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Abstract: The four-wave mixing process is a fundamental nonlinear interaction in Kerr media that 

can be described by a closed trajectory in the associated phase plane. We show here that it is 

possible to manipulate these trajectories and to connect two points that are not part of the same 

orbit. Our approach is based on a localized abrupt modification of the average power of the system. 

This mechanism is confirmed using different experimental realizations where iterative propagation 

in a short fiber segments mimics propagation in an idealized optical fiber. 
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1. Introduction 

Thanks to their very low losses and their long interaction length, optical fibers have proven 

to be an essential tool to explore the very rich nonlinear dynamics resulting from the complex 

combination of dispersion with nonlinearity. The nonlinear Schrödinger equation (NLSE) is then 
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a model of choice. Its best-known solution is the optical bright soliton [1] which we celebrate in 

this special issue,  and which is able to propagate without altering its temporal and spectral 

intensity profiles. But other temporal structures also exist, such as solitons on finite background, 

where the interaction with a continuous background leads to a periodic temporal or spatial 

localization [2], including the particular case of the Peregrine soliton which exhibits double 

localization [3]. Other coherent solutions on a periodically modulated background also exist such 

as cnoidal or dnoidal waves [4]. 

Frequency-domain analysis of the NLSE sheds light on the spectral properties of these 

coherent waves through the four-wave mixing process, which allows energy exchange between 

different evolving spectral components. In the regime of focusing nonlinearity, this process leads 

to modulation instability that ultimately leads to the generation of high-repetition trains of 

ultrashort structures [5, 6]. In its simplest configuration, the degenerate four-wave mixing scenario 

consists of a continuous pump of high intensity that interacts with two other continuous 

components located symmetrically on both sides of this pump. In this context, the dynamics can 

be reduced to a system of three coupled differential equations whose behavior can be easily 

interpreted in the phase plane through two canonical conjugate variables [7]. The evolution of the 

system then follows closed orbits so that, for a given power of the system, the trajectories will 

never pass through a point located outside its orbit.  

In this contribution, we seek to remove this fundamental limitation. We introduce a simple 

and general approach based on a discrete change in one of the system properties, namely the 

average power. Abruptly changing the propagation conditions allows us to switch from one orbit 

to another, and thus to connect any two points of the phase portrait. To experimentally verify this 

phase-space manipulation, we implement a specific setup as introduced in reference [8], where 

iterated programmed initial conditions are sequentially reinjected into an optical fiber, allowing 

experimental observation of the full dynamical phase-space topology. Three experimental 

examples are provided and validate the ability to efficiently connect (using a discrete power 

change) two states that do not belong to the same orbit, even if they are on opposite sides of the 

system separatrix boundary. 

  



2. Theoretical background and principle of our approach 

 We first review the theoretical description of ideal FWM dynamics. In single mode fiber, 

the evolution of the slowly-varying electric field envelope (z,t)  is governed by the NLSE [9]: 
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with z being the propagation distance and t the time in a reference frame traveling at the group 

velocity. The group-velocity dispersion is 2 and the nonlinear Kerr coefficient is . We consider 

wave mixing associated with the injection of a modulated pump wave 0 with two sidebands at 

angular frequencies ±m: 
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In general, the injection of such a modulated signal in a fiber leads to the generation of 

multiple additional sidebands [10, 11]. However, when those higher-order sidebands can be 

neglected as in our experiments [8], the nonlinear dynamics of the pump and two sidebands can 

be described by only three coupled equations [7] :  
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This system is equivalent to a one-dimensional conservative nonlinear oscillator with the 

Hamiltonian expressed as : 
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where   is defined as  
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0 1 1P   −= + +  is the total average power. Here, the canonical variables  and    are built 

from the transformation of the amplitudes ψk(z) and phases k(z) of the evolving sidebands (k = 0, 

±1) to  and   by:  
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 and     are interpreted as the fraction of the total power in the central frequency component and 

the phase difference between the sidebands and the pump, respectively.   

