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Abstract—Getting around independently on a daily basis is
a challenge for blind people. Indeed, when walking outdoors,
blind people must avoid many obstacles to reach their destination
safely. The difficulty comes from the great variety of the config-
uration of the environment, with obstacles that can be static or
dynamic, and varying levels of danger. Even if the blind person
is already familiar with the environment in which they move,
the inherent dynamics of the many objects and actors in the
environment are still stressful. This article tackles the question of
whether there is a link between physiological stress signals and
the obstacles that blind users face when navigating paths and
routes in daily life. We designed and proposed two prototypes
using biological sensors connected to a cane for blind people to
collect data in several scenarios. Methods and analysis that were
applied on the collected data in order to detect stress will be
discussed along with all the results achieved. This work shows
that stress can be identified and detected when a blind person is
navigating a path, and even that the stress factors causing this
stress can be related to obstacles along the path.

Index Terms—stress analysis, blind people, data collection

I. INTRODUCTION

Stress can be defined as a state of physical or mental tension
resulting in different feelings or emotions. It comes from any
situation that makes a human being frustrated, nervous and
angry. Every human being is subject to stressful situations,
and obviously the most stressful situation or event in the
daily lives of blind people is autonomous navigation. Even
if the navigation path is known, the changing dynamics of the
environment related to different parameters such as the time
of day, the nature of the obstacles that may be encountered,
etc., turn this into a challenge. Stress can be directly related to
many physiological signals, indeed when stressed, the human
body reacts to stress with a response called General Adaptation
Syndrome (GAS). GAS is divided into three stages. The first
stage is called alarm, fight or flight, it is the stage on which
this study has focused and is the body’s immediate response to
stress where heart rate, skin conductance and muscle activity
increase [1], [2]. In a previous article [3], the authors focused
on describing stress and its impact on human life, especially
for blind people. Furthermore, this work also described how
the human body responds to stress and how stress is related to
certain biological signals. A prototype of cane was presented,
which measures some biosignals, for blind people navigating

an experimental path, as well as preliminary studies on the
data collected using this smart white cane.

This paper extends and deepens the works of the authors’
previous research. First, a second prototype has been designed
to acquire more accurate biosignal measures thanks to a BITal-
ino kit [4]. Second, further experiments were conducted using
a slightly modified protocol: the experimental path was divided
into three sectors and users, blindfolded, indicated their stress
level on a scale of 1 to 10 at the beginning, middle and end of
each sector. Third, this paper focuses on identifying stress and
specifically the correlation, if any, between stress and obstacles
encountered in the path of blind users during navigation, in
order to contribute to blind navigation by making this task less
stressful and easier in the future.

The remainder of this paper is organized as follows. Sec-
tion II presents a summary of related studies. The next section
describes how physical data are collected, more particularly
the two prototypes of smart canes that were designed and the
experiment area as well as the kind of obstacles. Section IV
presents the experimental protocol and the obtained dataset.
The data are analyzed in Section V while Section VI discusses
the results. Finally, some conclusions are drawn and future
work is indicated.

II. RELATED WORK

This section presents some related work. All of the studies
below tackle stress detection by monitoring biological signals
in people.

Kalimeri et al. [5] developed an approach to detect stress for
blind persons during indoor navigation based on the signals of
the electroencephalogram (EEG) by the EmotivEpoc+ equip-
ment, the signals of the EDA, and blood volume pulse (BVP)
by the Empatica E4 equipment. The indoor navigation route
experiment included five distinct environments representative
of a variety of indoor mobility challenges. Participants had to
enter through automated doors, use an elevator, move across
a busy open space, walk down a large spiral staircase, and
walk through other obstacles. The route was approximately
200 meters in length and took on average 5 minutes to walk (a
range of 4—-8 minutes). Massot et al. [6] have presented a case
study where a wearable device called EmoSense is used on
blind pedestrians to monitor the Autonomic Nervous System



(ANS) in an ambulatory, non-laboratory settings experiment.
EmoSense is a small wrist device connected to several sensors,
affording the measurement of physiological signals from the
sympathetic and parasympathetic systems, such as Skin Re-
sistance Responses (SRRs), Skin Temperature (ST) and Heart
Rate (HR). The recording and the analysis of these signals
were carried out to allow an objective evaluation of the stress
for blind people moving in the city, and then to approach the
phenomenon in a more precise way (by localization). The aim
is to verify the hypothesis put forward by psychologists stating
that the urban environment has an effect on the stress and
vigilance of blind people. Moreno et al. [7] presented a study
to investigate the autonomic nervous system modulation on
the heart of blind people but also on sujects benefiting from a
normal vision and submitted to a low vision situation. Normal
vision subjects and blind patients were submitted to Heart Rate
Variability (HRV) analysis during resting, intervention and
recovery periods. Intervention consisted of handling objects,
taking short walks, and performing activities with pedagogic
games while wearing sleeping masks.

