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Twisted bilayer graphene can demonstrate extraordinary
optical and electrical characteristics due to its
interlayer interactions. The strong coupling of normal
and tangential van der Waals interactions at the
interface results in inhomogeneous interlayer deformations
and further changes the bilayer graphene’s physical
properties. Herein, theoretical and numerical models
are established to study the torsional deformation
behavior of twisting a graphene flake over a
rigid graphene substrate. It is found that in-plane
deformations have significant influences on the
interlayer potential energy density of AA stacking, but
seldom affect other stacked domains. The deformation
process is thus approximated by first twisting the
graphene flake rigidly, and then relaxing the rigid
constraints. The bilayer graphene system minimizes
its energy by reducing (enlarging) the size of high-
energy (low-energy) domains through additional
rotations. The additional angles of the graphene
flake are derived analytically based on a mechanical
model following the principle of minimum potential
energy. Results show that the influences of graphene
film deformations get significant at small-twist-
angles (typically less than 2◦). This work reveals
the torsional deformation evolution mechanism of
bilayer graphene and provides beneficial guidance on
achieving intriguing physical properties.
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1. Introduction
Graphene has recently drawn increasing attention for their extraordinary properties in hyper
elasticity [1,2], piezoelectricity [3,4], frictional characteristics [5–7], optical properties [8–13] and
so on. In particular, bilayer structures or van der Waals materials that feature more tunability
in physical characteristics are formed by stacking graphene on top of one another. Twisted
bilayer graphene (TBG) with a specific twist angle (magic-angle) can demonstrate intriguing
properties, i.e., insulator characteristics, superconductivity and anomalous quantum hall effect
[14–17]. Indeed, the twisting of graphene layers will lead to direction mismatch and result in a
periodic Moiré pattern, which significantly changes electronic structures, transport, disorder and
interactions of the TBG system [14,18]. Due to the unique structure of graphene lattices, the twist
angle becomes a key controlled degree of freedom to regulate electronic and optical properties of
TBGs [19,20]. It is important to fully understand the torsional behavior of TBGs with variance of
the twist angle. In some ways, graphene posses many extraordinary properties like metamaterials
which are an alternative way to stucture the matter at bigger scale with the quest of properties
beyond those of the constituents [21–25]. Recently, elastic metamaterials took a similar direction
based on quasi-crystals [26] and higher order interactions [27–29].

So far, researchers have mostly focused on TBG’s rigid twisting behavior without considering
any deformations. However, the interlayer van de Waals forces will inevitably result in both in-
plane and out-of-plane deformations. These slight deformations can further change the electronic
bands of the TBG system, i.e., the deformations require that the TBG reduces AA stacked domains
and increases AB stacked domains. Alden et al. [30] found that AB stacking is the dominated
manner in Moiré pattern. Zhang et al. [31] revealed local rotating and shrinking mechanism
of the AA stacked domains in twisted graphene films: the local rotation angle is first invariant
(then linear-correlated) with the interlayer twist angle, as the latter is within (beyond) the critical
value. Kazmierczak et al. [32] experimentally demonstrated the nanoscale deformation of TBG
and found that relative stacking order domains varied differently as the interlayer twist angle
reached 0.5◦.

Though the influences of deformations on TBG’s physical properties are explored, the
deformation evolution mechanism and strain characteristics still remain unclear. In this work
we have studied the scaling law of interlayer potential energy density (IED) during the rigid
twisting process. The deformation and strain characteristics of the graphene film is then presented
considering released rigid constraints. We establish the strain potential energy function of
deformed graphene films, and theoretically analyze the evolution mechanism of both in-plane
and out-of-plane deformations following the principle of minimum potential energy. This work
is of great significance in understanding the deformation mechanism of TBG and achieving more
intriguing phenomenon.

