

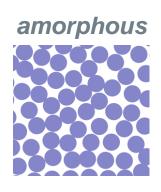
Tribochemical study of Ni₆₂Nb₃₃Zr₅ metallic glass depending on the Cr content of steel counterparts

Guillaume COLAS 1

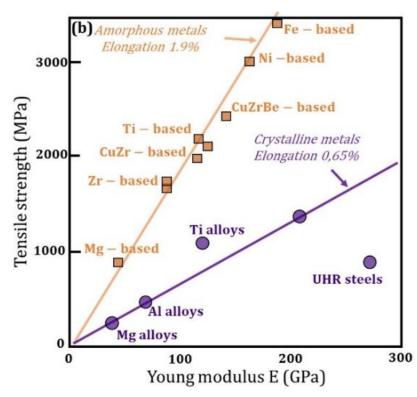
María del Carmen Marco De Lucas ², Luc Imhoff ², Olivier Heintz ², Pierre-Henri Cornuault ¹, Rémi Daudin ³, Alexis Lenain ⁴

¹ FEMTO-ST institute – DMA Department, UBFC, CNRS UMR 6174, Besançon, France
² Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UBFC, Dijon, France
³ University of Grenoble Alpes, CNRS, SIMaP, 38000, Grenoble, France

⁴ Vulkam Inc. Amorphous metal micro casting / www.vulkam.com / France


CONTEXT

Amorphous Metallic Alloy → Bulk Metallic Glass


Direct solidification

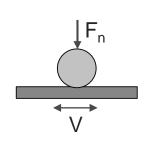
well-defined pure metals mixture

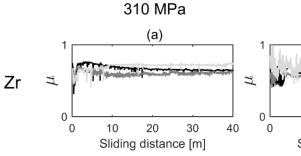
through extremely fast cooling

CONTEXT

Amorphous Metallic Alloy -> Bulk Metallic Glass

- Erratic tribological behaviours ...


Usually relatively high friction (0.3 to 0.7)


High and low wear independently of the friction coefficient and hardness ... even for a single composition

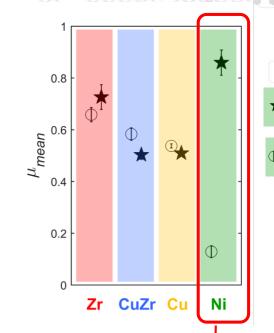

Particular crack propagation impeding and accentuating wear

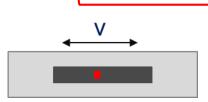
... Really ? ... No ! As long as contact conditions are well controlled

Pure sliding, 100Cr6 steel ball against BMG Plate

Cornuault et al, 2019, Trib. Int.

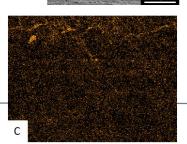
Zr52.5Ti5Cu17.9Ni14.6Al10

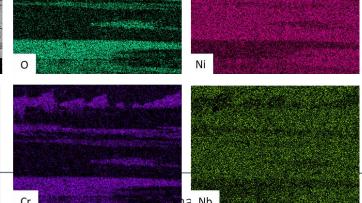



CONTEXT – Our previous study

 $Zr_{52.5}Ti_5Cu_{17.9}Ni_{14.6}AI_{10}$ – mechanically driven wear

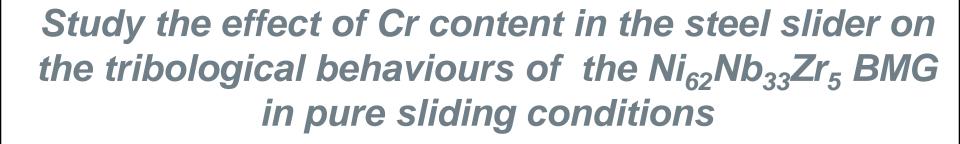
Cu₆₀Zr₃₃Ti₇ & Cu₄₇Zr₄₆Al₇ – mechanically and/or chemically driven μ and wear (C, Zr migration, change in accommodation)


 $Ni_{62}Nb_{33}Zr_5$ – mainly chemically driven μ and wear (Cr migration, C detected, Nb migration like Zr)



At high loads lots of Cr in the friction track

The steel slider had 1.5% Cr...



