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Abstract: We deploy a supervised machine-learning model based on a neural network to predict 

the temporal and spectral reshaping of a simple sinusoidal modulation into a pulse train having a 

comb structure in the frequency domain, which occurs upon nonlinear propagation in an optical 

fibre. Both normal and anomalous second-order dispersion regimes of the fibre are studied, and 

the speed of the neural network is leveraged to probe the space of input parameters for the 

generation of custom combs or the occurrence of significant temporal or spectral focusing.  
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I. Introduction 

The accumulation of nonlinear effects in an optical fibre is often seen as a source of significant 

impairment for the propagating light signals, but the same effects, when properly managed, can 

provide a remarkable tool to tailor the temporal and spectral content of the signals. Indeed, 

depending on the regime of dispersion of the fibre and the frequency chirp, an initial pulse can be 

significantly expanded or compressed in the time or frequency domain, or it can be reshaped into 

advanced temporal waveforms such as parabolic, rectangular and triangular shapes [1]. Yet, due 

to the typically wide range of degrees of freedom involved, predicting the behaviour of nonlinear 

pulse shaping by numerical integration of the nonlinear Schrödinger equation (NLSE) or its 

extensions may be computationally demanding, especially when dealing with inverse-mapping 

problems. Recently, we have successfully introduced the use of the machine-learning (ML) 

method of artificial neural networks (NNs) as an efficient tool for complementing or substituting 

the NLSE in the modelling of nonlinear pulse shaping [2-5] or for predicting the generation of 

optical supercontinua [6, 7]. 

Fibre nonlinearity does not only affect the propagation of ultrashort pulses. A continuous wave 

modulated at a frequency fm will also experience energy exchange between the spectral lines that 

make up its spectrum, along with a change in the relative phase between the frequency 

components. New equally spaced frequency components will emerge giving rise to a frequency 

comb. Concomitantly, significant reshaping will take place in the time domain, potentially leading 

to very high repetition rate trains of ultra-short pulses [8]. The essential dynamical features of this 

four-wave mixing (FWM) process can be understood from a truncated model involving three or 

four frequency components [9-12]. Very recently, we have showed the benefits of ML in 

addressing this problem by demonstrating that a NN can be readily trained from experimental data 

to accurately model the wave mixing  process [13], and that data-driven discovery based on sparse 

regression can be used to extract the governing differential equation model [14]. Nevertheless, the 

validity of the truncated model is limited by the emergence of higher-order spectral sidebands that 

typically occurs in practice due to further wave mixings. Semi-analytical models involving a 

higher number of frequency components have been explored [15-17], but their complexity and 

underlying assumptions may restrict their practical implementation. In this paper, we implement 

an artificial NN to predict the spectro-temporal evolution of a periodic waveform signal upon its 

nonlinear propagation in an optical fibre. We demonstrate the ability of the trained NN to identify 
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the initial conditions that are required to generate flat frequency combs or optical spectra where 

one frequency component is cancelled in the fibre. The longitudinal evolution of the wave intensity 

profiles in the time and frequency domains are accurately predicted by the NN for both the 

anomalous and normal dispersion regimes of the fibre, which therefore enables efficient and 

accurate replication of the processes of ultrashort pulse formation, spectral compression and 

undular bores that arise from NLSE dynamics. 

II. Problem under study and modelling tools 

A/ Physical model  

The general problem studied in this paper is the nonlinear propagation of two types of periodic 

waveforms in an optical fibre, as illustrated in Fig. 1. By limiting our analysis to symmetrical 

initial conditions, we can mathematically describe the optical spectral field (0, )   with two 

parameters only, namely the ratio A2 of the intensity of the central frequency component to the 

intensity of the lateral sidebands, and the spectral phase  of the lateral sidebands relative to the 

central component. Here, ( , )z   is the slowly varying envelope of the field in the frequency 

domain. Such initial wave conditions have already been studied in the context of linear shaping 

and shown to give rise to the synthesis of various temporal waveforms according to the values of 

A2 and   [18]. In one case, a continuous wave is modulated at the angular frequency m = 2 fm, 

yielding an optical spectrum made of a central component and two sidebands at the frequencies 

±fm, 

 ( )  (0, ) ( ) exp ( ) ( )m mA i           + − + + , (1) 

The corresponding temporal intensity profile is given by 

 ( )2 2(0, ) 1 2 4 cos cos( ) 2 cos(2 )m mI t A A t A t   + + + , (2) 

The other case refers to four spectral lines with no continuous background, where the spectral field 

amplitude can be expressed as 
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We neglect initial quantum noise in our model, so that we can neglect the growth of spontaneous 

modulation instability upon propagation in the anomalous regime of dispersion. 

