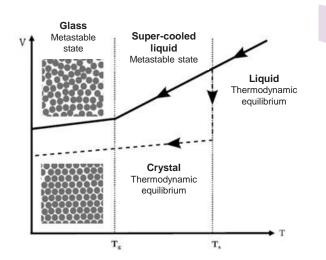


STRONG DEPENDENCE ON RELATIVE HUMIDITY OF THE TRIBOLOGICAL BEHAVIOR OF Cu-Zr BASED BMGs IN AMBIENT AIR

Solène Stoens^{1)*}, Rémi Daudin²⁾, Alexis Lenain³⁾, Sébastien Gravier³⁾, Guillaume Colas¹⁾, Pierre-Henri Cornuault ¹⁾

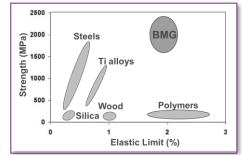
- 1) Univ. Bourgogne Franche-Comté FEMTO-ST Institute CNRS/UFC/ENSMM/UTBM,
 Department of Applied Mechanics, 24 rue de l'Epitaphe, F-25000 Besançon, France
- ²⁾ University of Grenoble Alpes, CNRS, SIMaP, 38000, Grenoble, France
- 🛂 Vulkam Inc. Amorphous metal micro casting / www.vulkam.com / France



INTRODUCTION

What is the nature of Bulk Metallic Glasses (BMGs)?

- Metallic alloys with an amorphous structure
- Since the 1980s: thanks to a fast cooling process + complex chemical composition



What are their main interests?


Exceptional mechanical properties (high yield strengh, elastic

(high yield strengh, elastic strain, fracture toughness, fatigue resistance)

- Corrosion resistance
- Net-shaped molding at microscale (low shrinkage)

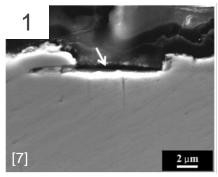
[1]

Industrial applications?

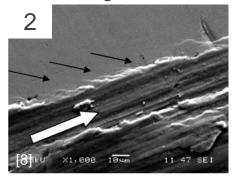
- Various engineering fields which involve contact applications: biomedical, micromechanics (microgears)
- Which performances of BMGs under tribological conditions?

[2]

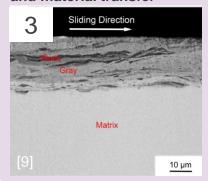
PROBLEMATIC RAISED



Most studies try to connect **tribological behavior** of BMGs to **mechanical properties** (hardness [3], toughness [4], bulk modulous [5])


→ but no common agreement arises

Salehan et al [6] suggested a classification of wear mechanisms of BMGs into 3 categories:


Microcracks, delamination and abrasive wear

Shear banding and work-softening

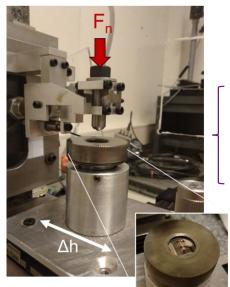
Oxide tribolayer formation and material transfer

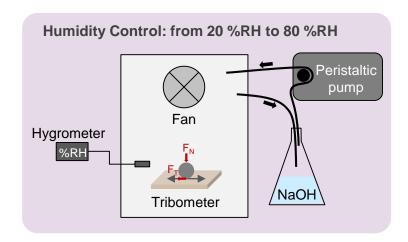
Raises the questions of...

oxide formation on BMG surface & the impact of environmental conditions

rarely questioned in the literature \rightarrow A potential impact of the humidity rate?

EXPERIMENTAL APPROACH

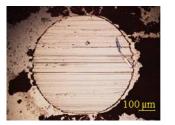

In-house designed ball-on plate tribometer (reciprocating linear)


 $(15 \times 10 \times 1 \text{ mm}^3)$

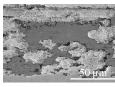
Samples preparation:

- Polishing with sandpaper (Sa = 0.07 μm)
- Ultrasonically cleaned in isopropyl-alcohol for 3 min

