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Abstract. Emergency call centers are often required to properly assess
and prioritise emergency situations pre-intervention, in order to provide
the required assistance to the callers efficiently. In this paper, we present
an end-to-end pipeline for emergency calls analysis. Such a tool can be
found useful as it is possible for the intervention team to misinterpret the
severity of the situation or mis-prioritise callers. The data used through-
out this work is one week’s worth of emergency call recordings provided
by the French SDIS 25 firemen station, located in the Doubs. We pre-
process the calls and evaluate several artificial intelligence models in
the classification of callers’ situation as either severe or non-severe. We
demonstrate through our results that it is possible, with the right selec-
tion of algorithms, to predict if the call will result in a serious injury
with a 71% accuracy, based on the caller’s speech only. This shows that
it is indeed possible to assist emergency centers with an autonomous tool
that is capable of analysing the caller’s description of their situation and
assigning an appropriate priority to their call.

Keywords: Emergency Calls · Text Classification · Transformers · Speech-
To-Text · Machine Learning · Audio Processing.

1 Introduction

Speech is the main form of communication in human conversations. The analysis
of speech can provide many insights that characterize a conversation’s intent,
nature, emotions... and many more indicators. As such, a speech analysis system
can prove to be useful in various contexts.

One such domain is emergency call centers, as they can sometimes face an
overload of calls, which in turn leads to mis-prioritisation of the cases. Given
that early medical interventions can lead to less fatalities in the cases of severe
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injuries, it seems that the assistance of operators in their job is essential. This
is the case of French Emergency centers for example. In France, just as 911
operators handle emergency situations in the U.S., this work is handled by the
SDIS (Service Départemental d’Incendie et de Secours) department of a specific
region. They are call centers operated by firemen, and they handle emergency
situations in that area 24/7. Following emergency calls, some situations often
require the intervention of an emergency team, and as such, there is always a
risk of misinterpreting the needs of the intervention i.e. number and nature of
resources needed, etc.

Fig. 1. Emergency phone calls processing pipeline.

Therefore, in this work, our goal is to implement a speech analysis system for
emergency centers, and eventually answer the following question: Is it possible
to manage incidents more efficiently through a system that can process a phone
call, and thereby provide a relevant assessment of the emergency at-hand ?

This article describes our attempt to develop a prototype that aims at as-
sisting operators in handling emergency situations by automatically analysing
incoming phone calls and assessing the severity of the caller’s situation. The
emergency calls used in this work are equivalent to one week’s worth of real-
life calls provided by the French SDIS 25 firemen station, located in the Doubs
region of France.

The starting point of our pipeline is a "voice activity detection" block. This
allows us to extract intervals that contain speech activity in the audio streams
and discard segments where speech is absent. The next step is the application
of speaker diarization on each audio file to extract the caller’s speech into a
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separate signal. Two speech-to-text systems are then evaluated in the automatic
transcription of the audio files into text. And finally, we implement an analysis
block, which consists of a classifier that labels the transcribed text as a "high
severity" case or a "low-severity" case. Our experiments show that it is possible
to predict the severity of an emergency call with a 71% accuracy based on the
caller’s speech only. This result is highly influenced by the choice of classifier
and speech-to-text system.

The remainder of the paper is structured as follows: Section 2 covers related
works that tackle emergency calls categorisation. The proposed methodology for
labeling the calls is described in detail in Section 3. The experiments and their
evaluation are reported in Section 4. Finally, a conclusion, some limitations of
the work and possible future directions are summarized in Section 5.