680 MPa

310 MPa

OBJECTIVES

Why? to further explore the possibility to control friction of the BMG by finely tuning the composition of the counterparts

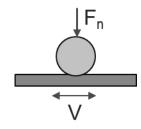
MATERIALS

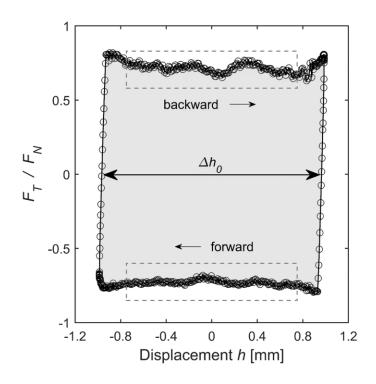
Steel	Fe	C	Cr	Mo	Mn	Si	Ni	Cu
X105CrMo17	Balance	0.95-1.20	16.00-18.00	0.75 max	1.00 max	1.00 max	-	-
100Cr6	Balance	0.95-1.05	1.40-1.65	-	0.25-0.45	0.15-0.35	0.30	0.20
							max	max
C90	Balance	0.9	-	0.6	1	0.6	-	-

1 Amorphous Alloys (Plate)

Sample denomination	Composition [at%]	Young's modulus [GPa]	Yield strength [MPa]	Hardness [HV]	
Ni	Ni ₆₂ Nb ₃₃ Zr ₅	135	2750	798	

Mechanical properties

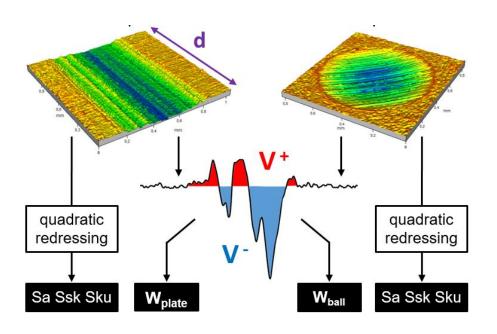

Steel	E (GPa)	Y (MPa)	H (HV
X105CrMo17	210	~1850	750
100Cr6	210	~1700	800
C90	210	~	800


METHODS

Reciprocating linear ball-on-plate friction tests

- Plate: Ni₆₂Nb₃₃Zr₅
- Ball: 3 Steels Ø 6 mm

- Contact pressure P = 680 MPa
- Displacement stroke $\Delta h = \pm 1 \text{ mm}$
- Motion frequency f = 1 Hz
- Sliding speed V = 4 mm/s
- Sliding distance **Sd = 40 m** (10,000 cycles)



Friction coefficient calculated as: $\mu = \frac{1}{2 \Delta h_0} \int \left| \frac{F_T}{F_{N}} \right| dh$

METHODS

« Wear » and roughness analysis using variable focus microscope

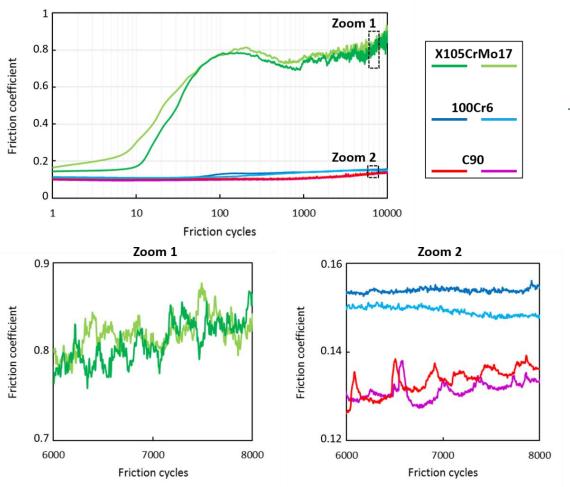
$$W_{plate} = \frac{V_p^- - V_p^+}{2 d N_{cycles}}$$