 

 

 
 

Figure 1: Schematic of the nonlinear shaping problem under investigation. 

 

 

The evolution of the slowly-varying scalar field envelope (z,t) upon propagation in a lossless, 

single-mode fibre is governed by the nonlinear Schrodinger equation (NLSE) [19]: 
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where z is the propagation distance, t is the time in a reference frame travelling at the group 

velocity, and 2 and  are the second order (group-velocity) dispersion and Kerr nonlinearity 
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parameters of the fibre, respectively. It is useful to normalise Eq. (5) by introducing the 

dimensionless variables: 
0/u P= , ξ = z/LD, τ = t/T0, and write it in the form 

 
( ) 2

2 2 2

2

sgn
| | 0

2

uu
i u uN



 

 
− + =

 
 (6) 

where P0 is the average power of the input modulated wave, LD = 1/ (|2| fm
2) and LNL = 1/( P0) 

are the respective dispersion length and nonlinear length associated with the initial waveform, and 

the power parameter (or soliton number) N is defined by N2 = LD/LNL. This way, the nonlinear 

shaping problem, which depends on the seven physical parameters (fm, A, , P0, 2,  L), where L 

is the fibre length, is mapped onto a problem in the four-dimensional space of (A, ,   N). This 

dimensionality reduction relaxes the complexity of the problem, and for a specific selected set of 

normalised parameters there are many groups of physical parameters suitable the defining 

equations of A,  ξ and N. 

The variation of the initial spectral phase offset  can be restricted to an interval of length  rad, 

hence, we have used values between - and   rad. The time-domain results for other values 

of  can then be easily retrieved using half-period temporal shifts. For the NLSE to remain fully 

valid without significant influence of higher-order terms, we have adapted the ranges of variation 

of the other three input parameters to the fibre dispersion regime and initial wave condition 

considered, as summarised in Table 1. Negative values of the amplitude ratio A relate to cases 

when the central frequency component of the initial wave is less intense than the surrounding 

sidebands. Typically, for a fibre with anomalous dispersion, we have explored N values between 

2 and 10 and propagation lengths up to the minimum value between 1.5 LNL and 0.2 LD. Within 

such a parameter span, we do not expect to observe any recurrence wave patterns, where this 

phenomenon is not the target of the present discussion. Propagation in the normal dispersion 

regime is known to require higher powers and longer distances. Therefore, in this case N is varied 

between 2 and 20 and the maximum propagation length is set to the minimum value between 4 LNL 

and 0.5 LD. We note that the input parameter span explored is large, well beyond that typically 

used in related publications: the relative intensity of the sidebands A2 may vary by a factor between 

100 and 2000, while the average signal power may change by a factor of 25 or 100.  
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Type of initial 

waveform 

Dispersion 

regime 

A  

(dB) 
ξmax  LD N 

3 spectral lines anomalous [-3 ; 15] min(.2 LD ; 1.5 LNL) [2 ;10] 

3 spectral lines normal [-3 ; 15] min(.5 LD ; 4 LNL) [2 ;20] 

4 spectral lines anomalous [7 ; 17] min(.2 LD ; 1.5 LNL) [2 ;10] 

4 spectral lines normal [2 ; 20] min(.5 LD ; 4 LNL) [2 ;20] 

 

Table 1: Ranges of input parameters investigated relative to the initial waveform type and fibre 

dispersion 

 

 

Contrary to most of the ML-based approaches recently applied to NLSE propagation problems, 

here we do not sample the simulation output wave profiles along both the temporal and spectral 

dimensions, which would require a significant number of sampling points (above 100 points were 

used in [4]), but we focus instead on the signal spectrum. Given the periodicity of the signal being 

studied, the spectrum has a comb structure and, thus, recording a limited number of output complex 

spectral amplitude values is enough to accurately reproduce all the features of the waveform. 

Typically, and exploiting the symmetry of the problem, we have recorded the complex amplitude 

of the five most central spectral lines with zero or positive frequency. Rather than memorising the 

complex amplitude in terms of modulus and phase (which may incur a 2 ambiguity), we have 

stored the real and imaginary parts separately. Therefore, the results of the wave propagation can 

be represented by only ten data points. This approach, which is suited to the periodic waves being 

studied, represents an important simplification of the problem compared to existing strategies, 

while it still enables access to all the amplitude and phase features of the signal in both the time 

and frequency domains.  
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B/ Artificial neural network and optimum solution search 

We have deployed a classic multilayer perceptron in our study, as shown in Fig. 2(a). It is worth 

noting that recently, many works have explored the application of more advanced ML methods to 

NLSE-related problems, such as recurrent [5, 6, 20], convolutional [21-24], or physics-informed 

[25-28] NNs, achieving remarkable performance. In this work, our goal is not to showcase the 

most powerful ML method for solving the NLSE propagation problem being considered but rather 

to emphasise that an easily accessible and model-free method [29] can already fit our purpose well. 