2. Numerical study on torsional sliding of bilayer graphene
We have built a numerical model of TBG, where the graphene substrate is defined as a rigid that
generates interlayer interaction without any deformation. In case of rigid twisting, Moiré pattern
diameter λ, namely the distance between nearby AA stacked points, can be determined by [33]

λ=

√
3a

2sin( θ2 )
(2.1)

where θ is the twist angle and a= 0.142 nm denotes carbon-carbon bond length of the graphene
lattices. It is observed from Fig. 1a that λ decreases first sharply and then slowly with the
increment of θ, which indicates that the structural size should be large enough so that relative
small twist angles can result in Moiré pattern. In addition, we define shell element size as 0.2 nm.
A circular-shaped graphene model is employed to suppress the edge effects, and all degrees of
freedom are constrained for the substrate graphene (see the insets in Fig. 1b). We plot the IED as
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a function of relative displacement along y-axis, where interlayer energy density was normalized
as UN = [U (ux, uy, uz)− U0 (uz = 0)] /U1 (uz = 0). Initially, the graphene film is in AA stacking
order relative to the substrate, which corresponds to the minimum interlayer potential energy
state. AB stacking switches to AA stacking in case of film gliding distance a and further switches
to BA stacking with the film gliding distance 2a. Due to geometrical symmetry, AB stacking and
BA stacking corresponds to the same potential energy state. For simplicity, we name the two
modes both as AB stacking. Note that the interlayer potential energy of Saddle Point (SP) stacking
is larger than AB stacking but far less than AA stacking.

Figure 1. (a) Schematic of Moiré Pattern and its periode λ function of the twist angle for TBG films (as inset, an example

is depicted); (b) interlayer potential energy density is depicted as a function of relative displacements uy/a.

The TBG demonstrates extraordinary physical properties, i.e., insulator behavior and
superconductivity, mainly at its initial twisted stage [15,16,32]. Therefore, we focus on the
deformation behavior of the TBG with small twist angles. In Fig. 2 we show at different twist
angles the out-of-plane displacement uz , IED, Strain energy density (SED), distortion energy
density (DED) and effective shear strain εi. It is observed that AA stacked domains first
appear in the edges and gradually evolves to the inner domain. The distribution of out-of-plane
displacement uz agrees well with those of IED, corresponding to maximum interlayer potential
energy state. The stripes that connect different AA stacked domains are SP stacked domains.
Amplitudes of uz and IED are invariant with the increment of twist angles, as shown in Fig. 3.
By contrast, shear strain and SED in SP stacked domains decrease gradually as the twist angle
increases. Indeed, the maximum strain is about 0.1% as the twist angle reaches 2◦, demonstrating
that the strain energy is negligible and the twisting behavior tends to be a rigid one. Besides, the
in-plane strain disappears when the twist angle reaches 60◦, indicating that the film relative to
the substrate recovers to AB stacking order. We should note that the deformation and strain are
significant in case of small twist angles (smaller than 2◦), which will result in structural variations
of the lattices and further lead to different physical properties.

We define quantitatively the AA (SP) stacked domain in Fig. 4, and plot the geometrical
diameters as functions of the twist angle. For rigid twisting, we have

dAA =
a

θ
, wSP =

a

2θ
. (2.2)

It is observed in Fig. 4 that the deformations have few influences on the Moiré pattern diameter
λ, but significantly reduces the AA stacking diameter and SP stacking width, especially at small-
twist-angles. Besides, local AB stacked domain turns around by a small angle, which is indicated
by the difference between the dotted line and red points in Fig. 4e. Generally, AA stacking point
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is not affected by the deformations, and can be modeled as rigid rotation during the bilayer
graphene twisting process. We define a triangular unit cell characterized by three AA stacking
points and show the variations of AA/AB/SP stacking domains within each unit cell in Fig. 4f.
With the increment of twist angles, SP (AB) stacking domains increase (decrease) linearly until
the twist angle reaches around 0.75◦, then both the SP and AB stacking domains decrease by a
rate far less than their initial variation rates. AA stacking domain increases with the twist angles,
but the increasing rate drops a bit when the twist angle goes beyond 0.75◦.

