. Previous work realized 

pentamode and monomode elastic metamaterials. Here, we have introduced and realized tetramode 

elastic metamaterials. We have emphasized dynamic wave properties (rather than static properties) 

because these allow for using tetramode metamaterials as compact and broadband transverse linear 

elastic polarizers – the so-far missing counterpart to linear polarizers in optics. Our proof-of-principle 

findings can be improved systematically by further reducing the 𝑑/𝑎 ratio (cf. Figure 1 and 2) and/or 

by introducing more metamaterial unit cells along both, the phonon propagation direction and 

perpendicular to it.  

 

5. Methods 

5.1. Numerical band structure calculations 

Phonon band-structures (c.f. Figure 2) for the tetramode metamaterials are numerically obtained by 

using the Solid Mechanics Module of the commercial software package COMSOL Multiphysics. Bloch-

periodic boundary conditions are applied to the six surfaces of the cubic unit cell (cf. Figure 1). All other 

boundaries are stress free. The solved mathematical equations for the linear elastic-wave propagation 

problem are provided in the Supporting Information (cf. Equation (S1)). For the band structures depicted 

in Figure 2, we only sweep the Bloch wave vector �⃗⃗� = (0, 0, 𝑘z) from (0, 0,0) to (0, 0, 𝜋/𝑎). More 

complete results for tetramode metamaterials are shown in Figure S3. There, we consider the usual tour 

of wave vectors along high-symmetry directions through the first Brillouin zone of the simple-cubic 

lattice.  



5.2. Tetramode sample fabrication 

The tetramode metamaterial samples are fabricated by 3D laser microprinting (Professional GT, 

Nanoscribe). A 25 × objective lens with a numerical aperture of 0.8 (Carl Zeiss) is dipped into the liquid 

photoresist (IP-S, Nanoscribe). The laser focus is scanned by two galvanometric mirrors at a focus 

velocity of 0.110 m/s. The mean laser power at the entrance pupil of the objective lens is set to 37.5 mW. 

The 3D model of the sample is created with a commercial software package COMSOL Multiphysics 

(COMSOL Inc.). The model is processed with the commercial software Describe (Nanoscribe) to 

generate machine code for the 3D laser printer. A hatching distance of 300 nm and a slicing distance of 

500 nm are chosen. For printing, the model of the unit cell is split up in parts which are printed 

sequentially. This guarantees well-defined connections between the individual parts and alleviates the 

fabrication of overhanging sections of the unit cell. Each sample is printed onto a bottom plate with a 

small handle. This facilitates the manipulation of the samples and ensures proper contact of the samples 

when glued on a piezoelectric actuator assembly. The bottom plates are written with a focus velocity of 

0.140 m/s, a hatching distance of 500 nm and a slicing distance of 1.5 µm. After printing, the samples 

are rinsed in a beaker of propylene glycol methyl ether acetate (PGMEA) for at least 30 min to remove 

excess photoresist. To prepare for critical point drying with CO2 (Leica, EM CPD300), the samples are 

rinsed again with acetone for about 5 min. Further detail on the printing parameters and the printing 

sequence can be extracted from the GWL-files included in the data repository and published with this 

work (https://xxxxxxxxxxxxxx). 

5.3. Experiment setup 

The tetramode sample is glued onto a piezoelectric actuator assembly. The main axis of the piezoelectric 

actuator (Physik Instrumente, PL055.31 PICMA) is either aligned with the sample y- or z-axis. The 

sample exceeds the field of view of the optical measurement setup. Therefore, the assembly is mounted 

on a xyz-translation stage with piezo-inertia drives (Physik Instrumente, Q-545) for manipulation of the 

sample. For the measurement, the region of interest on the sample is positioned in the focal plane of the 

microscope objective lens (cf. Figure S4) which results in a top-view of the tetramode sample, along the 

inverse z-axis. The back-reflected light is measured by two avalanche photodiode modules. The first 

module (APD1) belongs to the optical confocal imaging mode. It outputs a photovoltage proportional 

to the incident light power. The second module (APD2) serves the heterodyne laser Doppler vibrometry 

mode. The output Doppler signal voltage is proportional to the AC-component of the interfering electric 

fields of the back-reflected light and a frequency shifted reference beam. The frequency shift is 

generated by an acousto-optic modulator (AA, MT80-A1.5-VIS). 