As described in the previous section, the input parameters for the NN are (A, , , N) while the 

output parameters are the real and imaginary parts of five spectral components of the signal after 

propagation in the fibre. A rather large data set is required for training the NN. Therefore, we have 

solved the NLSE - using a standard split-step Fourier propagation algorithm  - for 2105 randomly 

chosen combinations of initial conditions covering  the ranges shown in Table 1. 75% of the 

resulting data are used to train the NN while the rest is kept for validation. The NN structure 

consisting of three hidden layers with thirty-six, thirty and twenty-six neurons, respectively, was 

chosen in an empirical manner. We also tested a cascaded forward NN but the slight gain in 

accuracy did not justify the significant additional cost in training time. The Bayesian regularisation 

back propagation algorithm was used for training, and the NN was programmed in Matlab using 

the neural network toolbox.  
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Figure 2: (a) NN architecture deployed. (b) Principle of searching for the optimum solution. 

 

 

Our aim is to get the trained NN able to accurately predict the temporal and spectral features of 

the output waveform when tested on new data, with a computation time several orders of 

magnitude below the time required by the usual numerical integration of the NLSE. With such a 

speed indeed, we will be able to search the full four-dimensional space of input parameters for a 

solution that may meet a given target, such as a frequency comb fulfilling a predefined spectral 

pattern or the generation of a pulse train with the shortest pulse duration. We would like to 

emphasise that contrary to [3, 4], where we demonstrated that a properly trained NN can identify 

with very high accuracy the nonlinear propagation and initial pulse properties from the pulses 

observed at the fibre output, here we do not know a priori whether the targeted waveform can be 

physically produced. We have employed a very simple search process (Fig. 2(b)): we test the 

trained NN on 5107 new simulations with randomly chosen initial conditions which are sampled 

from the input parameter space with a rather high density. Remarkably, the NN can predict the 
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output spectral properties corresponding to this large data set in less than a minute (40 seconds on 

a personal computer with a 10-core processor, 3.70-GHz processor frequency, and 64-GB 

memory). We then evaluate the ten best guesses from these spectral properties (or temporal 

properties recovered by a simple Fourier transform) and, as the NN predictions may be affected 

by very small inaccuracies, we lastly refine the solution by running a few hundred additional NLSE 

numerical simulations in the very close vicinity of the best guesses. The solution that is the closest 

to the targeted output waveform is then retained. We would like to emphasise that our goal is not 

to benchmark our approach against well-established methods for optimisation and search problems 

such as, e.g., genetic algorithms [30, 31] or gradient descent methods [32].  

 

III. Generation of custom frequency combs 

In this section, we study the problem of generating frequency combs with pre-defined profiles 

through multiple FWM interactions in the fibre. 

A/ Flat combs 

We first target the generation of flat-top combs. Various works have studied the problem of 

generating a flat comb from a continuous wave and proposed solutions that, for example, take 

advantage of the combination of phase and intensity modulation [33]. Here, we investigate the 

nonlinear propagation in a fibre with anomalous dispersion of a three frequency-component initial 

waveform (Eq. (1)). Our target is a symmetric comb made of nine spectral lines of equal amplitude. 

Using the NN architecture described in the previous section, we are able to test millions of input 

parameter combinations in our four-dimensional space and evaluate for each combination the ratio 

C of the spectral intensity of the most intense component to the intensity of the least intense 

component:  ( ) ( )0 1 4 0 1 4max , ... / min , ...C I I I I I I= , where Ii is the intensity of the ith component. 

The output frequency comb corresponding to the best combination of input parameters (i.e., the 

one yielding the C value closest to 1) is shown in Fig. 3. For the initial amplitude ratio A = –0.6455, 

phase offset  = 0.41 rad, normalised propagation length  = 0.0126 and power parameter N = 

9.45, the comb achieved by numerical integration of the NLSE (black diamonds) features intensity 

fluctuations between its components below 0.2 dB. The predictions from the NN (red circles) are 
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in very good agreement with the NLSE results, although minor discrepancies can be observed, 

thereby justifying the final stage of refinement by NLSE simulations in our search procedure. It is 

worth mentioning that to avoid the occurrence of artifacts near the boundaries of the training 

dataset, we have used a margin of 5% with respect to the boundary values.  