3. Theoretical analysis on deformation characteristics of twisted
bilayer graphene

(a) Rigid twisting behavior of the graphene film
For a rigid twisted graphene film with constrained normal displacement uz , the relative
displacement field can be expressed as

ux = r[cos(θ0 + θ)− cos(θ0)]

uy = r[sin(θ0 + θ)− sin(θ0)],

uz = 0

. (3.1)

where θ0(θ) is the angle between x-axis and the direction of the point before (after) twisting, as
shown in Fig. 5a. The mean IED can be expressed as

UIave =

∫R
0

∫2π
0 U(ux, uy, uz)rdrdθ0

πR2
, (3.2)

where R is the radius of the graphene film and U(ux, uy, uz) is the interlayer potential energy
(per unit area) determined by [34,35]

U(ux, uy, uz) =U0 (Uz) + U1 (Uz) f(ux, uy). (3.3)

On the right-hand side of Eq. (3.3), the first term describes the dependence of the interaction
potential energy on the normal separation uz in a commensurate AB stacking order ux = uy = 0

and takes the form [36]

U0 (Uz) =
ε0
A0

[
−5

3

(
z0

z0 + uz

)4

+
2

3

(
z0

z0 + uz

)10
]
. (3.4)

where z0 = 0.334 nm is the equilibrium separation, ε0 = 0.0411 eV, A0 =
3
√
3

4 a2 with a=

0.142 nm denotes the carbon-carbon bond length in the graphene. The adhesion energy for the
commensurate AB stacking order is thus obtained as ε0/A0 = 0.25 J/m2. The second term on the
right-hand side quantifies the periodic corrugation of the potential energy with respect to in-plane
displacements ux and uy , from the commensurate stacking with

f(ux, uy) =
3

2
+ cos(G1(uy − a)) + 2 cos

(
G1(uy − a)

2

)
cos

(√
3G1ux
2

)
, (3.5)

and

U1 (Uz) =
ε1
A0

[
−
(

z0
z0 + uz

)4

+ β

(
z0

z0 + uz

)10
]
. (3.6)

where G1 = 1.33π/a, ε1 = 1.33× 10−4 eV, β = 28.7; the values of ε1 and β are obtained by fitting
to atomistic calculations [37].

The mean IED value UIave
increases gradually to its maximum value as the twist angle reaches

the critical value θcr , as shown in Fig. 5b. Note that initially the graphene film is in AB stacking
order relative to the substrate, and corresponding IED is ε0/A0 = 0.25J/m2. Here we define the



5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

state when the film is completely stripped from the substrate as zero point of the potential energy
density. After the twist angle reaches its critical value, the mean value UIave decreases gradually to
its minimum value and then fluctuates around a constant value −U0(uz = 0) + U1(uz = 0)f(ux =

uy = 0). Besides, the oscillation period is reversely related to the film radius. In Fig. 5 we plot the
critical twist angle θcr and first oscillation period θλ as functions of the radius of the graphene
film disk.

Now we turn to analyze the underlying mechanism that results in the oscillation behavior. We
study the unit cell shown in Fig. 6a and find that the relative displacement field meets following
constraint:

∫ √
3λ
3

−
√

3λ
6

∫ √
3

3 (
√

3λ
3 −x)

√
3

3 (x−
√

3λ
3 )

[
f(ux, uy)−

3

2

]
dydx= 0. (3.7)

If we fix the out-of-plane displacements during the twisting process as uz = c, we can obtain
following relationship for any twist angle θ:

∫√
3λ
3

−
√

3λ
6

∫√
3

3 (
√

3λ
3 −x)

√
3

3 (x−
√

3λ
3 )

U(ux(θ), uy(θ))dydx

A0
=U0(c) +

3

2
U1(c).

(3.8)

where the Moiré pattern diameter is λ=
√
3a/

√
2(1− cos(θ)), the unit cell area is A0 =

√
3
4 λ2

denotes interlayer potential energy and the in-plane displacements are expressed by ux(θ) =
√

x2 + y2
[
cos(tan−1( yx ) + θ)− cos(tan−1( yx ))

]
uy(θ) =

√
x2 + y2

[
sin(tan−1( yx ) + θ)− sin(tan−1( yx ))

]
.

(3.9)

We observe from Eq. (3.9) that the mean interlayer potential energy of a unit cell is invariant with
the twist angle, indicating that the oscillation behavior is induced by edge effects. In the initial
twisting stage of the graphene film, the deformations result in a drop of interlayer potential
energy and a rise of strain energy, which makes the total energy smaller than that of the rigid
counterpart. As the strain increases, the strain energy gradually decreases, and the total energy
difference between the deformed twisting behavior and rigid twisting behavior was reduced
correspondingly.

