
1

Using the Alternating Direction of Multipliers
Method for the shortest vector in a lattice

Wissam AlKendi, Stéphane Chrétien and Christophe Guyeux

Abstract

The Lenstra-Lenstra-Lovász (LLL) algorithm has been widely used for finding the shortest vector in a lattice, with applications
in cryptography, coding theory, and quantum computing. However, LLL has a worst-case exponential running time, and its practical
performance depends heavily on the lattice structure. In this paper, we propose a new algorithm for finding the shortest vector in
a lattice that outperforms LLL. Our algorithm is a stochastic version of the ADMM algorithm proposed by Takapoui, Moehle,
Boyd and Bemporad. We perform extensive experiments on various lattice structures and show that our algorithm significantly
improves the performance of LLL in terms of running time and solution quality. The results demonstrate the effectiveness and
efficiency of our approach, and provide new insights into the shortest vector problem.

I. INTRODUCTION

Constructing nearly orthogonal bases for lattices is an important problem in mathematics with multiple practical applications
such as cryptography [4]. The next figure shows an exemple of a two dimensional lattice and two different bases for this
lattice, the red one being more "orthogonal" than the black one.

Fig. 1: Two lattice bases, the red one being more "orthogonal" than the black one

The Lenstra-Lenstra-Lovasz algorithm proposed by [3] is a central tool for finding near orthogonal bases. The goal of the
present work is the present an alternative approach to the LLL algorithm based on recent techniques from optimisation theory,
namely the alternating direction method of multipliers (ADMM). In particular, we investigate the numerical performance of the
ADMM on random instances and show that is has superior performance in practice, as compared with the LLL algorithm, both
for the problem of finding a short vector in the computed basis, and for the problem of designing fast and scalable algorithms.

II. BACKGROUND ON LATTICE REDUCTION

We will use the following notations. The real vector space Rn, n ≥ 1 is provided with its Euclidean structure and the
Lebesgue measure, denoted µ. The canonical basis of Rn is denoted by (e1, e2, . . . , en). The scalar product of v, u ∈ Rn, and
the Euclidean norm of u are respectively denoted by v · u, and ∥u∥ = (u · u)1/2. To a part E ⊆ Rn, we associate the real
vector space generated by E, which we denote by⟨E⟩.

The set of matrices with n rows and m columns, with coefficients in a set S (in practice R, Q or Z) is denoted Sn×m. For
a matrix M , we denote its transpose by M⊤, its determinant by detM and its inverse matrix (when it exists) by M−1.

The Gram-Schmidt orthogonalisation plays a central role for the problem of finding a short vector in a lattice, which is our
main focus in the present paper. In the following section, we summarise the main concepts and results about the Gram-Schmidt
process.

2

A. Gram-Schmidt orthogonalisation

To a system B = (b1, . . . , bp) of p vectors of Rn, we associate the matrix whose rows are the vectors bi expressed in the
canonical basis (e1, e2, . . . , en) of Rn. This matrix will be called the row matrix of (b1, . . . , bp) and will also be, with a slight
abuse of language, designated by B. The sets Ja, bK defined by Ja, bK := [a, b] ∩ Z will be called integer intervals. The open
(resp. closed) ball of radius ρ centered at a is denoted by B(a, ρ) (resp. B̄(a, ρ)) and is as usual defined by

B(a, ρ) = {x ∈ Rn | ∥x− a∥ < ρ} , B̄(a, ρ) = {x ∈ Rn | ∥x− a∥ ≤ ρ} .

For the sake of completeness, we now give the definition of the well known Gram-Schmidt orthogonalisation.

Definition II-A.1. (Gram-Schmidt orthogonalisation, GSO). Let B = (b1, . . . , bp) be a family of linearly independent vectors
of Rn. We denote by Bi the starting family, Bi := (b1, . . . , bi) and by Hi the R-vector space generated by Bi. The Gram-
Schmidt orthogonalized family is the orthogonal family B⋆ =

(
b⋆1, . . . , b

⋆
p

)
formed by the vectors b⋆i , where b⋆i is the orthogonal

projection of bi onto the orthogonal of Hi−1. More precisely

b⋆1 = b1

b⋆i = bi −
i−1∑
k=1

mi,kb
⋆
k, with mi,j =

bi · b⋆j∥∥b⋆j∥∥2 for 1 ≤ j < i ≤ p

We also pose mi,i = 1 for 1 ≤ i ≤ p and mi,j = 0 for 1 ≤ i < j ≤ p. This Gram-Schmidt orthogonalization procedure also
constructs the matrix P ∈ Rp×p whose entry mi,j is defined above.