 

 

  
 

Figure 3: Generation of a comb consisting of nine spectral lines of equal amplitude through 

nonlinear propagation in an anomalously dispersive fibre. The predictions from the NN (red 

circles) are compared with the results of NLSE numerical simulations (black diamonds).  

 

 

B/ Flat combs with a component suppressed  

We have also explored the possibility of generating flat frequency combs with one of the 

components suppressed through propagation of a three-component initial waveform in an 

anomalously dispersive fibre. Previous works dealing with breathing structures [34] have 

demonstrated analytically and experimentally that it is possible to obtain full depletion of the 

frequency components of a continuous wave. However, the cascaded transfer of energy involved 

leads to a spectrum with a typical triangular shape when plotted on a logarithmic scale. Here, we 

try to achieve the cancellation of a frequency component while maintaining a high degree of 

flatness for the other components. Panels (a) and (b) of Fig. 4 shows examples of combs with the 

central component and the first lateral sidebands, respectively, suppressed, obtained for the 
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respective sets of input parameters: (A = 0.85 dB,  =  rad,  =  N = 8.88) and (A = 

1.96 dB,  =  rad,  =  N = 9.48). To achieve these targets, we have maximised the 

ratio of the average intensity Iav of the three spectral components to retain to the intensity Ic of the 

component to cancel. Here, a frequency component is deemed suppressed if the ratio of its intensity 

to the intensity of the most powerful component is below 5 10-3 (i.e., –23 dB), in which case, its 

value in the cost function is replaced with 5 10-3.  The level of intensity fluctuations on the main 

part of the combs shown in Fig. 4 is below 0.4 dB. Once again, the predictions from the NN agree 

well with the results of NLSE simulations, hence substantiating the ability of the NN to act as an 

universal interpolator [35].  

 

 

 
 

Figure 4: Generation of combs with (a) six spectral lines of equal amplitude and the central line 

suppressed, and (b) five spectral lines of equal amplitude and the first lateral sidebands suppressed, 

through nonlinear propagation in an anomalously dispersive fibre. The predictions from the NN 

(red circles) are compared with the results of NLSE simulations (black diamonds).   

 

 

Our NN can also help reconstruct the evolution of the spectrum along the fibre length resulting 

into the formation of a targeted comb. Figure 5 relating to the comb shown in Fig. 4(b), shows that 

before the stage where the two lateral sidebands get cancelled, the central component experiences 

a stage of strong depletion. We can also observe the progressive broadening of the spectrum. 

However, given the finite number of output frequency components included in the NN, the 
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network cannot obviously reproduce the outermost spectral lines. It is worth noting though that 

the evolution of the intensity of the frequency components predicted by the NN is in very close 

agreement with that obtained from integration of the NLSE. This is because the NN has been 

trained on a dataset based on the NLSE model, in other words, no assumption has been made, such 

as a truncated FWM model, that could affect the energy transfer among the reduced number of 

spectral sidebands considered in the NN. 

 

 

 

Figure 5: Longitudinal evolution of the optical spectrum into the frequency comb shown in Fig. 

4(b). (a) Predictions from the NN. (b) Results of NLSE simulations. 

 

C/ Impact of initial conditions and dispersion regime  

We have also tested the ability of the NN to search the input parameter space for the formation of 

flat combs starting from initial conditions (1) and (3) in both the anomalous and normal dispersion 

regimes of the fibre. The results obtained for each system’s configuration are summarised in Fig. 

6 where combs formed of seven or six spectral lines of equal amplitude are targeted. The associated 

input parameters are given in Table 2. It is noteworthy that, contrary to propagation in the 

anomalous dispersion regime, comb generation at normal dispersion requires in-phase initial 

conditions. In all cases, very flat combs are attained, featuring spectral wings on each side of the 

plateau which decay almost linearly when plotted on a logarithmic scale. While the intensity 
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profiles in the frequency domain exhibit rather similar features for anomalous and normal 

dispersion, this is not the case in the time domain where we can note the very strong influence of 

the dispersion regime on the intensity profiles. Besides, the carrier-suppressed nature of the initial 

condition has a stronger impact on the output waveform in the normal dispersion regime. 

