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Abstract—The paper deals with the analysis of noise in
Scanning Electron Microscopy (SEM) images with respect to
the dwell time, i.e. the time to acquire a pixel. Identifying the
type and parameters of noise in images is crucial for denoising,
as most denoising methods rely on prior knowledge of noise.
Therefore, analyzing image noise is a significant undertaking and
a window-wise based image segmentation of a single image has
been proposed to find the smoothest region of the image. In
fact, automating the identification of the flat region, noise type
estimation, and statistical verification are essential aspects of this
study. All the experiments were performed on a set of images
obtained from a Zeiss Auriga field effect SEM and . It is shown
that the noise types and levels change with respect to dwell time.
The fast ( dwell time 100-500 nanoseconds) and faster scan speed
(dwell time less than 100 nanoseconds) changes the noise type to
Gamma distribution, while for the slow one (few microseconds or
more than 500 nanoseconds) it follows a Gaussian distribution.
Moreover, the level of the noise are subject to higher values with
fast and very fast scan speeds. The study suggests that utilizing
its findings can establish a basis for prior knowledge in deep
learning denoisers, which can assist in guiding the process of
SEM image denoising.

Index Terms—Scanning Electron Microscopy (SEM), Noise
Analysis, Image Processing, Image Denoising

I. INTRODUCTION

The term “noise” in the context of a scanning electron

microscope (SEM) refers to the random variations that can

be noticed in the signal coming from a specific pixel in

an image, even when the incident beam, the sample, and

the recording environment are kept constant.This noise is a

result of the stochastic nature of electron production from

the gun and electron interactions with the specimen observed,

which makes each electron behaves differently. The noise

is typically assumed to have Gaussian statistics, because of

the central limit theorem [1]. It is vital to evaluate this

assumption since noise has a major impact on electron-beam

tool’s expected performance, particularly in applications like

flaw identification during semiconductor manufacture. There

is growing interest in mimicking SEM images for a variety of

reasons, and the requirement to include realistic noise in such

circumstances also highlights the issue of the precise form of

the noise [2].
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Despite the fact that image denoising has been studied for

a long time and extremely promising denoising results have

been obtained, practically almost all of the current denoisers

rely on prior knowledge about the noise, such as its variance

or standard deviation. Relevant studies show that under the

condition of inaccurate noise parameters, the performance of

state-of-the-art denoising algorithms can drop precipitously.

An accurate noise parameters estimation is crucial for image

processing/analysis algorithms [3]. In this paper, our goal is to

present a algorithmic analysis on different SEM images, which

could help us identify better parameters to perform denoising.

Noise in an image can either be additive or multiplicative.

However, multiplicative noise can processed as additive when

considering logarithm space. In the first case noise signal N(x,y)

is added to the original signal Ioriginal(x,y) to create the corrupted

noisy signal Inoisy(x,y):

Inoisy(x,y) = Ioriginal(x,y) +N (x,y),

where (x,y) is the position of pixel.

Identifying the characteristics of final image noise is a

prerequisite for estimating image quality [4], [5]. Sources of

noise in digital photographic images can be environmental

influences on the image sensor, low light conditions and

a warm sensor, scanner dust particles and the interference

with the transmission channel. However, in a SEM, primary

emission, secondary emission, scintillator, photocathode, and

photomultiplier are the five causes of noise [5], [6]. Thus,

we will focus on the analysis of noise types and noise levels

with different scanning electron microscope settings. The main

focus of this study is to investigate the level of noise in SEM

images concerning the dwell time, which is the time required

to acquire a pixel and determines the scanning speed.

In sum up, the main objective of this study is to check

whether there is any change in noise type with respect to the

scan speed (or equivalently, the dwell time).