 The dynamics on the ( ) plane fully captures all the physics of this system [7, 12], 

including multiple Fermi-Pasta-Ulam-Tsingou recurrence cycles [13, 14], the existence of a 

separatrix [13] and stationary wave existence. Figure 1(a) illustrates the trajectories that are 

followed when starting from two points : ( = 0.98  = 0, dotted lines) and  ( = 0.98  = 

 dashed lines). The fiber parameters used correspond to experiment that use an anomalously 

dispersion fiber with 2 = - 7.6 10-3 ps2/m and  = 1.7 10-3/W/m. We plot the orbits for three values 

of P : 22, 23 and 24 dBm (green, purple and red lines, respectively) that exceed the power (21.7 

dBm) associated with the maximal small-signal gain at the modulation frequency 
m /2  = 40 

GHz. The trajectories are closed orbits that, for a given average power, never cross. The orbits 

obtained for  =   are localized on the right-hand side of the ideal FWM separatrix orbit and are 

followed counterclockwise, whereas orbits obtained for  =  are on the left side and are followed 

clockwise. For our values of  very close to unity, when they approach the central part of the phase 

plane, both orbits are in the vicinity of the separatrix. 

 If there exists no limitation in possible values of  , any two points on the phase diagram 

can be in principle connected. Indeed, if two points are part of the same orbit, then, according to 

the four-wave ideal model, they share the same values of  and H. It is therefore possible to derive 

a value of  would connect two arbitrary states (1 1) and (2 2). Indeed, assuming the 

conservation of the Hamiltonian H(1 1) = H(2 2), Eq. (4) leads to : 
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Except for the case 1=2, where no solution exists except for the trivial case where 1 = ± 

2, we see that two arbitrary points can indeed be connected. However, one has to take into account 

several strong restrictions regarding the accessible values of   : the dispersion regime limits, for 

a given fiber,   to positive or negative values, while the ratio 2/ is not fully flexible either, and 

moreover the total power  P has to be limited so as to remain in the framework of Eq. (3). 

Therefore the approach based on Eq. (7) only cannot in practice be applied in a straightforward 

manner. Consequently, when min<  < max, a different strategy has to be developed. One example 

of the typical problem we want to solve is to find a way to propagate from an input (IN IN) to 

output parameters (OUT OUT) that cannot be located on the same orbit for the range of  under 

investigation. Figure 1(a) illustrates this problem with the input (IN IN) being (0.98  ) (red 

diamond) and the output (OUT OUT) being (0.98 ) (cyan diamond). The input and output being 

located on different sides of the separatrix, it is in principle impossible to connect them. In order 

to overcome this fundamental limit, we must imprint a change in the physical parameters of the 

system. Such an approach has been investigated for example to freeze the evolution of a breathing 

state evolution in split-dispersion cascaded photonic crystal fibers [15] or more recently in the 

context of control of oceanic waves that are also described by the NLSE equation [16]. In both 

cases, the change was affecting the dispersive or nonlinear properties of the propagation medium 

with for example a change in the optical fiber design [15] or an abrupt change in the depth of the 

water flume [16], enabling the conversion of an Akhmediev breather into a dnoidal wave. More 

generally speaking, it has been theoretically discussed that the parameter  is the crucial control 

parameter to act on the breathing state properties and reach a stationary point [17].  

 In this contribution, we explore a more general approach where we do not limit our analysis 

to a target state being a stationary point. We want to connect two arbitrary states of the phase plane. 

In order to modify the control parameter , we physically rely on an abrupt change of the average 

power P. Indeed, the average power strongly influences the trajectory as well as the location of the 



separatrix, as experimentally demonstrated in [8]. min  and  max  will in this case be defined by the 

maximal and minimal values of the power Pmax and Pmin that are available. A single change is 

required when the switching point is chosen with care. Indeed, as shown in Fig. 1(a), for a good 

combination of input and output powers PIN and POUT, crossing between the two orbits (including 

in one case (IN IN) for power PIN and in the other case (OUT OUT) for power POUT) may occur. 