2 Related Work

Various works have attempted to use speech analysis in healthcare applications,
specifically in diagnosing callers to an emergency department with a specific
condition. The work in [8] uses a machine learning framework developed by a
Danish company to predict cardiac arrests based on automatic transcriptions
of a call. The framework achieved a higher sensitivity compared to the medi-
cal dispatcher (84.1% vs 72.5%). In [6], the authors describe their study with
multiple machine learning classifiers in the classification of manually annotated
emergency calls transcriptions into a pre-hospital diagnosis. They do not use
the text as is, but rather extract descriptors such as TF-IDF embeddings [33],
and train several machine learning algorithms (SVM, Linear Regression...) us-
ing these feature vectors. Their most accurate model, an SVM using TF-IDF,
achieves a 95% accuracy on unseen data. In our work, we attempt to provide a
more generalised analysis of the situation at-hand and assess its risk regardless
of the diagnosis. The work in [30] attempts to automate the prioritisation of 911
calls using SVM algorithms with written transcriptions of the calls provided by
a security service, using techniques such as lemmatization and pruning. Their
model labels the call as either high-priority or low-priority. Its best result is a
recall rate of 86%, a precision rate of 75%, and an f1-score of 80%. In our case,
considering that our aim is to predict the severity of the call as quickly as pos-
sible before the intervention of the firemen’s team, using deep learning methods
would provide a better performance as they can act as feature extractors without
the need for an additional pre-processing step [22].

With the emergence of transformer-based language models, most works have
shifted their focus on models such as GPT [35] and BERT [36], which require less
text pre-processing, and are available in pre-trained versions on various language-
understanding work. One such use of transformers is [17], where the authors
attempt to associate a diagnosis to each transcription of an emergency call in
a French medical emergency department. The authors pre-train the generative
model GPT-2 in an unsupervised manner on a subset of the dataset, then re-
train this model on the classification of another part of the annotations. The



4 M. Abi Kanaan et al.

used dataset is a collection of reports made by intervening physicians, medical
assistants, and paramedics. Their f1-scores on each class range from 47.9% to
80%. Similarly, [37] use a pre-trained Chinese BERT to automatically categorise
emergency reports with a 91.55% weighted f1-score. The model is trained with
a custom loss function in an attempt to overcome the data imbalance issue in
their dataset. In our work, given that we are in a binary classification scenario,
the data imbalance issue can be resolved by randomly and manually removing
samples from the dominating class, which leaves us with a well-balanced dataset.

What sets our work aside from the previously described papers is, first, to
the best of our knowledge, no work has attempted to develop an end-to-end
pipeline to assess emergency calls’ severity in a center. Furthermore, our aim
is to detect potentially severe calls, regardless of the diagnosis of the caller. A
fall for example can at times seriously injure an individual, while at other times
lead to minor or no injuries. This aspect of our data increases the difficulty of
our task. We hope that our text analysis component will be able to pick up on
specific cues, terms, or patterns in the caller’s speech that can go undetected by
the operator, in order to predict the possible outcome of the situation. As such,
we attempt to perform classification of automatically annotated call recordings,
which poses an additional challenge compared to the previously described works,
as the transcribed text can contain many errors. To implement the analysis
block of our pipeline, transformer-based models seem to be more suitable in our
case, as they require less text pre-processing, which is ideal for a future real-
time implementation of the system. In addition, we lean towards pre-trained
BERT models as opposed to GPT models as in [17], since GPT is originally a
generative model [35], and requires an additional step of unsupervised learning
on our dataset.

3 Methods

3.1 Dataset

As previously mentioned, the emergency calls used in this work were provided
by the SDIS 25, an emergency department in the Doubs region in France. The
dataset consists of one week’s worth of data, i.e. 904 audio recordings of phone
calls in the French language in WMA format. This dataset was constructed by
filtering out some of the calls provided by the SDIS: calls between operators,
calls between operators and policemen, calls between medical professionals and
dispatchers... These conversations are irrelevant to our task since they often
discuss the details of a specific intervention on site, whereas our goal is to evaluate
the needs of the intervention before the team goes through with it, and based
only on the analysis of a non-professional’s speech.