5.4. Single-frequency excitation measurement 

The mechanical excitation of the tetramode samples is achieved by driving the piezoelectric actuator 

with an amplified sinusoidal voltage. The data acquisition units of the optical setup are synchronized to 

this drive signal to ensure the retrieval of the correct temporal phase information of the measured 

displacement-vector components.  

The data acquisition is split into two channels, corresponding to the optical imaging mode and the laser 

Doppler vibrometry mode, respectively. For the optical imaging, spatial regions of interest (ROIs) on 

the excited sample are scanned. Each ROI is divided into 60 × 60  pixels and spans a region of 

30 × 30 µm. At every pixel, a time-series of the photovoltage from APD1 is recorded, sequentially. 

Afterwards, for the laser Doppler vibrometry mode, a time series of the APD2 output voltage is recorded 

at the central pixel of the current ROI before moving on to the next. In total, four ROIs are measured on 

every sample. Three ROIs are spaced about 750 µm apart, including cross-shaped markers on the 

sample bottom plate. After averaging, the data represents the displacement input to the sample. The 

fourth ROI is located at the sample top center and is considered the displacement output. 



The excitation frequency is incremented in steps of Δ𝑓 = 10 kHz  from 0 to 300 kHz  and is held 

constant until all ROIs on the sample are measured for that frequency. A buffer of about 200 ms in the 

data acquisition is included between switching of the excitation frequency. This ensures that the sample 

has sufficient time to respond to the new excitation. 

To form images for the digital image cross-correlation analysis, the time series are combined while 

considering the synchronization between data acquisition and the drive signal[22] (cf. Figure S5). The 

demodulation and digital signal processing for the laser Doppler vibrometry is implemented as a digital 

IQ-demodulator using the arctangent phase method (cf. Figure S6).[26] 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the authors. 
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Figures and captions: 

 

Figure 1. 3D model of the tetramode sample unit cell. The unit cell exhibits tetragonal symmetry and placed onto 

a simple-cubic translation lattice with lattice constant 𝑎. The unit cell is constructed from double-cone elements 

connected by spheres of radius r. The crucial design parameters 𝐷 and 𝑑 are the diameter of the double-cone center 

and the diameter of the connection between double-cones and spheres, respectively. The spheres are chosen as 

connection-hubs for the double-cone elements to obtain a well-defined geometry and to facilitate sample 

fabrication and the subsequent characterization using optical-image digital cross-correlation analysis and laser 

Doppler vibrometry. For the constitute material, we choose the parameters of Young’s modulus 𝐸 = 4.19 GPa, 

Poisson’s ratio 𝑣 = 0.4, and mass density 𝜌 = 1190 kg ⋅ m−3 for the numerical calculations. 

  



 

Figure 2. Calculated effective elasticity matrix 𝑪eff (in Voigt notation), the respective set of eigenvalues 𝑽, and 

the band structure when varying the critical parameter 𝑑, the connection diameter between double-cones and 

spheres (a to c). The numeric values are rounded to the second digit. Calculations are performed for an infinite 

sample and are detailed in the Supporting Information. For all parameter choices of 𝑑, two out of six eigenvalues 

are at least one order of magnitude larger than the other eigenvalues. Furthermore, in the band structures, it can be 

seen how the variation of 𝑑 influences the maximum frequency of the red and the black or blue bands. Smaller 

values of 𝑑 increase the ratio between the maximum frequency of the red band and the respective maximum 

frequency of the black or blue band. This can also be inferred from the slope of the bands. Reducing 𝑑 reduces the 

slope of the two lowest i.e. black and blue bands, while the slope of the third lowest red band remains almost 

constant. In these plots, the red and the blue band correspond to transverse waves polarized along the x- or y-axis 

and the black band to the longitudinal wave polarized along the z-axis. The parameters in panel (b) are chosen for 

the fabrication of the finite-size metamaterial samples. 

  



 

Figure 3. Showcase of different sample features. (a) 3D iso-intensity surface of a single unit cell acquired with a 

laser-scanning confocal fluorescence optical microscope (LSM980, Zeiss) using the autofluorescence of the 

polymer. Coloring and post-processing was performed in ImageJ and Blender. (b) Close-up wide-field image of a 

sample using the extended-depth-of-field feature of a wide-field optical microscope (Smartzoom 5, Zeiss), when 

imaging along the inverse z-axis. A specular reflection from the LED-illumination can be seen in the center as a 

bright spot. This specular reflection is beneficial for the laser-Doppler vibrometry analysis. (c to e) Scanning-

electron micrographs. (c) Side-view of the sample on its bottom plate. The sample shows 9 unit cells along the x- 

and 6 unit cells along the y- and z-direction. Due to the viewing-angle, the cells in y-direction are not visible. (e) 

Connection of two neighboring unit cells. The anisotropic 3D printing voxel elongates the desired sphere to an 

ellipsoid. (d) Close-up of the region showing the two critical sample parameters, namely the diameter D in the 

double-cone center and 𝑑 on the spheres connecting to the cones.  