(b) Deformable twisting behavior of the graphene film
We show in Fig. 7 the Interlayer potential energy density of a graphene in rigid twisting (IEDr)
and in deformable twisting (IEDd) and the difference between the two terms (∆IED), in case of the
twist angle θ= 0.6◦ and the displacement uz = 0. It is observed that in-plane deformations have
significant influences on the IED of AA stacked domains, but have few influences on AB stacked
domains and SP stacked domains. Besides, in-plane deformations (shear deformations) mainly
exist in SP stacked domains. The film strain distributes uniformly in SP stacked domains with
quasi-rectangular shapes, which denotes that displacements of contrary directions are generated
on the edges of such quasi-rectangular shapes and results in uniformly distributed shear strain.
Note that the IED of SP stacked domains are less than that of AA stacked domains. Then we can
describe the deformation behavior in following ways: we first conduct rigid twisting by a twist
angle θ, then releases the rigid constraints; AA stacked domains continue to twist in the same
direction by an angle α while AB stacked domains twist in the opposite direction by an angle β.

The work done by AB stacked domains to overcome the interlayer reactions is expressed by

WAB(θ) =

∫ √
3λ
6

−
√

3λ
12

∫ √
3

3 (
√

3λ
6 −x)

√
3

3 (x−
√

3λ
6 )

[U(ux(θ), uy(θ))− U(ux = uy = 0)] dydx≈ U1λ
2

5
. (3.10)
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Similarly, the work done by AB stacked domains to turn back by an angle β is expressed by

WAB(θ − β) =

∫ √
3λ
6

−
√

3λ
12

∫ √
3

3 (
√

3λ
6 −x)

√
3

3 (x−
√

3λ
6 )

[U(ux(θ − β), uy(θ − β))− U(ux = uy = 0)] dydx. (3.11)

The work can be approximated by

WAB(θ − β)≈ U1λ
2

5
(k2 − 2k + 1). (3.12)

where k= 1− β/θ, U1(uz) = (β − 1)ε1/A0, λ=
√
3a/

√
2(1− cos(θ)). In the interval k ∈ [0, 1] the

approximated solution and accurate solution from Eq. (3.11) show good agreement, as depicted
in Fig. 8a.

As mentioned before, the film deformation are mainly shear deformations existing in the SP
stacked domains, as shown in Fig. 7d. We can obtain the shear strain of a unit cell as

WS = 3t(λ− 2RA)wP
Gγ2

2
. (3.13)

where the coefficient “3” is applied due to the fact that three SP stacked domains exist in each unit
cell, t is the film thickness, G is the shear modulus, wP is half-width of SP stacked domains, γ is
the shear strain energy of SP stacked domains determined by

γ =
∂uy
∂x

+
∂ux
∂y

= β + α

√
3
2 r

λ
2 −

√
3
2 r

= α

(
θ

θ + 2α
+ 1

)
. (3.14)

Note that film strain energy in AB stacked domains is far less than that in SP stacked domains.
Therefore, we safely ignore the deformations in AB stacked domains and view them as rigid
twisting. From geometrical compatibility, we have

a
2

sin(θ + α)
α=

a
2

sin(θ − α)
β. (3.15)

As α and β are small, Eq. (3.15) can be simplified as

β =
θα

θ + 2α
. (3.16)

Then we have

WP =
a

4 sin(θ + β)
≈ a

4(θ + β)
; (3.17)

RA =
a

2 sin(θ + α)
≈ a

2(θ + α)
. (3.18)

Substituting Eqs. (3.14) (3.18) into Eq. (3.13), we can express the shear strain energy of a unit cell
as

WS =
3Gta

8

(
λ− a

θ + α

)
(θ + 2α)α2

θ2 + 3θα

(
θ

θ + 2α
+ 1

)2

. (3.19)

Now we turn to the interlayer potential energy of AA stacked domains. For a graphene
film/substrate system in AA stacking order, the interlayer potential energy is

UAA =U0 + U1

[
3

2
+ cos(G1uy) + 2 cos

(
G1uy
2

)
cos

(√
3G1ux
2

)]
, (3.20)

The work needed to twist a graphene film disk by an angle θ is expressed as

Wθ =

∫r
0

∫√r2−x2

−
√
r2−x2

[UAA(ux(θ), uy(θ))− UAA(ux = uy = 0)] dydx≈−
√
3 + 1

2
U1π

( a

2θ

)2
.