Some statistics regarding the duration and number of words of the calls on
each version of the dataset post-processing (Callers-Only/Callers-Operators, see
next section), are reported in Table 1. A typical conversation consists of the
operator interrogating the caller to gather information and provide help to the
victim. The recordings are accompanied by a file that includes the reason of the
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call (e.g car accident, loss of consciousness...) and the state of the victim after
the intervention, which consists of three possibilities: lightly injured, severely
injured, or deceased. Since "deceased" is a minority class, it was grouped with
the "severely injured" category. As such, a "lightly injured" label describes minor
injuries such as scratches, small fractures, small wounds... and so on, whereas
a "severely injured" label can mean the victim is either deceased or severely
wounded. It should be noted that the level of injury does not always depend on
the diagnosis in some cases. If, for example, a victim was drowning and the team
was able to intervene early, the victim would likely have no injuries. Similarly,
a minor fire in a caller’s kitchen could grow and result in major injuries in case
the team arrives late on site. This is one imperfection in our dataset that makes
the prediction of the severity more challenging.

A confidentiality agreement was signed with the SDIS that restricts us from
sharing the dataset and the text classification model, since the latter could leak
callers’ data if shared with a third-party.

In this work, we are interested in labeling a call as either "low-severity",
which consists of the "lightly injured" cases, or "high-severity" which includes
the "severely injured" calls. In the cases where the same call is related to several
victims (in the case of a car accident for example), where each victim has a
different level of injury, we include the call once with the most severe injury
as the label. We balance out the dataset by manually removing some examples
that are labeled "lightly injured", since these types of injuries are more common
than the severe ones. The resulting dataset is therefore made up of 49.78% "low-
severity" calls, and of 50.22% "high-severity" calls.

Table 1. Statistics about the datasets used in this work.

Min Max Average
Callers-Only Call length (seconds) 4.25 410.77 136.84

Number of words in call 76 8257 2502
Callers-Operators Call length (seconds) 8.5 540.91 207.88

Number of words in call 144 8985 3814

3.2 Audio pre-processing

Speech Detection and Speaker Diarization The emergency calls record-
ings in question contain many parts that are irrelevant to our task and could
introduce additional noise. Such parts include the answering machine and the
waiting music sounds, or the parts where the caller is waiting for someone to
answer their call and there isn’t any voice activity. For this reason, we apply
Voice Activity Detection (VAD) on these recordings to extract the segments
that contain voices. VAD allows the detection of speech regions in a given audio
recording. Many studies [27, 5, 10] have shown that the application of voice ac-
tivity detection in speech-analysis systems can produce cleaner data and achieve
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a higher performance. We implement this using Pyannote.audio, an open-source
collection of neural building blocks for speaker diarization [9]. In addition, since
the aim of this work is to predict if a caller is seriously injured or not through the
analysis of their speech, our work requires an additional step of extracting the
caller’s speech into a separate signal. As such, we created a Speaker Diarization
block with the use of Pyannote.audio [9].

Fig. 2. Emergency call recordings pre-processing phase.

The reason for choosing the aforementioned solution is that it is open-source
and can be used offline, meaning that the data will remain protected and uncom-
promised. In addition, Pyannote.audio provides a pre-trained model for speaker
diarization, which eliminates the need to train a model from scratch. It also pro-
vides the lowest recorded diarization error rate (DER) in the literature, when
tested on French "ETAPE" corpus [9]. Once we obtained the segments for each
speaker, we manually separate the segments of the caller and the operator. We
aim to automate this process for the real-world application of our method by
training a model that could automatically recognize the operator’s speech.

We finally re-join the segments of each speaker to obtain one complete audio
recording for each speaker. The audio pre-processing phase is illustrated in Figure
2.

As illustrated in Figure 3, we later train several classifiers separately on two
versions of the dataset: one with the callers-operators dialogues, and one with
only the caller’s speech. We then evaluate the trained models and compare the
results obtained on each version of the dataset.