We used the Zeiss Auriga FE SEM microscope to collect

sample images, in which scan speeds are represented by

dwell times. We considered acquisition dwell times of 10 ms

(microseconds), 2 ms, 510 ns (nanoseconds), 280 ns and 70 ns

for one set of samples. A dwell time of more than 510 ns is

said to be slow, from 510 ns to 100 ns as fast, less than or

equal to 100 ns as faster. In the literature, [2] presents a manual



process of noise type estimation from SEM where it is most

often found Gaussian and sometimes flattened. However, we

found that the noise type changed from Gaussian to Gamma

with respect to the scan speed, with also a few samples for

which the noise found is neither exactly Gaussian nor Gamma

but close to Gamma. In fact, we wanted to have an automated

process to identify the type of noise in microscopy images.

To sum up, the primary goal of this work is to consider a

special case of noise types in SEM images to verify if the scan

speed or dwell time has an impact or not. In the literature, most

of the study cases do not take into account this setting which

has major impact on noise type according to our analysis.

An important part of this work is to automate the process of

identifying the flat region, estimating the type of noise and

proving its statistics.

The contributions of this paper are as follows.

• The idea of having Gaussian noise is not always true if

we consider faster scan speed for SEM images and thus

we propose an approach to identify the type of noise.

• Automation of the noise identification process with al-

gorithmic solutions, while proving it mathematically or

statistically.

• One study [7] did image segmentation for identifying the

flat regions from the images. But as they did not target

image segmentation, they randomly used one technique,

namely K-means. We used a different technique by fol-

lowing the concept of image segmentation using mean

shift.

• Thus, in our study, we automated the process of identify-

ing flat regions and selecting the region of interest among

them.

• To identify likely flat regions, we separated the images

into multiple window sizes by applying the Cartesian

product of multiple fixed ratio heights and widths.

• Finally, we evaluated the results not only on the basis of

the histogram, but also statistically, showing that the scan

speed or dwell time has an effect on the noise type and

noise level.

The rest of the paper is presented throughout the following

sections. Section II describes the background and related

works. The process we performed during the analysis of the

images is presented in Section III. Section IV describes in

detail the comparative results and findings. Finally, Section V

concludes the paper with possible future work.

II. BACKGROUND AND RELATED WORKS

The most studied type of noise in imaging is Gaussian,

whereas SEM can have different noise depending on the

settings especially dwell time. Dwell time is the time the

electron beam remains in each site to interact with surface

atoms of sample. It defines the time to acquire a pixel and

then the scanning speed. For the Zeiss Auriga FE SEM, the

correspondences between scan speed and dwell time are given

in Table I. In this study, we focus on noise analysis from the

perspective of different scan speeds.

TABLE I
EXAMPLE OF ZEISS AURIGA SEM CONFIGURATIONS

Scan Speed Dwell time

8 10 microseconds

5 2 microseconds

3 510 nanoseconds

2 280 nanoseconds

1 70 nanoseconds

A model proposed by [6] divides the SEM signal path into

five stages and each stage is assumed to be Poisson distributed.

We found that it really depends on the configuration and,

more importantly, on scan speed. With a reduced speed scan,

the image may be better, but the samples maybe damaged

because of the high level of energy received per site. We

consider a fast scan speed that is subjected to noise.To acquire

a high quality image by performing denoising, it is crucial

to analyze the noise measurements so that the SEM images

can be distinguishable from other optical [8] and microscopy

(fluorescence [9], [10], transmission [11], cryo [12] and so on)

images.

A single image or a set of images can be used to esti-

mate noise. Noise estimation from multiple images has over-

estimation problems [13]. A common estimation method is

built on the mean absolute deviation (MAD) [14]. According

to [15], the slope of the smooth or low-textured region is used

to estimate the signal-dependent noise level for each intensity

interval. Three methods to estimate noise levels based on

training samples and (Laplacian) statistics of actual images are

proposed in [16]. There is a piecewise smooth images model

[7] that appeared first time in computer vision literature by

[17] and briefly elaborated by [18]. In [7] the authors used k-

means cluster for the image segmentation of piecewise smooth

model as their main intention was not in image segmentation.

However, for image segmentation, there are mean shifting [19]

(which is focused in this study during image segmentation) and

graph based techniques [20].