Zubair et al. [8] designed a cost-effective, low-power, IoT-
based smart bracelet for healthcare that detects mental stress
based on skin conductance. This wristband can continuously
monitor the user’s mental stress and wirelessly transmit stress-
related data to the user’s smartphone. Kalhoro et al. [9] pre-
sented a data collection protocol for the ambulatory recording
of physiological parameters for stress measurement purposes.
They presented a wearable sensor system for the ambulatory
recording of ECG, EMG, respiration and skin conductance.
The system also recorded various context parameters: accel-
eration, temperature and relative humidity. They showed that
the sensor system is capable of long-term, noninvasive, nonob-
trusive, wireless physiological monitoring and also presented
some preliminary results of a stress estimation method. In
2016 the Amulet [10] team conducted two studies to monitor
stress. The team collected data from subjects where all of the
participants wore devices respectively called the Amulet and
the Zephyr. The Zephyr (a chest device) was transmitting heart
rate data to the Amulet (a wristworn device). After each study
the researchers developed an algorithm for stress detection.

Many researchers have also worked on the design of in-
telligent canes. Hence Huang et al. [11] used a smart cane
that contains force sensors and a CCD camera for a falling
detection system. This work investigates whether the distance
between the center of the legs and the cane can be used to
classify the subject’s activity. In the context of blind people,
the following devices can be noticed. EyeCane [12] aims to
guide blind people using vibrations and sound effects where
the intensity of sound and vibration depend on the proximity
of the obstacles detected. UltraCane [13] has provided an
alternative, namely an assistive technology that safely avoids
obstacles and navigates around them. It also provides valuable
protection at head and chest levels. UltraCane detects street
furniture and other obstacles within 2.4 meters. TomPouce
[14] is an electronic box that can be fixed on an original
white cane to automatically transform it into a smart cane.

It is based on infrared and laser beams pointed to the front.
The objective is to detect moving and static obstacles while
indicating distances.

In addition to stress detection, the aim of this research
work is to identify whether there is a relationship between the
obstacles encountered by blind pedestrians and the amount of
stress that can be detected in order to cope with this stress by
anticipating it.

III. PHYSIOLOGICAL DATA COLLECTION

After publishing the previous article [3], a prototype was
built and evaluated. Over time, the prototype was expanded
and further experiments were conducted using the updated
version. To differentiate both versions, the first version can
be referred to as the first prototype and the current version as
the second prototype. The upgrade was the result of further
research since the publication of the previous paper and aimed
at obtaining a more accurate measurement of biosignals.

A. Prototypes Description

The first prototype is an assembly of a cane, heartbeat,
skin conductance, muscle activity sensors, and an Arduino
controller board. The cane is also equipped with an ultrasonic
sensor that allows a blindfolded user to scan his environment
and measure the distance to obstacles. The ultrasonic sensor
and physiological sensors are all connected to an Arduino
board. The board transmits all the sensors measures each
second via a Bluetooth module thanks to a mobile application.
This mobile application stores all the data measured in a Fire-
base database. Fig. 1 gives an overview of the first prototype.

As mentioned earlier the second prototype is the result of
some modifications that were made on the first one to achieve
more accurate data collection. Indeed, the physiological sen-
sors of the first prototype were replaced by BlTalino [15],
[16] Plugged Kit and the android application was updated to
communicate successfully via the Bluetooth module integrated
within the BITalino board. The BITalino kit is a versatile
solution for designing different signal acquisition experiments.
It comes with ECG (electrocardiogram), EMG (electromyog-
raphy), EEG (electroencephalogram) and EDA (electrodermal
activity) sensors. The EMG and EDA sensors were used,
while the ECG sensor was replaced by the Xiaomi band 5
for heartbeat acquisition.