  

Figure 4. Measurement assemblies and exemplary data sets exhibiting the polarizer functionality. (a) Scanning 

electron micrographs of the sample with the locations highlighted which we consider as displacement input (red 

box) on the sample bottom plate, and output (blue box) at a central location on the sample top. (b) Photograph of 

the sample assembly in the measurement setup. The microscope objective lens can be seen at the top. A mirror 

mount is used as a tilt-correction platform for the sample under the objective lens. The sample is glued onto a silica 

glass substrate which in turn is glued to a piezoelectric actuator (from which cables emerge). The actuator is glued 

to a PVC mount with the main actuator axis aligned along the sample y-axis. (c) Time-resolved evolution of the 

displacement-vector components as an input to the sample. The x- and y-components of the displacement-vector 

were obtained by optical-image digital cross-correlation analysis. The z-component was obtained using laser 

Doppler vibrometry. Due to the orientation of the actuator, the input displacement along the z-axis is the largest. 

(d) Corresponding time-resolved displacement output at the sample top. From the displacement raw data, it can 

be clearly seen how displacements along the y- and z-axis are suppressed and only a significant displacement along 

the x-axis is left at the sample top. The temporal phase delay between input and output originate from damping 

within the polymer. The output displacement can exceed the input displacement due to back reflection of the waves 

at the top of the sample. (e to g) Similar example shown for an assembly where the actuator is glued onto an 

aluminum mount and with the main actuator axis is aligned with the sample y-axis. To achieve this orientation, 

the sample is glued onto an aluminum cuboid which serves as an elbow piece.  



 

Figure 5. Results as in Figure 4, but shown versus excitation frequency. (a and d) Band structure for waves 

propagating along the sample z-axis with wave number kz in an infinite beam. The red and the blue band correspond 

to transverse waves polarized along the x- or y-axis and the black band to the longitudinal wave polarized along 

the z-axis. The frequency region of the gap between the (a) x- and y-polarized or (c) x- and z-polarized modes is 

highlighted in light blue, respectively. (b and e) Displacement ratios computed from theory for the ratio of the 

excitation displacement-vector components on the sample bottom plate to the vector components of the central 

point on the sample top. To emphasize the predicted polarizer behavior of the sample, the area between the curves 

is shaded in light green. (c and f) Experimental results for the corresponding displacement ratios. Data from panel 

(c) was obtained by aligning the piezoelectric actuator main axis along the sample y-axis and in (e) along the 

sample z-axis. The x- and y-components of the displacement-vector were obtained by optical-image digital cross-

correlation analysis. The z-component was obtained using laser Doppler vibrometry. A suppression of up to two 

orders of magnitude is achieved experimentally, when comparing the displacement ratio of the transmitted x-

displacement to the ratio of the suppressed y- and z-displacements. In terms of mechanical power, this corresponds 

to a suppression of up to four orders of magnitude making it well comparable to a polarizer device in optics. The 

dashed lines indicate the sensitivity limit of the experimental setup. These lines are obtained by calculating the 

ratio of the excitation displacement-vector components during measurement to a zero-measurement at the sample 

top where the piezoelectric actuator is not driven.  

  



Reference 

[1]  A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity. Cambridge, 

England: Cambridge University Press 1944. 

[2] G. W. Milton, The Theory of Composites. Cambridge, England: Cambridge University 

Press 2002. 

[3] G. W. Milton, A. V. Cherkaev, Which elasticity tensors are realizable?. Journal of 

Engineering Materials and Technology 1995, 117, 483. 

[4] C. N. Layman, C. J. Naify, T. P. Martin, D. C. Calvo, G. J. Orris, Highly Anisotropic 

Elements for Acoustic Pentamode Applications. Physical Review Letters 2013, 111, 

24302. 

[5] Z. Li, Z. Luo, L. Zhang, C. Wang, Topological design of pentamode lattice 

metamaterials using a ground structure method. Materials & Design 2021, 202, 109523. 