For simplicity, we will denote by B the matrix Rp×n whose ith row is the vector bi. If B⋆ is the matrix Rp×n whose ith

row is the vector b⋆i , then we have B = PB⋆.

Definition II-A.2. Let B = (b1, . . . , bp) and let B⋆ =
(
b⋆1, . . . , b

⋆
p

)
be the family obtained after the Gram-Schmidt orthogo-

nalisation process. The ℓ2-norm of b⋆i , denoted by ℓi, is called the ith Siegel length.

Definition II-A.3. (Gram matrix). The Gram matrix of a system B = (b1, . . . , bp) of p vectors of Rn, denoted by G (b1, . . . , bp)
or G(B), is the matrix of Rp×p defined by

Gij = bi · bj ∀i, j ∈ J1, pK.

If the rows of the matrix B are the vectors of the system (b1, . . . , bp), then the Gram matrix is written G(B) = B ·B⊤.

Then, we have

detG(B) =

p∏
i=1

∥b⋆i ∥
2
=

p∏
i=1

ℓ2i .

We now turn to the heart of the matter, namely the concepts of lattice and basis reduction.

B. Lattices

A Euclidean lattice of Rn is the set of linear combinations with integer coefficients of a family {b1, . . . , bp} of p linearly
independent vectors of Rn, called the lattice basis.

The following result is a basic rephrasing of the notion of lattice in terms of groups.

Proposition II-B.1. The following assertions are equivalent:
(i) L is a discrete additive subgroup of Rn, which generates a vector subspace of dimension p.

(ii) There exists a system B = {b1, . . . , bp} of p linearly independent vectors of Rn, for which

L =

{
d∑

i=1

xibi | xi ∈ Z ∀i ∈ J1, pK

}
.

The next result is fundamental for justifying the approach adopted in the LLL algorithm to use orthogonalised bases.

Proposition II-B.2. Let L be a lattice generated by a basis B = (b1, . . . , bp). We denote by B⋆ the orthogonalized basis of
B. Then, for all w ∈ L\{0} we have

∥w∥ ≥ min {∥b⋆i ∥ ; i ∈ J1, pK} .

We now define key quantities about lattices that relate to the length of the vectors in the lattice.

3

Definition II-B.3. The first minimum of the network L, denoted by λ1(L), is the norm of a shortest nonzero vector of L. More
generally, the i-minimum of the L lattice, denoted by λi(L), is the smallest positive real number ρ for which the closed ball
of radius ρ centered at the origin contains at least i vectors linearly of the L lattice,

λi(L) := min{ρ > 0 | dim(B̄(0, ρ) ∩ L) ≥ i}.

The following theorem by Minkowski is of great relevance, since a condition is given on the minimum size of a set to
contain at least one point in the network.

Theorem II-B.4. (Minkowski). Consider a Euclidean lattice L of dimension p. We denote by µ the p-dimensional Lebesgue
measure, and consider a subset C of the vector subspace generated by L, µ-measurable. which is convex, symmetric about
the origin, and verifies µ(C) > 2p detL. Then C contains at least one point of L.

Basis reduction is key to the construction of the LLL algorithm.