$$W_{ball} = \frac{V_b^- - V_b^+}{4 N_{cycles}}$$

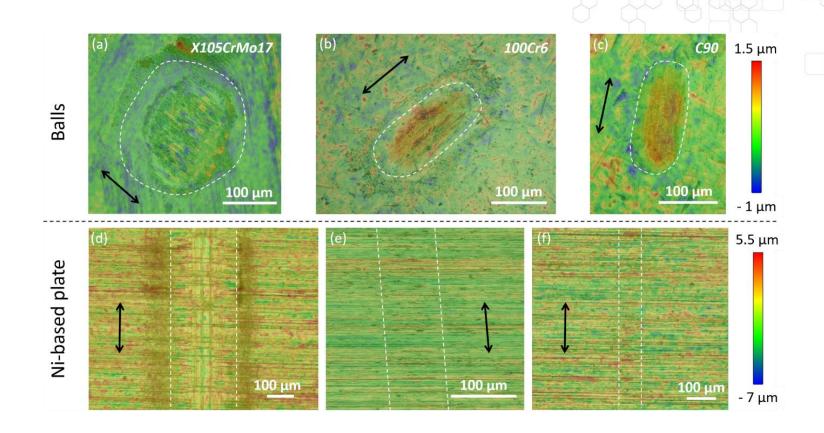
$$W_{tot} = W_{plate} + W_{ball}$$

Morphologies and compositions of the tracks analyzed with SEM/EDX, Raman spectroscopy, XPS, and NanoSIMS

8


Results

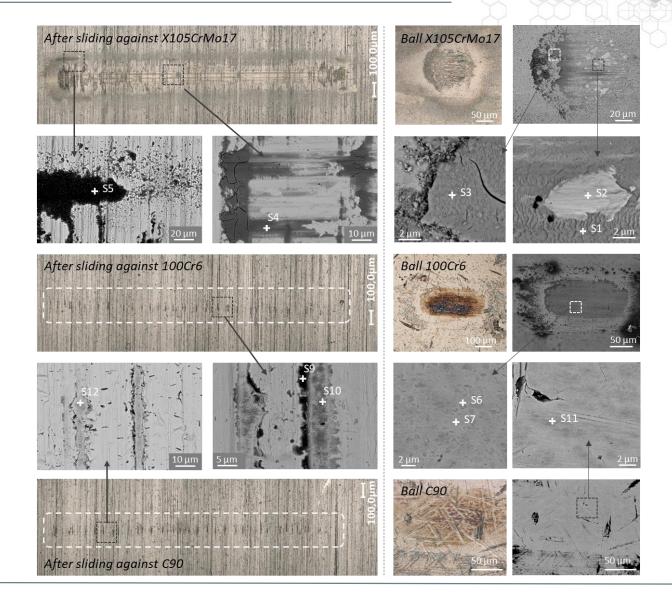
RESULTS – Friction coefficient



Increased Friction in line with increased Cr content?

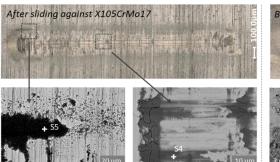
=> Confirmation of the effect of Cr content on Ni based BMG tribological behaviour?

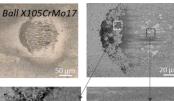
RESULTS – Wear

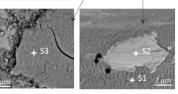


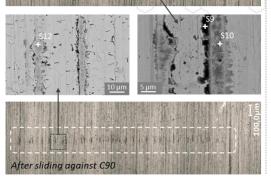
Extremely low wear, impossible to evaluate wear volumes Even for test with X105CrMo17

=> But visible patches of material inside tracks (all) and on the edges (X105CrMo17)