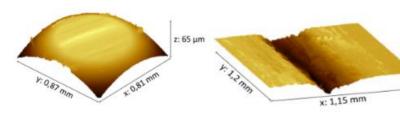
 $\Delta h = \pm 1 \text{ mm}$ f = 1 HzSliding speed = 4 mm/s $F_N = 1 N \text{ (dead weight)}$ 5,000 friction cycles



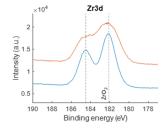
EXPERIMENTAL APPROACH

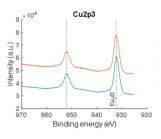

Surface characterization:

52100 ball



BMG plate

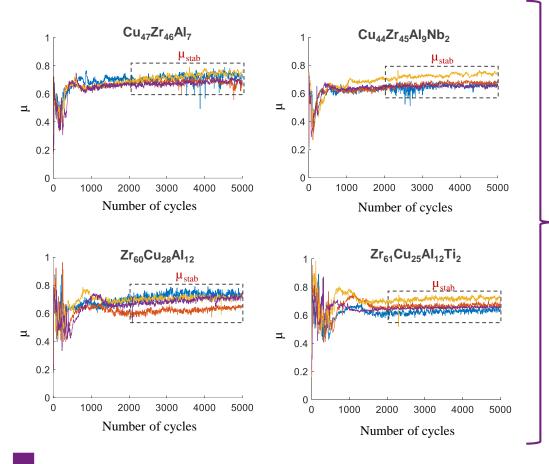

Optical & SEM observations

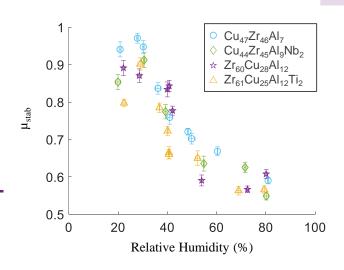


3D surface topography

z: 17 µm

variable focus optical microscope (InfiniteFocus, Alicona Imaging GmbH) → Which impact of relative humidity on the wear mechanisms?


Chemical analyses: EDS, XPS

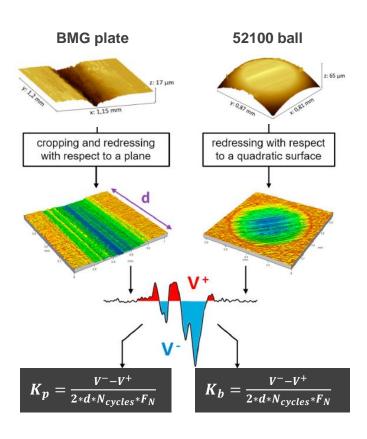


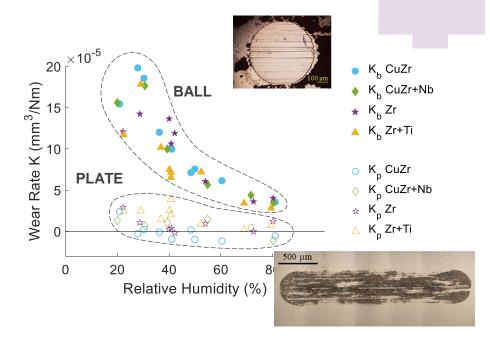
RESULTS – Humidity impact on the friction coefficient

4 tests per BMG plate were achieved at <u>50 %RH</u> to assess results reproducibility:

 μ_{stab} at varying relative humidities:

μ_{stab} highly dependent to relative humidity


 $\Delta h = \pm 1$ mm at 1 Hz, v = 4 mm/s, $F_N = 1$ N, 5000 friction cycles

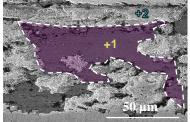


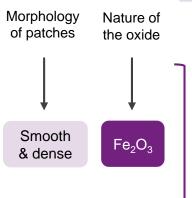
RESULTS – Humidity impact on the wear volume

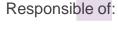
Definition of wear rate K: lost volume of matter per unit of normal force and sliding distance

K_p and K_b at varying relative humidities:

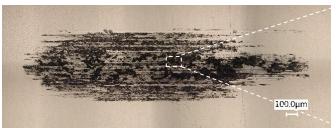
- $ightharpoonup K_{\text{ball}} >> K_{\text{BMG}}$ $H_{\text{ball}} >> H_{\text{BMG}}
 ightharpoonup counter-intuitive...}$ (820 HV and 450 HV)
- → High dependency of K_{ball} to the relative humidity