Definition II-B.5. (Informal definition of the notion of reduced basis). A basis B = (b1, . . . , bp) formed of p vectors of Rn is
a reduced basis if it is formed of short enough and orthogonal enough vectors. These criteria are measured quantitatively by
a markup of the orthogonality defect ρ(B) and the length defects θi(B) defined respectively by

ρ(B) =
1

detL(B)

p∏
i=1

∥bi∥ =

p∏
i=1

∥bi∥
∥b⋆i ∥

, θi(B) =
∥bi∥

λi(L(B))

The orthogonality defect ρ(B) is at least 1, with equality only when the basis B is orthogonal. As a lattice does not have
an orthogonal basis, we have in general ρ(B) > 1. The basis is "fairly" orthogonal when its orthogonality defect ρ(B) is
increased. The length defects are also at least equal to 1. The equalities θi(B) = 1 can only occur simultaneously when the
basis is minimal, i.e., formed by vectors realizing successive minima. The existence of a minimal basis is not always guaranteed,
as soon as the dimension p verifies p ≥ 5.

Definition II-B.6. (Reduction). Given a basis B, reducing B consists in finding an equivalent reduced basis.

A good notion of reduction must establish a compromise between the quality of the reduced basis and the complexity of
the reduction algorithm. Such a compromise is achieved by the LLL algorithm, invented by Lenstra, Lenstra and Lovász in
1982, presented in the next subsection.

C. Lovász reduced bases and the LLL algorithm

A basis (a1, . . . , an) of a lattice L of rank n in Rp is called Lovász-reduced if the lengths li of the vectors âi, i = 1, . . . , n
and the entries mi,j of the matrix m satisfy the following two conditions:

• properness:

|mi,j | ⩽
1

2
for 1 ⩽ j < i ⩽ n.

• Lovász condition:

l2i ⩽ s2
(
l2i+1 +m2

i+1,il
2
i

)
for 1 ⩽ i ⩽ n− 1, (1)

where s is a real parameter in the interval]1, 2[, that is usually chosen to be equal to t > 2/
√
3.

The LLL algorithm is defined below in Algorithm 1 and makes use of the integral part of the Gram-Schmidt coefficients.
The main result about the orthogonality defect of the LLL algorithm is the following theorem.

Theorem II-C.1. Consider a real s > 2/
√
3. The LLL algorithm constructs from a basis B := (b1, . . . , bp) whose size τ(B)

is defined as

τ(B) = Θ(pn) · logM with M = max {Bi,j ; i ∈ J1, pK, j ∈ J1, nK} ,

a basis B̂ with the following characteristics:
(i) the B̂ basis is obtained in polynomial time in the size τ(B) of the B matrix,

(ii) the orthogonality defect ρ(B̂) and the length defects θi(B̂) of the basis B̂ satisfy

ρ(B̂) ≤ sp(p−1)/2 θi(B̂) ≤ sp−1.

The main results about the computational complexity of the LLL algorithm are the following.

Theorem II-C.2. (Lenstra-Lenstra-Lovàsz, 1982). Let L ⊂ Zn a network given by a basis b1, b2, · · · , bp, and let B :=
max

{
|bi|2, i ∈ J1, pK

}
. Then, the number of arithmetic operations performed by the algorithm LLL(t) is in O

(
p3n logt B

)
,

and the operands are integers whose binary length is in O(p logB).

4

Algorithm 1 The LLL algorithm

Require: A lattice L given by a basis of vectors b1, . . . , p.
Ensure: A Lovász-reduced basis b of the lattice L.

Compute the system b̂ and the matrix P
Set i := 1;
while i < n do

bi+1 := bi+1 − ⌈mi+1,i⌋ bi
if Lovász condition (1) is true then

set i := i+ 1;
else if Lovász condition (1) is false then

swap bi and bi+1

update b̂ and m
if i ̸= 1 then i := i− 1

end if
end while

Finally, the following theorem proves that the LLL algorithm naturally provides an approximation algorithm for SVP, with
an exponential approximation factor in the dimension.

Theorem II-C.3. (Approximation algorithm for the Shortest Vector Problem). In a network of dimension p ≥ 2, the algorithm
LLL(t) is a polynomial approximation algorithm for computing the shortest vector, with an approximation factor in sp−1,
where s and t are related by the relation s2 = 4t2/(4− t2).

Given these results, we turn to the question of devising a more efficient algorithm, with better scalability than the LLL
algorithm.