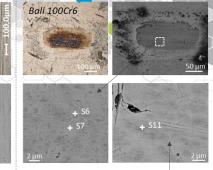


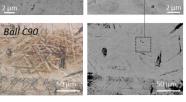

RESULTS - SEM





RESULTS - SEM + EDS





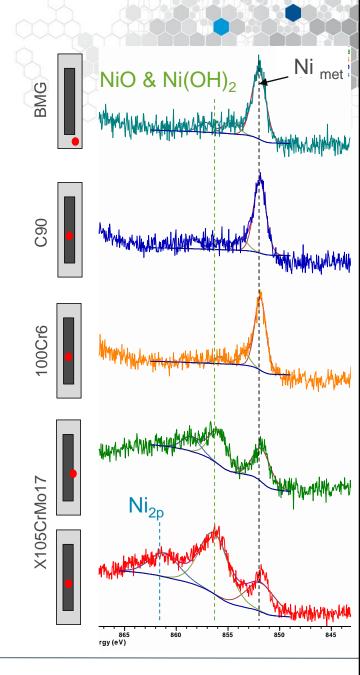
After sliding against 100Cr6

Counterpart	Sample	Spectrum	Elemental composition (atomic %)						
			Ni	Nb	Zr	Fe	Cr	0	С
X105CrMo17	Ball	S 1	16.9	5.7	1.0	15.1	3.4	48.0	10.0
		S2	69.4	1.5	0	6.5	1.4	6.8	14.5
		S 3	13.0	12.6	2.1	3.0	0.7	63.0	6.7
	Plate	S4	18.2	12.6	2.2	4.8	1.0	54.4	6.9
		S5	12.2	17.7	3.1	4.3	1.1	51.6	10.0
100Cr6	Ball	S 6	4.4	0.8	0.1	62.0	4.5	8.0	19.8
		S 7	3.3	0.7	0.1	76.8	0.8	5.12	12.3
		S 8	0.3	0	0	56.6	0.7	0.9	41.0
	Plate	S 9	6.1	3.7	0.1	2.3	0.1	16.4	70.5
		S10	11.4	11.0	2.0	11.5	0.5	<i>58.2</i>	4.3
C90	Ball	S11	6.6	1.3	0.2	63.8	0.2	16.3	11.0
	Plate	S12	24.3	20.9	3.7	3.6	0	39.1	8.4

Ratio of at% signficantly changed

Ni transfers a lot on X105CrMo17

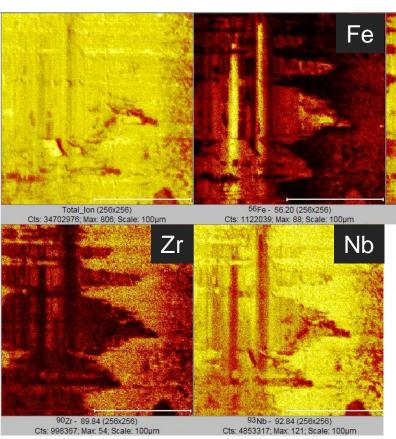
O highly detected

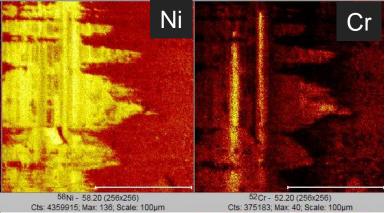

Cr detected?

RESULTS – XPS

Top Surface analysis (5 nm in depth), averaging over Ø200µm spot

- \Rightarrow X105CrMo17:
 - ⇒ oxide et hydroxyde of Ni more detected than Ni metal inside the track and on the edge of it
- \Rightarrow C90 et 100Cr6 :
 - ⇒ Ni met >> oxide and hydroxyde Ni
 - ⇒ Detection similar to the outside
- ⇒ O and C heavily detected => contaminations + oxides ?
- ⇒ Cr not detected => hidden by C contaminations?
 - ⇒ Agree with EDS except Cr was slightly detected
- \Rightarrow Native oxide of BMG : Nb₂O₅ & ZrO₂ => OK
- ⇒ Nb₂O₅ and ZrO₂ detected inside friction tracks as well
 - ⇒ Large spot size and very low wear