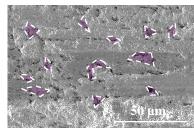


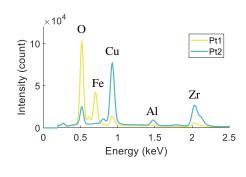

RESULTS – The role of third bodies

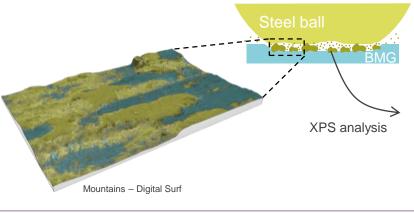

Optical and SEM observations, EDS and XPS analyses:

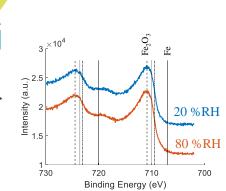
 Fe_2O_3 particles traped into the contact area \rightarrow agglomerate into 3^{rd} body patches



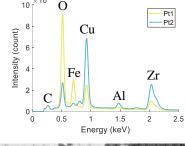


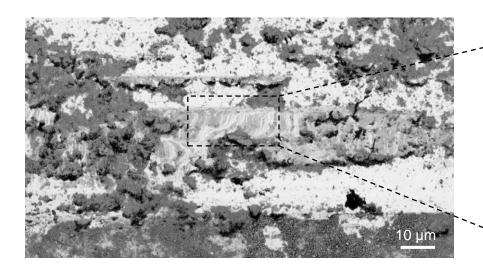


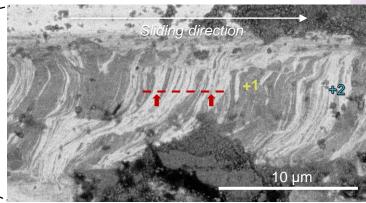

- small K_{BMG} (protective 3rd body layer)
- large K_{ball}



80 %RH

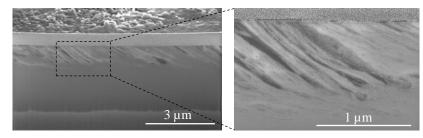

20 %RH




Fe₂O₃

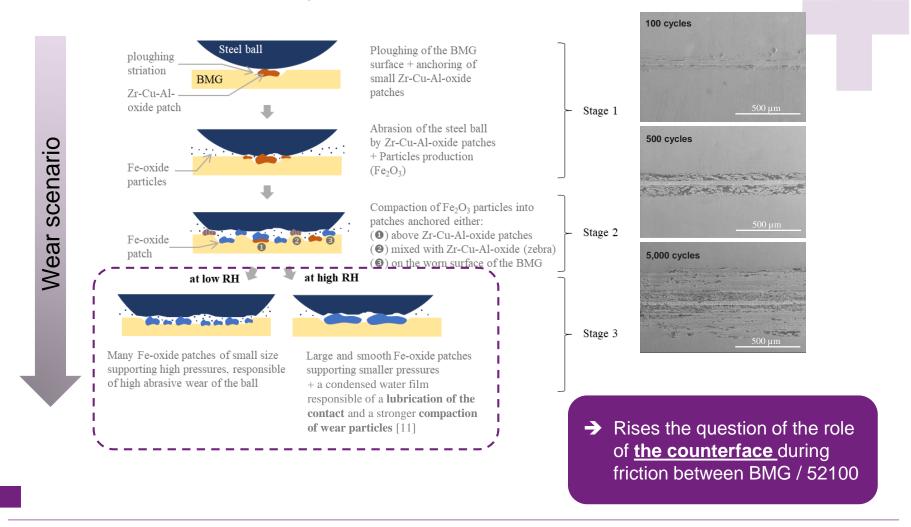
RESULTS – The role of third bodies

Surprising aspect of some "zebra-striped" patches ...