[6] G. W. Milton, Complete characterization of the macroscopic deformations of periodic 

unimode metamaterials of rigid bars and pivots. Journal of the Mechanics and Physics 

of Solids 2013, 61, 1543. 

[7] M. Kadic, T. Bückmann, N. Stenger, M. Thiel, M. Wegener, On the practicability of 

pentamode mechanical metamaterials. Applied Physics Letters 2012, 100, 191901. 

[8] M. Kadic, T. Bückmann, R. Schittny, M. Wegener, On anisotropic versions of three-

dimensional pentamode metamaterials. New Journal of Physics 2013, 15, 023029. 

[9] A. Martin, M. Kadic, R. Schittny, T. Bückmann, M. Wegener, Phonon band structures 

of three-dimensional pentamode metamaterials. Physical Review B 2012, 86, 155116. 

[10] M. Kadic, T. Bückmann, R. Schittny, P. Gumbsch, M. Wegener, Pentamode 

metamaterials with independently tailored bulk modulus and mass density. Physical 

Review Applied 2014, 2, 54007. 

[11] A. N. Norris, Acoustic cloaking theory. Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences 2008, 464, 2411. 

[12] T. Bückmann, M. Thiel, M. Kadic, R. Schittny, M. Wegener, An elasto-mechanical 

unfeelability cloak made of pentamode metamaterials. Nature Communications, 2014, 

5, 1. 

[13] Y. Chen, M. Zheng, X. Liu, Y. Bi, Z. Sun, P. Xiang, J. Yang, G. Hu, Broadband solid 

cloak for underwater acoustics. Physical Review B 2017, 95, 180104. 

[14] A. N. Norris, Acoustic metafluids. Journal of the Acoustical Society of America 2009, 

125, 839. 

[15] K. F. Graff, Wave Motion in Elastic Solids. North Chelmsford, USA: Courier 

Corporation 2012. 

[16] L. Guo, Nanoimprint Lithography: Methods and Material Requirements. Advanced 

Materials 2007, 19, 495. 

[17] M. Xu, H. Urbach, D. de Boer, H. Cornelissen, Wire-grid diffraction gratings used as 



polarizing beam splitter for visible light and applied in liquid crystal on silicon. Optics 

Express 2005, 13, 2303. 

[18] S. Ahn, K. Lee, J. Kim, S. H. Kim, J. Park, S. Lee, P. Yoon, Fabrication of a 50 nm half-

pitch wire grid polarizer using nanoimprint lithography. Nanotechnology 2005, 16, 

1874. 

[19] L. D. Barron, Molecular light scattering and optical activity. Cambridge, England: 

Cambridge University Press, 2004. 

[20] Y. Wei, X. Liu, G. Hu, Quadramode materials: Their design method and wave property. 

Materials & Design 2021, 210, 110031. 

[21] Y. Wei, G. Hu Wave characteristics of extremal elastic materials. Extreme Mechanics 

Letters 2022, 55, 101789. 

[22] J. A. I. Martínez, M. F. Groß, Y. Chen, T. Frenzel, V. Laude, M. Kadic, M. Wegener, 

Experimental Observation of Roton-Like Dispersion Relations in Metamaterials. 

Science Advances 2021, 7, m2189. 

[23] C. Rembe and A. Dräbenstedt, Laser-scanning confocal vibrometer microscope: Theory 

and experiments. Review of Scientific Instruments 2006, 77, 083702. 

[24] Liu H., Zhang Q., Zhang K., Hu G., Duan H. Designing 3D digital metamaterial for 

elastic waves: from elastic wave polarizer to vibration control. Advanced Science 2019, 

6, 1900401. 

[25] Kim S. Y., Gwyther J., Manners I., Chaikin P. M., Register R. A. Metal-containing block 

copolymer thin films yield wire grid polarizers with high aspect ratio. Advanced 

Materials 2014, 26, 791. 

[26] C. Rembe, G. Siegmund, H. Steger, M. Wörtge, “Measuring MEMS in Motion by Laser 

Doppler Vibrometry” in Optical Inspection of Microsystems, CRC Press, 2019, p. 584. 

  



Table of contents 

 

 

 

An experimental realization and application of a tetramode material is presented. According to 

Cauchy elasticity, four out of the six deformation modes of such materials are considered 

“easy”. A property that can be exploited as a compact broadband polarizer for transverse 

phonons. This is demonstrated experimentally with a 3D metamaterial structure fabricated 

using direct laser writing. 

 