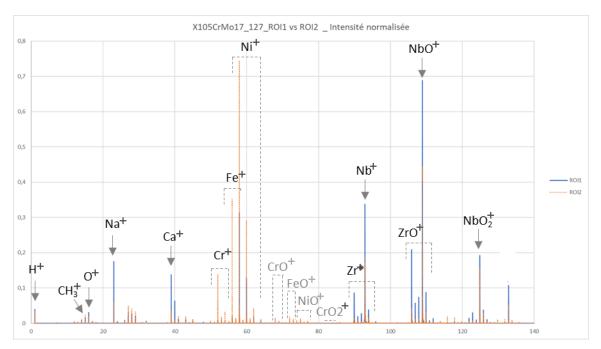


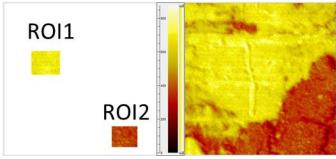
RESULTS – NanoSIMS

Analysis over 2 to 5 nm in depth, Ø few µm

Cr and Fe detected along with Ni

Cr and Fe heavily detected => low Nb detection


Zr detected where Nb is the most detected



RESULTS – NanoSIMS

Definition of region of interest and in depth analysis of spectra

In both positive and negative analysis modes to get access to all fragments

ROI 1: almost pristine BMG

ROI 2 : patch of

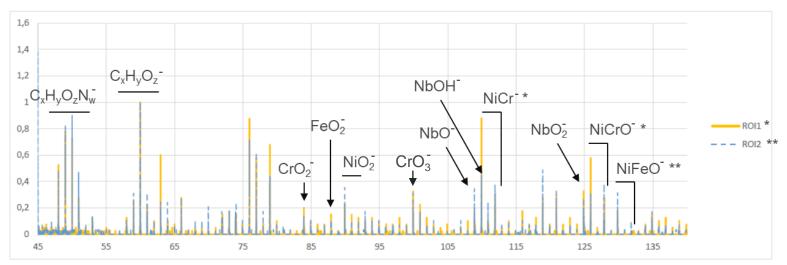
worn/transfered material

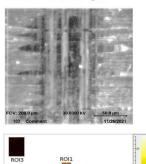
- ⇒ Clear evidence of reverse detection of Ni vs ZrO₂ and Nb₂O₅ between pristine and transfered material
- \Rightarrow Ni detected along with Fe and Cr.

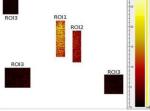
⇒ + Detection of hydrocarbones contaminant.

Agree well with EDS and XPS

16

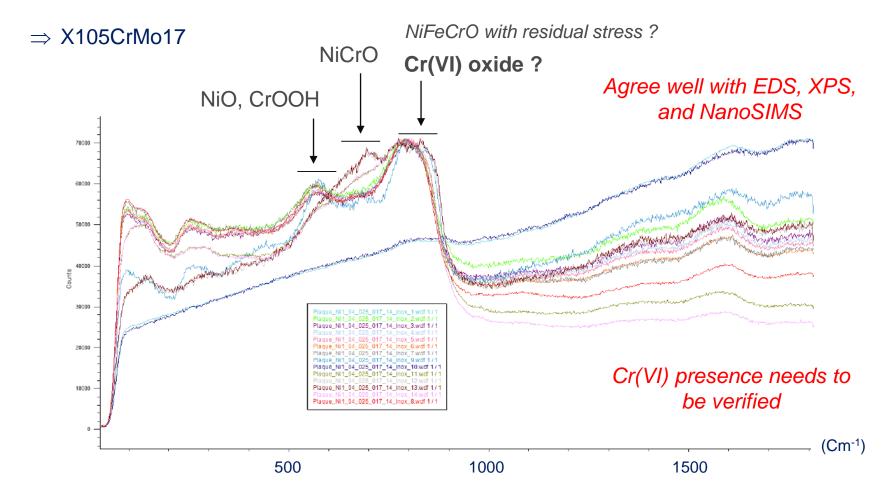

RESULTS – NanoSIMS



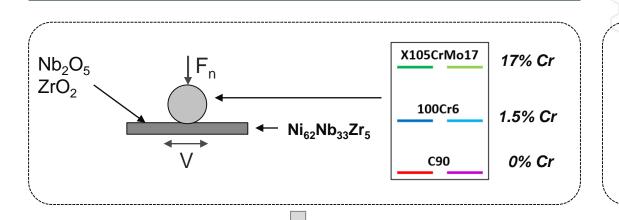

- ⇒ Clear evidence of reverse detection of Ni vs ZrO₂ and Nb₂O₅ between pristine and transfered material
- ⇒ Ni detected along with Fe and Cr.