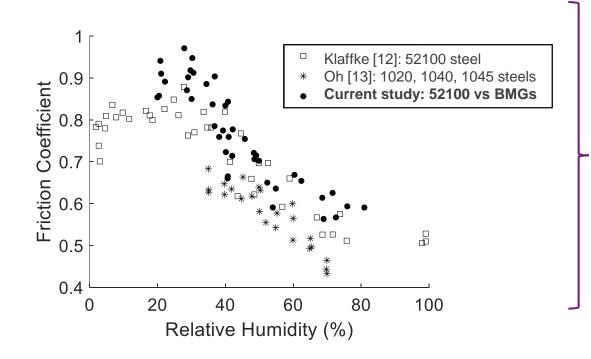
- → mixed composition: Fe-oxides (dark stripes) & Zr-Cu-oxides (bright stripes)
- → depth greater than 1 µm
- → Mophology suggests high plastic deformation and surface ductility

FIB cross section:



CONCLUSION

- → Wear behavior of BMGs is **not related to the hardness** of the two materials in contact
- → Tribochemical wear mechanisms leading to material transfer from the steel ball to the BMG plate:



CONCLUSION

A look to the literature...

- dependency to RH highly correlated to the steel counterface
- → future works will focus on the impact of the counterface material

THANKS FOR YOUR ATTENTION

- [1] L.M. Andersen, Toughness of Wear-Resistant Cu-Zr-Based Bulk Metallic Glasses, 2016.
- [2] A. Inoue, N. Nishiyama, New Bulk Metallic Glasses for Applications as Magnetic-Sensing, Chemical, and Structural Materials, MRS Bull. 32 (2007) 651–658.
- [3] A.L. Greer, K.L. Rutherford, I.M. Hutchings, Wear resistance of amorphous alloys and related materials, Int. Mater. Rev. 47 (2002) 87–112.
- [4] D.C. Hofmann, L.M. Andersen, J. Kolodziejska, S.N. Roberts, J.-P. Borgonia, W.L. Johnson, K.S. Vecchio, A. Kennett, Optimizing Bulk Metallic Glasses for Robust, Highly Wear-Resistant Gears, Adv. Eng. Mater. 19 (2017) 1600541.
- [5] Z. Liao, N. Hua, W. Chen, Y. Huang, T. Zhang, Correlations between the wear resistance and properties of bulk metallic glasses, Intermetallics. 93 (2018) 290–298.
- [6] R. Salehan, H.R. Shahverdi, R. Miresmaeili, Effects of annealing on the tribological behavior of Zr60Cu10Al15Ni15 bulk metallic glass, J. Non-Cryst. Solids. 517 (2019) 127–136.
- [7] H. Wu, I. Baker, Y. Liu, X. Wu, P.R. Munroe, J. Zhang, Tribological studies of a Zr-based bulk metallic glass, Intermetallics. 35 (2013) 25–32.
- [8] Y. Liu, Z. Yitian, L. Xuekun, Z. Liu, Wear behavior of a Zr-based bulk metallic glass and its composites, J. Alloys Compd. 503 (2010) 138–144.
- [9] Y. Wang, L. Zhang, T. Wang, X.D. Hui, W. Chen, C.F. Feng, Effect of sliding velocity on the transition of wear mechanism in (Zr,Cu)95Al5 bulk metallic glass, Tribol. Int. 101 (2016) 141–151.
- [10] Q. Zhou, W. Han, D. Luo, Y. Du, J. Xie, X.-Z. Wang, Q. Zou, X. Zhao, H. Wang, B.D. Beake, Mechanical and tribological properties of Zr–Cu–Ni–Al bulk metallic glasses with dual-phase structure, Wear. 474–475 (2021) 203880.
- [11] S. Yamamoto, O.T. Kendelewicz, J.T. Newberg, G. Ketteler, D.E. Starr, E.R. Mysak, K.J. Andersson, H. Ogasawara, H. Bluhm, M. Salmeron, G.E. Brown, A. Nilsson, Water Adsorption on r-Fe2O3(0001) at near Ambient Conditions SLAC-PUB-13827, (2009).
- [12] D. Klaffke, On the repeatability of friction and wear results and on the influence of humidity in oscillating sliding tests of steel-steel pairings, Wear. 189 (1995) 117–121.
- [13] H.-K. Oh, K.-H. Yeon, H. Yun Kim, The influence of atmospheric humidity on the friction and wear of carbon steels, J. Mater. Process. Technol. 95 (1999) 10–16.