Speech To Text For the Automatic Speech Recognition (ASR) component, we
compare two speech-to-text systems: Whisper [34] and Vosk API [2]. Whisper is
a simple encoder-decoder Transformer [34], trained on 680,000 hours of diverse
multilingual data collected from the web. VOSK API is a speech recognition
toolkit based on Kaldi [2]. It offers various language-specific models, in both
large and lightweight versions of the models. The first reason for choosing both
of these systems is that they are open source and offline, which ensures that
the privacy of our dataset remains protected. A second reason is the proven
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efficiency of both of these systems on the French language. Whisper has achieved
low word error rates (WER) on several French datasets [34], as the highest WER
for the large version is 14.7%. Vosk API has been equally successfully used in
French speech transcription applications [15], achieving decent word error rates
compared to Google Cloud’s Speech-To-Text [1]. We select the large version of
the multilingual Whisper and the French Vosk.

Fig. 3. Training of classifiers on callers-operators speech vs. callers-only speech.

3.3 Emergency Call Severity Prediction

In this section, we describe the implementation of machine learning and deep
learning algorithms to predict the severity of a call, equivalent to the level of
injury of the victim. On the one hand, we attempt to analyse the audio calls
as they are, by training machine learning algorithms on their acoustic features.
On the other hand, we use NLP methods to analyse the transcriptions of these
audio calls. These methods range from simple models such as LSTMs and CNNs,
to more advanced models such as transformers. We then compare the results
obtained using each approach.

Audio Classification For this implementation, we fragment each audio file
into 10 seconds long fragments, as in several speech classification works [25,
21]. The fragments are overlapped by 5 seconds in order to minimise the loss
of context in the speech post-fragmentation. We then extract a set of acoustic
feature vectors for each audio fragment using Librosa [28] at a sample rate of
8000 Hz. We choose to extract 40 Mel Frequency Cepstral Coefficients (MFCCs)
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for each fragment. MFCCs are frequently used to represent speech [24, 7], as they
can represent sound as it is heard by the human ear.

We train our machine learning model in a speaker-independent manner,
meaning we completely separate all fragments and avoid fragments leaking from
speakers that are included in the test set. As for our audio classifier, and given
the fact that our dataset is of a relatively small size for complex audio applica-
tions, we opt for machine learning algorithms instead of deep neural networks,
as they can achieve decent results on limited data. We train and evaluate an
XGBoost model [11] on the MFCC features, since it has been proven that they
can achieve competitive results in several audio classification tasks in a clinical
context [24, 18].

Transcriptions Classification Most NLP applications nowadays have moved
from using RNN-based models, such as LSTMs and GRUs, to using transformers,
a type of neural network that utilizes self-attention to learn context in text [29].
CamemBERT [26] is a pre-trained French transformer, based on the RoBERTa
architecture (robustly optimized BERT pretraining approach) [23], a variant of
BERT [36]. The BERT models [36] are multipurpose pre-trained models that
can be trained on several NLP tasks such as text classification, named entity
recognition, and many more tasks.

Several steps are required to fine-tune CamemBERT on our dataset. The text
is first tokenized with the uncased CamemBERT tokenizer. All transcriptions are
either truncated or padded to match a maximum length that we set based on
the results of a hyperparameters search (described in the next section). Finally,
we use attention masks to allow the model to differentiate between padded and
real tokens. We use the base CamemBERT model, and fine-tune it with a single
linear classification layer.

In order to obtain a better idea of the difficulty of our text classification
task, we establish additional baselines that can be compared to our BERT-
based approach. A first baseline is a simple LSTM network, that consists of
an embedding input layer, followed by three LSTM layers of size 256, and a
30% dropout layer to reduce the effect of overfitting. The second baseline is an
optimized version of the well-known TextCNN model [19]. Some works, such
as [16], have demonstrated that CNNs or Hierarchical Neural Networks, can
sometimes achieve better results in clinical text classification tasks, compared to
BERT. For this reason, we implement a state-of-the-art version of the TextCNN
architecture [38].The network consists of three Convolutional 2D layers, each
with 512 filters of sizes 2,3,5 respectively. Once convolution is applied on the
text matrix, it is followed by a 1-max pooling layer, which extracts the largest
number from each feature map. The resulting feature vectors are concatenated
into one, and followed by a final layer with sigmoid activation function to output
one of the two labels. We use the GloVe multilingual 300 dimensional embedding
[32] to represent our vocabulary in both the LSTM and TextCNN. Our final test
is a multi-lingual approach using the XLM-RoBERTa model in its base version
[12]. XLM-RoBERTa was pre-trained on a massive corpus from 100 languages,
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making it a strong candidate for use in multilingual applications and in the
support of cross-lingual language processing tasks.