B. Obstacles Observation and Classification

Fig. 2 shows the experiment area where the walking path
is highlighted in blue. As can be seen it is a road that
starts from point A and reaches point B which represents
the public municipality building in Jezzine, a town in south
Lebanon. Many obstacles can be encountered when navigating
the path. The ultrasonic sensor with a piezo speaker can
notify the blind or blindfolded person about a nearby obstacle.
Obstacles can also be detected in real time with real-time
SSD video detection built into the android mobile application.
Obstacles can be classified into two categories: stationary and
moving. Stationary obstacles are those that, by definition,



Fig. 1. First prototype of intelligent white cane.

Fig. 2. Experimental path divided into three sectors.

do not move such as parked cars and buses, potted plants,
sidewalks, walls, buildings, escalators, while mobile obstacles
were cars, motorcycles, pedestrians navigating the route. Some
of them are located at the same geographical points from one
experiment to another. The number and density of obstacles
detected at the starting point were lower than at the middle of
the route and at the destination near the city center.

IV. EXPERIMENTATION PROTOCOL AND COLLECTED DATA

As described in the previous subsection, the experiment
consisted in navigating a route from a residential location to
the municipality’s public building in the center of the city.
The route’s infrastructure is not accessible and is not user-
friendly for blind users. Six blindfolded people conducted the

experiment using the first prototype and six others used the
improved BITalino prototype. The six users who conducted
the experiment with the second prototype did so more than
once but at different times. Most of the users were between
20 and 35 years old, with only two users over 64 years old.
The users were all active, healthy, physically fit, and able to
walk a path on their legs, not to mention that none of the
users had a heart condition. The experiments were conducted
in daylight and in cool weather.

For all the experiments, all the users were in a resting state
before the start of the test. The preparation time before the start
of the test was recorded as was the duration of the entire test
for each user. The average time for a user to complete the path
and the entire test was around 25 minutes. For the experiments
using the second prototype, the path was divided into three
sectors named Sector 1, Sector 2, and Sector 3 respectively,
which are described in detail hereafter. The total distance of
the path from start to finish is about 800 meters and each of
the sectors has a distance of about 265 meters. Furthermore,
all users been asked to note their stress level within a range
from O (no stress) to 10 (the most stressed) in each sector
three times: at the beginning of each sector, in the middle of
the sector and at the end. Similarly, the starting time and the
time of passage through the middle of a sector and at the end
were recorded. Regarding the three sectors, their respective
characteristics are as follows:

o Sector 1 is straightforward road, very large with minimum
traffic level and low obstacles density.

o Sector 2 is a straight road, narrower than Sector 1 with a
small slope that can be reached at the end, with a medium
traffic level and medium obstacle density.

e Sector 3 is quite different, as it is a big slope situated
near the center of the city, with heavy traffic level and
heavy obstacles density.

A. Dataset

Fig. 3 shows an example of a record obtained at some time
during the navigation of a user. For each user, the data stored
in database are first extracted in JSON format and then, using
Python, converted to CSV format. This conversion allows us to
manipulate, visualize and analyze the data properly. The CSV
data set for each user can contain more than 1000 records.
The number of records for each user depends on the total
number of seconds the user took to walk the experimental path.
Any series of data recorded over time can be considered as a
time series, which is the case of our data which are indexed
by the column ’Dates’. A time series can be decomposed
into systematic and non-systematic components. Systematic
components are level, trend and seasonality, while there is one
non-systematic component corresponding to the noise. These
components can be defined as follows:

o Level is the average value in the series.

o Trend is the increasing or decreasing value in the series.
« Seasonality is the repeating short-term cycle in the series.
o Noise is the random variation of the series.
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Fig. 3. Example record of the values sensed on a user at a given time.

We tried to decompose several time series for each of the
users, each separately. The decomposition was done on the
physiological measurements and the distances of the detected
obstacles over time. As a result, our time series can be said to
have only a trend component. Two variables in the data can
be related in three different ways:

o A variable can be the cause or depend on the values of
another variable.

o A variable could be lightly associated with another.

o Two variables could depend on a third unknown variable.