(3.21)
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If we increase the twist angle to θ + α, the stored energy becomes

Wθ+α =

∫r
0

∫√r2−x2

−
√
r2−x2

[UAA(ux(θ + α), uy(θ + α))− UAA(ux = uy = 0)] dydx, (3.22)

which can be approximated by

Wθ+α ≈
√
3 + 1

2
U1π

( a

2θ

)2
(√

3 + 1

4

α2

θ2
− 2α

θ
− 1

)
. (3.23)

In the case α/θ < 2, the approximated solution and accurate solution from Eq. (3.22) are in good
agreement, as shown in Fig. 8b. For the studied unit cell, the total energy variations induced by
film deformations can be obtained by

Urelaxed =WS + (WAB(θ − β)−WAB(θ)) +
1

2
(Wθ+α −Wθ) . (3.24)

Combining Eq. (3.8), we obtain the total energy of a unit cell of the twisted graphene film as
Urelaxed + U0 + 3U1/2. Using minimum energy principle, we get

∂

∂α
(Urelaxed + U0 + 3U1/2) = 0. (3.25)

Substituting Eqs. (3.4) (3.6) (3.24) into Eq. (3.25), we can obtain the relation between α and θ as

3Gta

8

(
λ+

a

(θ + α)2

)
(θ + 2α)α2

θ2 + 3θα

(
θ

θ + 2α
+ 1

)2

+
U1λ

2

5

2β

θ2
θ2

(θ + 2α)2
+

3Gta

8

(
λ− a

θ + α

)
2αθ3 + 9α2θ2 + 12α3θ

(θ2 + 3αθ)2
2α

(
θ

θ + 2α
+ 1

)2

−3Gta

8

(
λ− a

θ + α

)
(θ + 2α)α2

θ2 + 3αθ
2

(
θ

θ + 2α
+ 1

)
2θ

(θ + 2α)2
−

√
3 + 1

4
U1π

( a

2θ

)2
(
2

θ
−

√
3 + 1

2

α

θ2

)
= 0

(3.26)

Given a twist angle θ, we can obtain the additional twist angle α of AA stacked domains from
Eq. (3.26), and further get the additional twist angle β of AB stacked domains from Eq. (3.15),
and finally obtain SP stacked domain width wP and AA stacked domain radius RA from Eq.
(3.17) and Eq. (3.18), respectively. We observe in Fig. 9a the relation α/θ < 1.5, β/θ < 0.5 during
the small-angle-twisting process, indicating that the approximated solutions from Eq. (3.12) and
Eq. (3.23) are valid. Besides, the theoretical predictions agree well with the finite element analysis
when the twist angle reaches 0.75◦, demonstrating the accuracy of our proposed analytical model.
When the twist angle is beyond 2◦, the influences of graphene film deformations can be neglected
and the bilayer graphene can be viewed as rigid twisting. However, we notice some differences
between theoretical results and simulations when the twist angle is very small. This difference
may imply different deformation mechanism, which will be our further consideration.

4. Conclusion
The torsional deformation behavior and strain localization of TBG has been studied numerically
and analytically. It is found that the periodicity and symmetry of interlayer van der Waals force
makes the mean strain energy density invariant during the rigid twisting process. Both in-plane
and out-of-plane deformations are observed after releasing the rigid twisting constraints, due
to the strong coupling of in-plane and out-of-plane displacements. Out-of-plane deformations
agree well with the IED distributions, and have invariant amplitudes with increasing twist
angles. Compared with rigid twisting, the in-plane deformations are mainly observed in the inner
domain of the unit cells, while the shapes and sizes of the edges are invariant. Following this
phenomenon, we derived the total strain potential energy function of the deformable system, and
further obtained the film deformations as functions of the twist angles. Results show that the shear
strain distributes uniformly in SP stacked domains and decreases sharply with the increment of
twist angles. The influences of graphene film deformations is significant when the twist angle is
less than 2◦.