III. FASTER THAN LLL : AN ADMM ALGORITHM

In this section, we take a different route in order to make the approach more scalable, namely the method described in [5].
Let us restate the problem we want to address: finding the shortest vector in a lattice corresponds to the optimisation problem

min
x∈ZJ ,z∈Rd

∥z∥22 (2)

subject to

z =

J∑
j=1

ajxj = Ax (3)

where A ∈ Rd×J is the matrix whose columns are a1, . . . , aJ .
Following the approach in [5], we introduce an ADMM type scheme that scales reasonably with the problem’s dimensions.
1) An ADMM approach: The ADMM has a long history in optimisation theory [1], and was extensively used for convex

minimisation problems mainly. It was revived recently, triggered by the recent needs for efficient methods for penalised
regression and classification in machine learning [2].

Let us start from the following problem formulation:

minimize x∈X , z∈Z f(x) + g(z)
subject to Lx+Mz = c

with variables x ∈ Rn and z ∈ Rm, where L ∈ Rp×n,M ∈ Rp×m, and c ∈ Rp. Denote

p⋆ = inf{f(x) + g(z) | Lx+Mz = c}.

Let us form the augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) + yT (Lx+Mz − c) + (ρ/2) ∥Lx+Mz − c∥22.

The ADMM iterations are given by
xk+1 := argmin

x∈X
Lρ

(
x, zk, yk

)
zk+1 := argmin

z∈Z
Lρ

(
xk+1, z, yk

)
yk+1 := yk + ρ

(
Lxk+1 +Mzk+1 − c

)
,

5

The convergence proofs are available from various sources in the convex setting, i.e. when f and g are convex functions and
X and Z are convex sets.

2) Application to the Shortest Vector Problem: In order to apply the ADMM approach, we need to reformulate our problem
as follows.

min
x∈ZJ ,z∈Rd

1

2

[
x
z

]⊤ [
0 0
0 Id×d

] [
x
z

]
(4)

subject to [
A −Id×d

] [x
z

]
= 0 (5)

and xi ∈ Xi = Z and zi ∈ R.
We can rewrite our problem :

min
x∈RJ ,z∈Rd,a∈RJ ,b∈Rd

1

2

[
x
z

]⊤ [
0 0
0 Id×d

] [
x
z

]
+ IZJ×Rd((a, b)) (6)

subject to  A −Id×d

IJ×J 0J×d

0d×J Id×d

[x
z

]
−

0d×J 0d×d

IJ×J 0J×d

0d×J Id×d

[a
b

]
=

0d×1

0J×1

0d×1

 (7)

where the last two sets of constraints reflect the fact that we need to enforce a = x and b = z. Here the IS denotes the
indicator function of the set S, i.e.

IS(y) =


+∞ if y ̸∈ S

0 otherwise.
(8)

The idea is then to solve

X =

[
x
z

]
∈ RJ+d. (9)

The iterations of the ADMM algorithm of [5] are given by the three steps :

Xk+ 1
2 = argminX

1

2
XT

[
0J×J 0J×d

0d×J Id×d

]
X +

ρ

2

∥∥∥∥∥∥
 A −Id×d

IJ×J 0J×d

0d×J Id×d

X −

0d×J 0d×d

IJ×J 0J×d

0d×J Id×d

Xk −

0d×1

0J×1

0d×1

+ uk

∥∥∥∥∥∥
2

2

 (10)

Xk+1 = P
(
Xk+ 1

2 +
[
0(J+d)×d I(J+d)×(J+d)

]
uk
)

(11)

uk+1 = uk +

 A −Id×d

IJ×J 0J×d

0d×J Id×d

Xk+ 1
2 −

0d×J −Id×d

IJ×J 0J×d

0d×J Id×d

Xk (12)

where PX denotes the projection onto X , u ∈ R2d+J and ρ ∈ R is a scalar parameter. If Xi is the set of integers, PXi

rounds its argument to the nearest integer.
Equation (10) be rewritten as

Xk+ 1
2 = argminX

(
1

2
X⊤(M1 +

ρ

2
M⊤

2 M2)X − ρY k⊤
M2X

)
(13)

where

M1 =

[
0J×J 0J×d

0d×J Id×d

]
(14)

6

M2 =

 A −Id×d

IJ×J 0J×d

0d×J Id×d

 (15)

and

Y k =

0d×J 0d×d

IJ×J 0J×d

0d×J Id×d

Xk +

0d×1

0J×1

0d×1

− uk. (16)

The derivative of
1

2
X⊤(M1 +

ρ

2
M⊤

2 M2)X − ρY k⊤
M2X (17)

is

(M1 +
ρ

2
M⊤

2 M2)X − ρM⊤
2 Y k (18)

and Xk+ 1
2 is the solution to setting this last expression to 0, i.e.