The crossing points are marked with black dots in Fig. 1(a) where we can make out that with a 

combination of only 2 powers chosen among 3 discrete possibilities, 6 crossing points may exist. 

 As the power can be selected on a continuous range, the number of possible combinations 

is in fact much higher. In order to find more systematically all the switching points (S ; S) that 

are possible for min< < max,  we scan the full space (TMP ; TMP). Using Eq. (7), we determine 

the values IN out OUT  required to connect (IN IN) to (TMP ; TMP) and  (TMP ; TMP) to 

(OUT OUT), respectively. If both IN out OUT  are confined within [min ; max] then (TMP ; TMP) 

represents a possible switching point. This leads to the colored area in Fig. 1 (b)) obtained for   

[-1.9 ; -1.2] (corresponding to powers between 22 and 24 dBm). 

 The question that then arises is the choice of the optimal switching point. Here, we define 

this optimal solution as the solution leading to the shortest propagation distance, but other criteria 

can be chosen. To answer this, we performed numerical simulations of the system to evaluate the 

physical distance of propagation to link (IN IN) to (OUT OUT) with a single power change in 

between. Results are plotted with a colormap in Fig. 1(b) that stresses that, according to the choice 

of PIN and POUT, the distance to be involved may vary by 24 % from 16.19 km to 20.65 km. The 

optimum combination is found to be PIN = 23.47 dBm (IN= -1.35) and POUT = 23.99 dBm (OUT= 

-1.20) leading to the trajectory plotted in red (when the power is PIN)  and in cyan (when the power 

is POUT). The location (S ; S) at which the power switching occurs is highlighted on the phase 

plane by a black circle and can also be seen in Fig. 1(c) where the longitudinal evolution of the 

average power is displayed.   



 
Figure 1. (a) Phase space portraits. The orbits including the states (IN =0.98 IN = ) and (OUT = 0.98 OUT  = ) are plotted 

with dashed and dotted lines respectively. Results for average powers of 22, 23 and 24 dBm are plotted with green, purple 

and red colors respectively. The black circles highlight the crossing points of two trajectories. (b) Optimal trajectory 

followed from (IN IN) to (OUT OUT) (solid line). The orbits including the input and output states are plotted with dashed 

lines. The part corresponding to the average power PIN  and  POUT  is plotted with red and cyan colors respectively and the 

switching point is marked with a black circle. The area corresponding to possible switching locations according to the 

combination of input and output powers is colored with a colormap linked to the distance needed to link the test states. 

(c) Longitudinal evolution of the average power used for the optimum solution. 

  



3. Experimental setup 

Experimentally recording the longitudinal evolution of the optical field remains a hard task. 

In order to avoid destructive approaches such as cut-back measurements [18] or the involvement 

of multiple fiber segments [19], various techniques have been tested: advanced shaping of combs 

[10], distributed optical time domain reflectometry [20, 21] or evolution in a recirculating loop 

[22, 23]. However, generation of new unwanted spectral lines resulting from the cascading of the 

four-wave mixing process remains an issue, as well as the impact of losses that have to be managed 

with extreme care. By using iterated programmed initial conditions that are sequentially reinjected 

into the fiber under investigation, the experimental approach we implemented relaxes those 

constraints. The setup is identical to the one detailed in [8] and is shown in Fig. 2. It relies on 

optical components from the telecommunication industry. A continuous wave (CW) laser 

operating at 1550 nm is first sinusoidally modulated using a 40-GHz phase modulator (PM) to 

create an equispaced frequency comb. The RF amplitude of the modulation is chosen so as to 

approach a level of the three central optical components to be roughly equal. The resulting 

symmetrical comb is then processed using a programmable filter [24] to tailor the pump and the 

two coherent seeds with the target i and i, and to filter out any unwanted higher order harmonics. 

The comb is then amplified by an erbium-doped fiber amplifier (EDFA) that delivers a constant 

average power P that can be varied between 22 and 24 dBm ( between -1.9 and -1.2).  