8

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Data Accessibility. This article does not contain any additional data.

Authors’ Contributions. Q.X.J: Formal analysis, Writing original draft, Investigation and Project
administration. Z.M.X.: Conceptualization, Formal analysis, Editing. Z.X.Z: Formal analysis. Z.B.C.:
Methodology, Data curation. M.K.: Supervision, Validation, Review and editing. C.G.W.: Supervision,
Validation, Project administration, Review and editing.

Competing Interests. We declare we have no competing interests.

Funding. This work was supported by the National Natural Science foundation of China [grant numbers
12172102, 11872160].

Acknowledgements. Z.M.X. thanks Dr. Rui Huang at the University of Texas at Austin for many valuable
discussions.

References
1. S. Kumar, D. M. Parks, On the hyperelastic softening and elastic instabilities in graphene,

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
471 (2173) (2015) 20140567.

2. Y. Wang, Y. Zhu, F. Wang, X. Liu, H. Wu, Super-elasticity and deformation mechanism of
three-dimensional pillared graphene network structures, Carbon 118 (2017) 588–596.

3. H. Wu, X. Liu, Tuning electromechanics of dynamic ripple pattern in graphene monolayer,
Carbon 98 (2016) 510–518.

4. H. Zhong, J. Xia, F. Wang, H. Chen, H. Wu, S. Lin, Graphene-piezoelectric material
heterostructure for harvesting energy from water flow, Advanced Functional Materials 27 (5)
(2017) 1604226.

5. Q. Li, K.-S. Kim, Micromechanics of friction: effects of nanometre-scale roughness,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
464 (2093) (2008) 1319–1343.

6. X. Zheng, L. Gao, Q. Yao, Q. Li, M. Zhang, X. Xie, S. Qiao, G. Wang, T. Ma, Z. Di,
et al., Robust ultra-low-friction state of graphene via moiré superlattice confinement, Nature
communications 7 (1) (2016) 1–7.

7. X.-Y. Sun, H. Hu, C. Cao, Y.-J. Xu, Anisotropic vacancy-defect-induced fracture strength loss
of graphene, RSC Advances 5 (18) (2015) 13623–13627.

8. K. J. Ooi, D. T. Tan, Nonlinear graphene plasmonics, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 473 (2206) (2017) 20170433.

9. T. L. Zinenko, A. Matsushima, A. I. Nosich, Terahertz range resonances of metasurface formed
by double-layer grating of microsize graphene strips inside dielectric slab, Proceedings of the
Royal Society A 476 (2240) (2020) 20200173.
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Figure 2. (a, b, c) Out-of-plane displacements component uz , (d, e, f) IED, (g, h, i) SED, (j, k, l) DED, and (m, n, o)

equivalent strain distribution at different twist angles 0.3◦, 0.5◦, and 1◦, respectively.
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Figure 3. (a) The out-of-plane displacement uz , (c) IED, and (e) the distribution of SED as the twist angle θ= 0.5◦; (b,

d, f) the corresponding maximum value as functions of the twist angle.

Figure 4. (a) Schematic of different stacking domains; functions of the twist angle for: (b) the size of moiré pattern, (c)

the AA stacking diameter, (d) the width of SP stacking, (e) the twist angle of AB stacking and (f) relative stacking order

domains.
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Figure 5. (a) Schematic of relative displacements; (b) the IED as a function of twist angles; (c) the critical twist angle and

(d) the first oscillation period as functions of the graphene disk diameter.

Figure 6. (a) Contour of the IED for rigid twisting bilayer graphene; (b) the energy densities as a function of twist angles

for a graphene disk with diameter of 50 nm.
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Figure 7. The IED of (a) rigid twisting and (b) deformable twisting; (c) the difference of IED between rigid and deformable

twisting; (d) SED of the graphene film. All the results are considered for the twist angle θ= 0.6◦ and the displacement

uz = 0.

Figure 8. The interlayer potential energy of (a) AB stacked domain and (b) AA stacked domain as functions of additional

twist angles.
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Figure 9. (a) The additional twist angles of AA and AB stacking area, (b) dimeter of AA stacking area, (c) width of SP

stacking area as functions of twist angle θ.
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