(M1 +
ρ

2
M⊤

2 M2)X
k+ 1

2 − ρM⊤
2 Y k = 0 (19)

which gives

Xk+ 1
2 =

(
M1 +

ρ

2
M⊤

2 M2

)−1

ρM⊤
2 Y k. (20)

These iterations are easy to compute, except for this last equation.

A. A stochastic version of the ADMM algorithm

In order to make the algorithm more scalable, we propose to modify the iteration (21) as follows. Notice that

M⊤
2 M2 =

ρ

2

[
A⊤A+ IJ×J −A

−A⊤ 0

]
which gives

M1 +
ρ

2
M⊤

2 M2 =

[
ρ
2IJ×J 0

0 Id×d

]
+

ρ

2

[
A⊤A −A
−A⊤ 0

]
=

[
ρ
2IJ×J 0

0 (1− ρ
2)Id×d

]
+

ρ

2

[
A⊤

−Id×d

] [
A −Id×d

]
Thus, [

A⊤

−Id×d

] [
A −Id×d

]
=

1

d

d∑
j=1

d

[
aj
ej

] [
aj
ej

]⊤
.

One simple way of proceeding in order to design a scalable approach is to replace (M1 +
ρ
2M

⊤
2 M2)

−1 in (21) with d ãjk ã
⊤
jk

,
where jk is a random integer drawn from the uniform distribution on {1, . . . , d}, i.e.

Xk+ 1
2 =

([
ρ
2IJ×J 0

0 (1− ρ
2)Id×d

]
+

dρ

2

[
ajk
ejk

] [
ajk
ejk

]⊤)−1

ρM⊤
2 Y k, (21)

which by the Sherman Morisson Woodbury formula gives the modified formula

Xk+ 1
2 =

[
2
ρIJ×J 0

0 1
1− ρ

2
Id×d

]
− d

[
2
ρIJ×J 0

0 1
1− ρ

2
Id×d

] [
ajk
ejk

] [
ajk
ejk

]⊤ [2
ρIJ×J 0

0 1
1− ρ

2
Id×d

]

1 + d ã⊤jk

[
2
ρIJ×J 0

0 1
1− ρ

2
Id×d

]
ãjk

=

[
2
ρIJ×J 0

0 1
1− ρ

2
Id×d

]
− d

[
2
ρajk
1

1− ρ
2
ejk

][
2
ρajk
1

1− ρ
2
ejk

]⊤
1 + 2d

ρ ∥ajk∥22 + d
1− ρ

2

7

The performance gain of this stochastic aglorithm in terms of scalability is studied in the next section.

IV. SIMULATION RESULTS

The proposed algorithm iterations have been developed using Python, a general-purpose programming language that possesses
several powerful modules in this research field, which will oblige the enhancement of simplicity and scalability in future
research.

Comparisons between the LLL algorithm and the ADMM algorithm have been carried out in terms of the norm value and
the execution time. However, the norm value has been calculated for the last (d) values in the result vector of the ADMM
algorithm, while selecting the minimum norm value of the result lattice vectors of the LLL algorithm. Moreover, execution
time has been measured by calculating the average time of running both algorithms 100 times per parameter value shown in
the tables (I, II, III and IV).

The detailed simulation results presented in the table demonstrate the formidable gain in efficiency provided by our ADMM
based approach in various settings, both by computational time and by the optimal value achieved by the method.