4 Experiments and Evaluation

4.1 Experiments and Hyperparameter Tuning

The training computations are completed using the PyTorch [31] and XGBoost
[3] frameworks on an NVIDIA Tesla V100 GPU with 32 GB of memory. Across
all our experimentations, we split the dataset using the 80/10/10 method: 80%
training data, 10% for validation, and 10% for testing, and report the mean
accuracy of 10-fold cross-validation runs. First, we perform a hyperparameters
selection for our deep learning models through the Grid Search approach, using
Optuna library [4]. For the optimisation of CamemBERT, we base our search
on the range of values recommended by BERT’s authors [14]. The obtained
hyperparameters for all models are reported in Table 2. Developed models are not
necessarily the same depending on whether the operators’ speech is integrated
or not. Consequently, their parameters also change. The operators line of this
table indicates if, in this model, the operator’s speech is present ("w" for with),
absent ("wo" for without). In the case where the same hyperparameters have
been chosen, independently of the presence of the operator’s speech, w/wo (for
with or without) is shown.

Table 2. Optimized hyperparameters of the classifiers obtained using a Grid Search.

Hyperparameters CamemBERT XLM-RoBERTa TextCNN LSTM XGBoost
Operators w wo w/wo w/wo w/wo w wo
Sequence Length 384 512 512 512 512 - -
Learning Rate 3e-5 5e-5 5e-5 6e-4 1e-4 1e-4 1e-3
Epsilon 1e-7 1e-5 1e-5 - - - -
Decay - - - 1e-6 1e-6 - -
Batch Size 16 8 8 8 8 - -
Estimators - - - - - 1e4 1e4
Max Depth - - - - - 9 9

Given that the maximum supported sequence length in CamemBERT is 512,
we process our text to match this length for the training of the TextCNN and the
LSTM, in order to allow all models to learn from the same context. This leads
to the discarding of words beyond the 512th word, since the average sequence
length ranges from 2502 to 3812 (see section 3.1). Even though some informative
parts are lost, we don’t consider this a limitation, since our end goal is to assist
emergency center operators before the end of the call, with a minimal amount of
speech content. We train CamemBERT on each run for 15 epochs instead of the
recommended number of 4, since we found that training the network for longer
led to higher accuracies on the test set. For each run, we evaluate the model on
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the test set after each epoch, and select the model with the highest accuracy
among all 15 epochs. The same procedure is applied to XLM-RoBERTa.

As mentioned in Sect. 3.2, we separately train our models twice: first on
the callers-operators transcriptions, and then on the callers-only transcriptions.
Finally for the training of the LSTM and TextCNN, we use early stopping to
interrupt training when the validation loss stops decreasing, and checkpoint the
model with the lowest validation loss. We use the Adam optimizer [20] as all the
networks’ optimiser.

4.2 Results

We report in Table 3 the mean accuracy with a 95% confidence interval of
the 10-fold cross validation runs for each model. The scores are reported for
each combination of data type, speech-to-text system, model, and version of the
dataset.

The results show that among the tested models, the CamemBERT one that
was trained on the complete caller-operator transcriptions provided the high-
est accuracy. It achieved a slightly better result compared to the callers-only
CamemBERT. In fact, CamemBERT was able to provide approximately the
same performance with or without the operator’s part of the conversation. This
shows that in a scenario where the emergency center is trying to automatically
prioritise a call, the caller’s description of their situation would be enough for the
system to assign them a priority and assess their situation. The audio XGBoost
models obtained the lowest scores, ranging from 49.56 to 50.5%, close to the
accuracy of random binary guesses. This proves that in an emergency context,
acoustic features in a call recording on their own are not informative enough of
a caller’s situation.

Table 3. Classification accuracies for the models with a 95% confidence interval.