 Propagation occurs in a 500 m length of fiber with the dispersive and nonlinear parameters 

as given in the previous section. The impact of losses over such a distance is negligible and does 

not require any compensation schemes. The length of the segment has been chosen as a tradeoff 

between the sensitivity of the detection of the changes of the wave properties (enough dispersion 

or nonlinearity should be accumulated) and the appearance of detrimental effects such as Brillouin 

or Raman scattering. We have also checked that, with half a kilometer propagation distance, the 

growth of additional sidebands remains low enough so that the framework of a degenerate four-

wave interaction remains valid. 
 



 
Figure 2. Experimental setup. PC: polarization controller. Att: Attenuator. OBPF: optical band pass filter. PD: photodiode. RF 

amp: Radiofrequency amplifier. Other abbreviations are described in the text. 

 

The output signal is split into two channels in order to simultaneously record both spectral 

phase and amplitude. An optical spectrum analyzer (OSA, resolution 0.1 nm) provides directly the 

ratio i+1. The spectral phase offset i +1 is retrieved from the temporal delay between the central 

and lateral sidebands as measured by photodiodes connected to a high-speed sampling oscilloscope 

(bandwidth of the optoelectronic chain being larger above 40 GHz). 

 The process is then iterated and the experimentally measured values are imprinted as new 

inputs. Note that we recently proposed an alternate method benefiting from machine learning 

strategies based on a large set of initial random measurements that are then processed using 

artificial neural networks [25].  

 The transition between the two orbits connecting (IN ; IN)  to  (OUT ; OUT) is achieved 

using a change between two measurements in the average power of the wave, switching from PIN 

to POUT after the prescribed propagation distance is attained. Using the power as a tuning variable 

in the control parameter  provides much more flexibility than abruptly changing the dispersive or 

nonlinear waveguide properties for which only a few values are available and that require a 

replacement of the fiber. Note that given the discreteness of the propagation distances under 

investigation (the distances being multiples of the 500m length of the fiber segment), we cannot 



carry the change in power at the exact distance predicted by the numerical analysis. We therefore 

monitor when (i+1 ; i+1) approaches (S ; S) by checking the distance Di+1 (when plotted on the 

phase plane) between the state i+1 and the switching point. When we operate in the vicinity of the 

switching coordinates and when Di+1 > Di , we update the state back to (i ;  i) and carry out the 

power change. By doing so we take into account possible deviations from the theoretical model, 

and we approach the switching position at the nearest.  

 

4. Experimental results for the trajectory manipulation  

 Let us first discuss the case where the input and output state lies on the same side of the 

separatrix. We have considered here two examples summarized in Fig. 3, with panels (1) and (2) 

corresponding to cases where the two states lie on the right and left sides of the separatrix, 

respectively. The input and output states have been chosen with the same phase ( = 0 or ), but 

similar results could be obtained with different values. The target is to connect (1IN =   ) to 

(1OUT=  ) (case 1) and  (2IN =   ) to (2OUT=   ) (case 2). Panels (a) are obtained 

from numerical simulations and show the area where the power switch should be achieved when 

the average power available ranges between 22 and 24 dBm. Note that the higher the range of 

power available is, the broader this area is. The optimum combination is marked with a black circle 

and corresponds to a power change from P1IN =  dBm to P1OUT =  dBm (case 1) and from 

P2IN =  dBm to P2OUT =  dBm (case 2). Whereas in the case 1, one has to increase the 

power in order to reach a point in an inner orbit, this is the contrary in the second case. The 

corresponding switching propagation distance predicted by numerical simulations occurs at 6.5 

km and 11.5 km, for case 1 and 2 respectively.  

 The longitudinal variation of the average power that has been experimentally implemented 

is plotted on panels (b). The corresponding trajectories mapped on the phase-space portraits are 

reported on panel (c). Given the granularity of the distances involved in the experiment as well as 

some sources of errors in the measurements of the wave parameters, some deviations would appear 

with respect to the ideal orbits. However, those discrepancies remain very slight so that, for these 

two cases, we can convincingly validate the numerical predictions and conclude to the efficient 

control of the trajectory.  