Agree well with EDS and XPS

- ⇒ + Detection of hydrocarbones contaminant.
- ⇒ Detection of NiO, NiCrO, and NiFeO coumpounds, some Cr oxide.

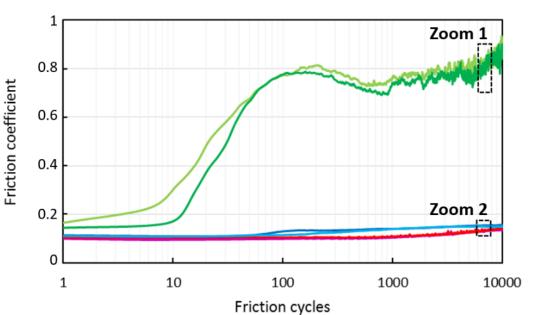


- \Rightarrow C90 and 100Cr6
 - ⇒ No reverse detection: differences inside/outside tracks on Fe and Fe oxide
 - ⇒ Nb₂O₅ is mostly detected in C90 friction tracks, followed by 100Cr6, then X105CrMo17
 - ⇒ 100Cr6: very low detection of Cr oxide and NiCrO compound

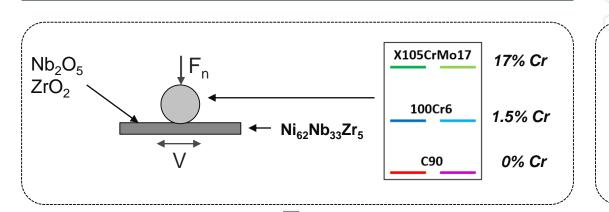

RESULTS – Raman (532nm, power < 1 mW)

⇒ No peaks for C90 and 100Cr6 tests

CONCLUSION



SEM/EDS **XPS** Raman **NanoSIMS**



CoF

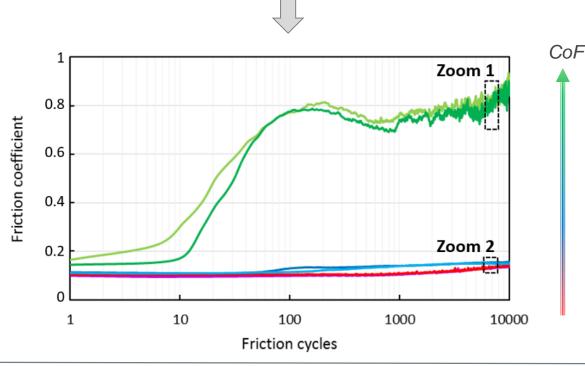
- \triangleright Ni $\uparrow \uparrow \uparrow$, Nb₂O₅ + ZrO₂ $\downarrow \downarrow \downarrow$,
- Fe, Cr, NiO(H), NiCrO, NiFeO
- traces of Fe oxide, and Cr oxide
- \triangleright Ni \uparrow and Fe, Nb₂O₅ + ZrO₂ \downarrow ,
- > traces of Cr, Fe oxide, Cr oxide, NiCrO
- Ni \uparrow and Fe, Nb₂O₅ + ZrO₂ \downarrow ,
- traces of Fe oxide

CONCLUSION

Optical profilometry = no wear SEM/EDS

XPS Raman NanoSIMS

Increased Cr content


Favors Ni selection inside the contact

Loss of Nb₂O₅ which is ductile (potentially good lubricant)

Creation of NiCrO, NiFeO, NiO(H), Cr oxide (obviously less lubricious)

Remains... why Cr(VI)?

Thanks for your attention