REFERENCES

[1] Ernesto G Birgin and José Mario Martínez. Practical augmented Lagrangian methods for constrained optimization. SIAM, 2014. 4
[2] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization and statistical learning via the alternating direction

method of multipliers. Foundations and Trends® in Machine learning, 3(1):1–122, 2011. 4
[3] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with rational coefficients. Mathematische annalen,

261(ARTICLE):515–534, 1982. 1
[4] Phong Q Nguyen and Brigitte Vallée. The LLL algorithm. Springer, 2010. 1
[5] Reza Takapoui, Nicholas Moehle, Stephen Boyd, and Alberto Bemporad. A simple effective heuristic for embedded mixed-integer quadratic programming.

International journal of control, 93(1):2–12, 2020. 4, 5

8

d 10 12 14 16 18 20
J 10 12 14 16 18 20
K 50 50 50 50 50 50
m -100 -100 -100 -100 -100 -100
n 100 100 100 100 100 100
ρ 0.9 0.9 0.9 0.9 0.9 0.9

ADMM smallest norm 2.789134 3.182041 4.411478 5.389277 7.09758662 7.9770541
LLL smallest norm 86.94121 115.7237 138.6946 155.179 171.4192 192.3313

ADMM time (s) 0.026558 0.034999 0.046795 0.056732 0.063938 0.078746
LLL time (s) 4.270414 10.95114 20.75395 46.5905 91.4911 185.4416

TABLE I: Parameters values and results when d = J

Fig. 2: ADMM and LLL Norm values and excution time of table I when d = J

Fig. 3

9

d 9 12 15 18 21 24
J 12 16 20 24 28 32
K 50 50 50 50 50 50
m -100 -100 -100 -100 -100 -100
n 100 100 100 100 100 100
ρ 0.9 0.9 0.9 0.9 0.9 0.9

ADMM smallest norm 1.393 1.459219 1.466071 1.868535 2.049532 2.169259
LLL smallest norm 146.2937 177.2399 211.0767 233.5362 256.3163 274.5551

ADMM time (s) 0.03822 0.047063 0.056527 0.060056 0.069806 0.078271
LLL time (s) 1.081036 4.57304 16.18809 38.37236 66.50032 129.3791

TABLE II: Parameters values and results when d < J(25%)

Fig. 4: ADMM and LLL Norm values and excution time of table II when d < J(25%)

Fig. 5

10

d 5 6 7 8 9 10
J 10 12 14 16 18 20
K 50 50 50 50 50 50
m -100 -100 -100 -100 -100 -100
n 100 100 100 100 100 100
ρ 0.9 0.9 0.9 0.9 0.9 0.9

ADMM smallest norm 8.54E-01 8.62E-01 8.81E-01 9.15E-01 0.929434 1.07E+00
LLL smallest norm 136.1071 152.1248 166.3981 185.3865 193.0321 207.7072

ADMM time (s) 0.030147 0.039204 0.04389 0.047251 0.049471 0.050611
LLL time (s) 0.074643 0.183379 0.359848 0.544247 0.850617 1.293302

TABLE III: Parameters values and results when d < J(50%)

Fig. 6: ADMM and LLL Norm values and excution time of table III when d < J(50%)

Fig. 7

11

d 3 4 5 6 7 8
J 12 16 20 24 28 32
K 50 50 50 50 50 50
m -100 -100 -100 -100 -100 -100
n 100 100 100 100 100 100
ρ 0.9 0.9 0.9 0.9 0.9 0.9

ADMM smallest norm 3.98E-01 4.40E-01 0.410317 4.41E-01 5.22E-01 0.563505
LLL smallest norm 167.0335 196.3972 224.7434 253.5314 276.5919 284.3901

ADMM time (s) 0.026392 0.035404 0.040186 0.050001 0.055244 0.057821
LLL time (s) 0.008421 0.019914 0.053227 0.106819 0.215309 0.344097

TABLE IV: Parameters values and results when d < J(75%)

Fig. 8: ADMM and LLL Norm values and excution time of table IV when d < J(75%)

Fig. 9

	Introduction
	Background on lattice reduction
	Gram-Schmidt orthogonalisation
	Lattices
	Lovász reduced bases and the LLL algorithm

	Faster than LLL : an ADMM Algorithm
	An ADMM approach
	Application to the Shortest Vector Problem

	A stochastic version of the ADMM algorithm

	Simulation results
	References