Data Speech-To-Text Model Callers-Only Callers-Operator
Type system Accuracy Accuracy
Audio - XGBoost 49.56 ± 2.25% 50.5 ± 0.90%
(MFCCs)

Whisper LSTM 57.83 ± 2.93% 58.22 ± 5.49%
Text Whisper TextCNN 57.56 ± 6.21% 63.96 ± 4.01%

Whisper XLM-RoBERTa 55.55 ± 3.2% 56.0 ± 2.14%
Vosk API CamemBERT 68 ± 4.29% 69.55 ± 4.64%
Whisper CamemBERT 71.2 ± 3.02% 72.3 ± 2.66%

As for the baseline LSTM and TextCNN trained on the GloVe embeddings,
they both underperfom compared to CamemBERT. They achieve similar ac-
curacies on the callers-only dataset, whereas the TextCNN performs better on
the callers-operators dataset. This demonstrates the robustness of BERT-based
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models in text classification tasks, as unlike the LSTM and TextCNN, Camem-
BERT was able to achieve decent results on automatically transcribed noisy
textual data. Additionally, the Whisper-transcribed text has surprisingly led to
higher scores compared to the Vosk API transcriptions, knowing that Whisper
is a multilingual model, while the Vosk model was specifically fine-tuned on
French language data. This indicates that the multilingual Whisper is a suitable
choice for a speech-to-text component in a call center. We can also note that the
combination of Whisper/CamemBERT achieves the most stable results, since it
has a lower margin of error (confidence interval) compared to other text models.
Finally, note that the multi-lingual XLM-RoBERTa delivers sub-par results and
seems to have difficulties to generalize good performances with a small french
dataset.

Table 4 represents the confusion matrices for the CamemBERT model for
callers-only dataset and the complete callers-operators data. The matrices show
that it is easier for both models to predict the "Low-Severity" cases than the
"High-Severity" ones. Surprisingly, the callers-only model tends to predict severe
cases slightly more accurately, whereas the callers-operators model performs bet-
ter on the non-severe cases. We plan to evaluate this further with a larger dataset
in a future work.

Table 4. Confusion matrix of CamemBERT with 71% and 72% accuracy respectively
on each testing set.

High-Severity Low-Severity
Callers-Only High-Severity TP=27 FN=18

Low-Severity FP=8 TN=38
Callers-Operators High-Severity TP=26 FN=19

Low-Severity FP=6 TN=40

5 Conclusion

In the present work, it was concluded that with the appropriate system design
choices, it is possible to predict the severity of an emergency call based on only
the caller’s description of their situation. It is worth noting that the reported
severity is the one resulting from the intervention of the emergency team, and
may not always conform to the diagnosis of the caller. This, alongside the absence
of accurately annotated calls, poses an additional challenge in this work.

The results in this study imply that the feasibility of such an application
depends on an adequate analysis of the call’s transcriptions through a BERT-
based model, preferably specific to the language of the dataset, CamemBERT
[26] for instance in the case of this work. The choice of the speech-to-text system
also highly influences the accuracy of the predictions, as unlike the classifier, a
multilingual model such as Whisper [34] is robust enough to transcribe phone
calls with a higher accuracy compared to other language-specific systems [2].
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One of the main limitations of this study is that the performance of the sys-
tem was evaluated based on the accuracy of its predictions, whereas an interest-
ing additional evaluation would be one concerning its computational efficiency,
in terms of speed and resources consumption. As such, we plan on implement-
ing several improvements to the system in the future. On the one hand, we
aim to improve our system’s predictions accuracy by augmenting CamemBERT
with the emotional features of the phone calls obtained through speech emotion
recognition models. We also aim to attempt the treatment of longer sequences of
text, using models such as Longformers [13]. On the other hand, we will evaluate
the system’s performance in terms of efficiency and inference speed, as we plan
to obtain an analysis of an emergency call as the conversation is going. To do
so, we will evaluate and optimise each of the pipeline’s components performance
separately (VAD, Speech-To-Text, CamemBERT).
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