III. METHODOLOGY

In this study a piecewise smooth region (Region of Interest

- ROI) based approach was followed. The segmentation task is

performed with mean shifting [19] the ROI to more intensity

(higher mean) regions. The mean shifting used is a modified

version developed specifically for this study.

A. Image Grid Generation

Image grid generation is performed by generating a fixed

window sized grid of the image according to Algorithm 1.

This process starts by dividing a single image into multiple

windows. The window size is selected by establishing a

possible list of window sizes with which the total number of

pixels is divisible. From the list of window sizes, the window

size that falls within the middle index (not too high, not too

low) is selected as the dimension (height, width) of the pieces

of the smoothed region (ROI). After splitting the image, we

obtain a grid of small ROI pieces. From this grid, we identify



the positions of these ROIs using the left, right, top and bottom

positions. In this phase, the mean of the pixel values of each

ROI will also be calculated to perform the next step of the

image segmentation process based on the shift of the mean.

B. Target ROI Extraction

We calculate and pre-select multiple ROIs from the gen-

erated tiles - based on the maximum intensity of the pixels

using Algorithm 2. From the values provided by Algorithm 1,

we select a list of 15 higher density ROIs based on the ROI

with mean values between medium to maximum. It is observed

during this experiment that the 15-values condition was ideal

for our experiments, which may change depending on possible

smoother areas in the experimental image. To determine the

appropriate tile size, a range of square dimensions was selected

by dividing the total pixels into values ranging from 32 to 72

with a 2-pixel interval. Values with a modulus of 0 were con-

sidered potential tile size candidates. The final tile dimension

was selected as the middle value in the list of dimensions.

After selecting all ROIs in the previous step, visualization

of the ROIs is performed for proper identification by visual

assessment. The smoothest region is visually identified as the

target ROI in figure 2.

C. Noise Estimation and Validation

To estimate the noise type, different types of assessment

techniques were performed: the histogram based visual assess-

ment, statistical assessments of normal distribution (Anderson-

Darling [21], D’Agostino-Pearson [22], Jarque bera [23] tests)

and we used fitter [24], a Python library which is used to

fit probability distributions to data. To estimate the parame-

ters of many types of distribution, including continuous and

discrete distributions, fitter provides a straightforward and

understandable interface. With fitter, we can quickly fit a

wide range of distributions to our data and compare the

fit of various distributions to select the one that best fits

the data. It computes results by validating them based on

residual sum of squares (RSS), which is also known as sum

of squared estimate of errors (SSE), Akaike information cri-

terion (AIC), computing Kullback-Leibler divergence (KLD),

Kolmogorov–Smirnov (KS) test and other statistical tests.

In this work we considered the residual sum of squares

(RSS) and KS test. Residual sum of squares in statistics refers

to deviations expected from actual empirical data values. The

Kolmogorov-Smirnov test, which can be used to compare two

samples or a sample with a reference probability distribu-

tion, is a nonparametric statistical test for the equivalence

of continuous, one-dimensional probability distributions. The

categorization of the dwell time (or scan speed) was performed

with the intention of performing experiments from a low scan

speed to a faster speed to study whether there are changes

with respect to speed.

IV. RESULTS AND DISCUSSION

From the experiments, one of the smoothest area is visually

selected from the list of candidates to be the target ROI. Two

Inputs: Image name, source, target

Outputs: Position (left,up,right,down) lists of each

divided windows with mean values of the

image pixels

h← image height, w ← image width;

/* Total pixels */

Tp ← (h ∗ w);
/* Possible window sizes */

dim← [];
for range← 32 to 72 by 2 do

if Tp mod range is 0 then
dim← range

end

end

selected dim← 0;

if len(dim) is greater 0 then

selected dim← dim[int(len(dim)/2)];
end

/* Grid as Cartesian product (set of

height and weight) */

H , W ← {};
for H ← 0 to h− (h mod selected dim) by

selected dim do

H ← h;

end

for W ← 0 to w − (w mod selected dim) by

selected dim do

H ← w;

end

grid← H ×W ;

/* ROIs positions and means */

left, upper, right, lower, mean← [];
for i, j ← grid do

box← (j, i, j + selected dim, i+ selected dim);
left← j;

upper ← i;
right← j + selected dim;

lower ← i+ selected dim;

mean← mean(img.crop(box));
img.crop(box).save(out);

end

return← left, upper, right, lower,mean;
Algorithm 1: Square tile or grid generation

examples of such a ROI is shown in Figure 2 and Figure 3.