  



 
 
 
 
 
 

 
Figure 3. Illustration of the trajectory connecting two states located on the same side of the separatrix. Panels (1) deals 

with (1IN =   ) to (1OUT= 0.80  ) whereas panels two investigate and  (2IN = 0.90  ) to (2OUT= 0.80  )   (a) Input 

states (IN IN) and connected states (OUT OUT) (red and cyan diamonds, respectively). The area corresponding to possible 

switching locations according to the combination of input and output powers is colored with a colormap linked to the 

distance between the two states estimated by numerical simulations. The optimal switching point is marked with a black 

circle. (b) Longitudinal evolution of the average power used for the optimum trajectory experimentally implemented.  (c) 

Trajectory followed experimentally from (IN IN) to (OUT OUT) (solid line). The orbits including the input and output 

states are plotted with dashed lines. The part corresponding to the average power PIN  and  POUT  is plotted with red and 

cyan colors respectively and the switching point predicted by numerical simulations is marked with a black circle.  

  



 In a second set of experiments, we investigate the connection between two states that are 

located on both sides of the separatrix, i.e. (IN = 0.90  IN =  ) to (OUT = 0.90 OUT = 0)  

Following an analysis similar to the one reported in the previous section, we found numerically 

the optimum switching point. The experimental validation is summarized in Fig. 4 and further 

validates our approach to this challenging target. Once again, a single change of average power by 

less than 2dB imprinted at a distance of 6.5 km was required to efficiently reach the output. As in 

the experiment reported in Fig. 3(c2), the slight mismatch between the experimental output state 

and the target is mainly due to the finite length of 500m of the segments of fibers (as the power 

involved here is quite significant, the discreteness of the states that are accessed becomes more 

visible). 

 

 
Figure 4. (a) Trajectory followed experimentally from (IN = 0.90  IN =  ) to (OUT = 0.90OUT = 0) (solid line). The orbits including the 

input and output states are plotted with dashed lines. The part corresponding to the average power PIN  and  POUT  is plotted with red and 

cyan colors respectively and the switching point predicted by numerical simulations is marked with a black circle. (b) Longitudinal 

evolution of the average power used for the optimum trajectory experimentally implemented. 

 
 
  



5. Conclusions  

 To conclude, we have demonstrated here that the four-wave mixing interaction in optical 

fiber can be efficiently manipulated by using a control parameter such as the total power. A single 

local and abrupt change of the average power after a well-chosen propagation distance enables one 

to manipulate the trajectories and to jump from one orbit to another. This allows us to connect two 

states even if they lie on different sides of the separatrix. A simple and general methodology to 

select the suitable switching states has been presented, and experiments taking advantage of 

iterated programmed initial conditions confirm this approach. Three examples have been 

discussed, but we have also successfully tested many other combinations of input and output states. 

Whereas our demonstration is made in the framework of dynamics strictly ruled by a non-cascaded 

four-wave mixing, the proposed scheme could also be relevant to process NLSE-based dynamics. 

 Although we have focused our investigation here on the use of a single change of power in 

a focusing nonlinearity where the input and output average powers are the degree of freedom, this 

work can be further extended in many directions. First, one may choose to fix the input and output 

powers. In that case, if the input and output orbits do not cross, a third power level will have to be 

involved as an intermediate stage. Then, more advanced longitudinal variation profiles could be 

considered [26] with the goal for example being to decrease the distance required to perform the 

adiabatic transition between the two states. Such an analysis could also be of interest to better 

understand the impact of losses or distributed amplification such as Raman scattering [27]. In that 

context, our experimental setup is well suited to approach a continuous power profile with a set of 

500m steps. Finally, dynamics involving 4 symmetrical spectral lines could be considered, the 

orbits being followed being more complex [28]. 
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