V. ANALYSIS OF COLLECTED DATA
A. Analysis of Data from First (Basic) Prototype

All of the analysis listed below were applied to a single
user and to all users who have experimented the first prototype
(6 users). The selected user has 1176 records and all users have
7753 records in total. A covariance study was performed on
the data to assess the relationship between the distances to the
obstacles and each of the physiological measures. Therefore
the formula cov, , = W was used, where x; is
a data value of time series X and X its mean, y; and Y
are similar for time series Y, and N is the number of data
samples. The obtained values, which are summed up in Table I,
can be analysed as follows. The sign of the covariance can
be interpreted as whether both variables change in the same
direction (positive) or change in different directions (negative).
The magnitude of the covariance is not easily interpreted, but
a covariance value of zero indicates that both variables are
completely independent. Thus it can be seen that heartbeats
and muscle activity change in different direction with the
distance from obstacles. Furthermore, it means that when the
user is facing a near object (low values of distance from
obstacles) heartbeats and muscle activity will have high values.

A problem with the covariance as a statistical tool alone is
that it is challenging to interpret. This leads us to the Pearson
correlation coefficient which can be used to summarize the
strength of the linear relationship between two variables. This
coefficient is calculated as the covariance of the two variables
divided by the product of their respective standard deviation.
It is the normalization of the covariance between the two
variables that provides an interpretable score. Indeed, the

TABLE I

COVARIANCE BETWEEN THE DISTANCES
FROM OBSTACLES AND THE PHYSIOLOGICAL SENSOR MEASURES

single user Heartbeats | Skin conductance | Muscle activity
Distance
from obstacles -1393.6 618.9 -510.9
all users Heartbeats | Skin conductance | Muscle activity
Distance
from obstacles -2281.2 831.9 -3763.1
TABLE I

LISTING PEARSON’S CORRELATION BETWEEN DISTANCES
FROM OBSTACLES AND THE PHYSIOLOGICAL SENSOR MEASURES

single user Heartbeats | Skin conductance | Muscle activity
Distance
from obstacles -0.074 0.13 -0.014
all users Heartbeats | Skin conductance | Muscle activity
Distance
from obstacles -0.1 0.016 -0.077

coefficient has a value between —1 and 1 which represents the
limits of the correlation, from a totally negative correlation to a
totally positive correlation. A value of 0 means no correlation.
The value must be interpreted, where often a value less than
—0.5 or greater than 0.5 indicates a significant correlation,
and values less than these values suggest a less significant
correlation. Table II shows the obtained coefficients and since
the correlation values are not greater than 0.5 or less than
—0.5, it means that there is no significant correlation between
the data. This also means that our data are not related to each
other by a linear relationship and one can simply conclude that
some of the data are increasing or decreasing together but not
in a linear way.

Two variables may be related by a nonlinear relationship,
such that the relationship is stronger or weaker across the
distribution of the variables. Furthermore, those two variables
may have a non-Gaussian distribution. In this case, the Spear-
man’s Rank correlation coefficient can be used to summarize
the strength of the relation between both variables. Note that
this test of relationship can also be used if there is a linear
relationship, but may result to output lower coefficient scores.

Table IIT shows the obtained Spearman correlation co-
efficients. As with the Pearson correlation coefficient, the
scores are between -1 and 1 for perfectly negatively corre-
lated variables and perfectly positively correlated variables,
respectively. Instead of calculating the coefficient using the
covariance and standard deviations on the samples themselves,
these statistics are calculated from the relative rank of the
values on each sample. A linear relationship between the
variables is not assumed, although a monotonic relationship is
assumed (monotonic is a mathematical name for an increasing
or decreasing relationship between the two variables).

B. Analysis of Data from Second (BlTalino) Prototype

The data were saved and extracted using the same procedure
as for the first prototype, only the heartbeat values were
extracted for each experiment by Zepp Life, an android mobile



TABLE III

LISTING SPEARMAN’S CORRELATION BETWEEN DISTANCES
FROM OBSTACLES AND THE PHYSIOLOGICAL SENSOR MEASURES

single user Heartbeats | Skin conductance | Muscle activity
Distance
from obstacles -0.19 0.095 -0.1
all users Heartbeats | Skin conductance | Muscle activity
Distance
from obstacles -0.073 0.17 -0.035
TABLE IV

MEANS OF BIOSIGNALS VALUES FOR EACH SECTOR.