To analyze the noise estimate, a histogram calculation, shown

in Figure 4, was first performed. From Figure 4, the initial

assumption was that scan speeds 8 through 2 (see the his-

tograms (b) to (e) in Figure 4) lead to normal distributions

(Gaussian statistics) and the distribution of scan speed 1 to not

normal distribution. Then, to validate this assumption, some

statistical approaches were applied on the pixel values of the

ROI along with fitter test with respect to found model. The sta-

tistical Anderson-Darling Test, D’Agostino-Pearson Omnibus

Test and Jarque bera Test were used for this purpose: H0,



[a] [b]
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Fig. 1. Samples for speed 1 (a), speed 2 (b), speed 3 (c), speed 5 (d) and speed 8 (e).

Inputs: output of Algo. 1 (left,upper,right,lower,mean)

Outputs: Selected ROIs (lefts,uppers,rights,lowers)

mid mean = int((min(mean) +max(mean))/2);
max mean = int(max(mean));
pre select← [];
for M in mean do

if mid mean < M < max mean then

pre select←M ;

end

end

selected values← [];
while |pre select| ≤ 15 do

for X in pre select do
if mean(pre select) < X < max(pre select)
then

selected values← X;

end

end

pre select← selected values
end

l select , u select, r select, low select← [];
for i in selected values do

index← mean.index(i);
l select← left[index];
u select← upper[index];
r select← right[index];
low select← lower[index];

end

return← l select, u select, r select, low select;
Algorithm 2: Pre-selection of ROI candidates

distribution is normal and H1, it is not normal. If the scores of

all tests are more than the p-value of 0.05 (significance level)

than H0 is satisfied otherwise H1. The results of the statistical

tests are described in Table II. Note that there are conflicting

statements from researchers about the p-value which can be

0.001 to 0.05. Thus, the Anderson-Darling Test has a dynamic

p-value selection set to make the evaluation more valid.

From a statistical point of view, the results do not match

the initial assumptions of the visual evaluations based on

the histograms. It is clear that slow (dwell time greater than

510 ns) and fast (dwell time between 510 ns and 100 ns)

scan speeds exhibit Gaussian-like distributions. However, for

faster speeds (less than 100 ns), the noise is not Gaussian but,

from the histogram, resembles a Poisson-like distribution. In

fact, some histograms are not clearly Gaussian but look like a

Gaussian distribution. Therefore, a fitter test was performed

to further validate the distribution by fitting it to various

distributions. The fitter test of the pixel values in the ROI,

shown in Table III, shows that the noise in the fast and faster

scan rates follows a Gamma distribution or a special case of

Gamma.

We performed the same experiments with a different set

of samples collected from a different SEM (Figure refspdus).

We obtained similar results, but for a few rare samples we

found in the fitter test that the distribution could be a special

case of Gamma, i.e. Chi-squared and Rayleigh, or sometimes

Lognormal as well.

Indeed, the ROI was tested with about 10 types of common

distributions and sometimes the results of the Gamma and Chi-

squared tests have a similar sum of residual squares (RSS) as

shown in Table IV. In fact, the misclassification of the Gamma

distribution as normal in the statistical test may be due to the

selection of an inappropriate p-value threshold. In addition, it

is essential to differentiate these two distributions because of

their relationship to the zero mean. If the shape value increases

in the Gamma distribution, it tends to become a Gaussian one,

which can lead to confusion in the statistical test.