Heartbeats | Skin conductance | Muscle activity
(mean) (means) (means)
Sector 1 99 325.3 510.8
Sector 2 101 364.7 510.9
Sector 3 102 378.8 510.8

application designed and developed by MiFit. As mentioned
earlier, six users conducted experiments using this prototype.
Each user performed the experiment more than once at dif-
ferent dates and times. The total number of experiments is
eighteen.

Several observations can be made according to Fig. 4, 5
and 6. First, the lowest levels for heartbeats, skin conductance
and muscle activity values are identified in Sector 1. Second,
the values of these three bio signals increment progressively
after Sector 1 when navigating into Sector 2 and Sector 3. Note
that the data of 13 experiments out of 18 can be interpreted in
the same way. It can also be seen from Fig. 4 that the travel
time of the sectors increases as one goes along even if all the
sectors have the same distance.

The heartbeats, skin conductance and muscle activity values
of all users were added together and filtered individually sector
by sector. Then the mean value for each of the measures was
calculated for each sector and the obtained values are shown
in Table IV. There is a notable difference between the sectors
with respect to heartbeats and skin conductance values. It can
be seen that the lowest means are found in Sector 1, then in
Sector 2 and that the highest values are found in Sector 3.
Additionally, as previously mentioned, each user has auto-
reported his or her stress level at the beginning, the middle
and the end of each sector. For each sector and for each user,
the highest values of stress reported were taken and added
together. Next, the stress level was averaged for each sector,
resulting in the values shown in Table V. Clearly, the evolution
of heartbeats and skin conductance values are linked to the
stress level. Both can accurately reflect the stress level induced
by the navigation path.

TABLE V
MEANS OF STRESS LEVELS FOR EACH SECTOR.
Stress level (mean)
Sector 1 1.8
Sector 2 4
Sector 3 5.6

VI. DISCUSSION

The study and analysis of the data collected during the
experimentation made with the first prototype allowed to
identify a significant relationship between the distance of the
obstacles and the values of the heartbeats and the muscular
activity. Both relationships were negatively signed, meaning
that these biological signals move in a different direction with
respect to the distances from an obstacle. Indeed, a close
obstacle means higher heartbeats and muscle activity values,
whereas a greater distance from the obstacles means lower
heartbeats and muscle activity values.

When experimenting with the second prototype, using a
BITalino kit, with an experimental course divided into three
sectors and adding self-reporting of the stress level by each
user, one found that all physiological measures depended on
the distance to the obstacles (heart rate, skin conductivity and
muscle activity). Practically, in Sector 1 the users have the
lowest values for all the biosignals measures and the lowest
stress self-reported stress levels and both the measures and
stress levels increase respectively when passing from Sector 1
to Sector 2, and finally from Sector 2 to Sector 3. Adding to
the above, even if the sectors have the same distance travel,
Sector 1 was traveled the fastest by all users.

All physiological measures and self-reported stress levels,
as well as travel times, were found to be related to the
characteristics of a sector, namely the density of obstacles
and the level of traffic in it. Regarding the path, this one is
relatively short since it is about 800 meters long. As for the
sectors, Sectors 1 and 2 are straight and even if Sector 3 is a
slope, no considerable physical effort is required. In addition,
4 of the 6 users were between 20 and 30 years old.

VII. CONCLUSION AND FUTURE WORK

Getting around on foot is a daily challenge for blind people.
Even if they take a familiar route, new obstacles may appear,
making no two trips the same and causing stress. We have
shown through our experiments with two smart white cane
prototypes that stress can be identified and detected when a
blind person is navigating a path, and that the stressors causing
the stress can be related to obstacles along the path. The data
collected can be concretely exploited with machine learning
techniques, either to predict the stress of blind people during
navigation (regression) or to classify blind people according
to whether they are stressed or not at different points of
the navigation path (classification). In addition, based on the
results of machine learning techniques, we can help blind
people to cope with stress or anticipate it in different ways:
we can enable blind people to avoid obstacles by vocally
informing them about the obstacles and the remaining distance
to the point of contact. We can redirect blind people to
paths less cluttered with obstacles, we can anticipate stress
with small stress-reduction exercises and, if possible, in many
more ways. All future work will focus on machine learning
techniques applied to the collected data and on approaches to
anticipate stress.
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