 

 
Figure 6: Generation of combs with six (panels 1, 2) and seven (panels 3, 4) spectral lines through 

nonlinear fibre propagation of three- and four-frequency component initial conditions, 

respectively.  The results obtained in the anomalous and normal dispersion regimes of the fibre are 

shown in panels 1, 3, and 2, 4, respectively. (a) The optical spectra predicted by the NN (red 

circles) are compared with those obtained from NLSE simulations (black diamonds). (b) 

Corresponding temporal intensity profiles obtained from NLSE simulations. 
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Type of initial 

waveform 

Dispersion 

regime 

A  

(dB) 
 

(rad) 
ξmax N 

3 spectral lines anomalous 2 0.216 0.0196 7.69 

3 spectral lines normal 2.8 0.01 0.01 19 

4 spectral lines anomalous 8.31 0.283 0.0283 7 

4 spectral lines normal 3.12 0.005 0.0056 16.5 

 

Table 2: Input parameters supporting the generation of the frequency combs shown in Fig. 6. 

 

 

Inspired by [2], we have also built a visual representation of the input parameters that lead to the 

sought target. In Fig. 7, we therefore show the regions in the input parameter space that support 

values of the flatness parameter C above 0.85 (corresponding to intensity fluctuations across the 

plateau of less than 0.7dB). The marker color in the figure is based on the value of the relative 

phase offset  and the results are plotted for the initial condition given by Eq. (1) and both regimes 

of dispersion. We can see that there are numerous combinations of input parameters that lead to 

the desired target. Strong differences between the two regimes of dispersion are also revealed. In 

the anomalous dispersion regime, two parameter branches are visible, relating to distinctly 

different  values. We also see that is possible to achieve a flat comb starting from both negative 

and positive values of the amplitude ratio parameter A. By contrast, in the normal dispersion 

regime the lateral spectral sidebands must be less intense than the central component, with a typical 

amplitude attenuation of around 3 dB. With respect to the relative phase offset, this must be kept 

very close to zero. 
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Figure 7: Regions in the space of input parameters (A, , , N) that enable the formation of high-

flatness combs starting from a three-frequency component initial condition. The results obtained 

for propagation in the anomalous and normal dispersion regimes of the fibre are shown in subplots 

(a) and (b), respectively. The data visualisation is restricted to the parameter volume where 

solutions are found, and the grey region represents volume that is unexplored. 
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IV. Other examples of usage of the NN  

In the previous section, we have discussed examples of tailoring the spectral intensity profile of 

the initial signal, where to achieve the target waveforms we could have deployed a NN only 

predicting the optical spectrum, hence, only having five output parameters. In this section, we 

address three additional problems that reveal the full strength of our NN, able also to deal with the 

temporal features of the signal.  

 

A/ Temporal compression process  

The first practical problem that we address is the search of the input system’s parameters that 

enable the generation of a train of pulses with the shortest duration, when we start from the initial 

wave condition given by Eq. (1). Impressive temporal compression is known to occur in the 

anomalous dispersion regime of the fibre [19], where modulation instability ensures efficient 

cascading of the FWM process. To achieve NN predictions in the time domain that are as accurate 

as possible, we have increased to seven the number of frequency components of the initial wave 

that are evaluated by the NN. From the fourteen output parameters given by the NN, we can 

reconstruct the symmetric spectrum made of thirteen spectral lines with known amplitude and 

phase, and then a simple inverse Fourier transform provides the periodic waveform in the time 

domain. We look for the most efficient temporal compression, which we define here as the 

generation of the pulse train with the highest peak to average power ratio. To limit our search to 

practically relevant, relatively low powers, we set the maximum value of the N parameter to 6. 

Figure 8(a) shows the temporal intensity profiles of the initial and compressed waveforms for the 

optimum input parameters found by our search algorithm, namely, A = 1.90 dB,  = 0.40 rad,  = 

0.0275, and N = 5.79. We can see that starting from an initial wave with a duty cycle (defined as 

the ratio of the full width at half-maximum pulse duration to the pulse repetition period) of 1/3, 

the pulse duration is significantly decreased so that a duty cycle of 9% is achieved. Such a 

compression performance represents a significant improvement compared to the performance 

usually attained when starting from a simple sinusoidal waveform [8], which results in a typical 

duty cycle of 1/4. The logarithmic scale plot highlights that the intensity level of the surrounding 

pedestals is also extremely low (approximately –20 dB from the peak), ensuring that most of the 
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energy is focused into the central part of the pulse. The predictions from the NN (red circles) are 

in excellent agreement with the results of direct NLSE simulations (black curves), thus confirming 

the confidence that we can have in the time-domain prediction capability of our NN. The 

comparison of the evolution of the temporal intensity profile of the initial wave along the fibre 

length obtained from the NN and NLSE simulations (Fig. 8(b)) further validates this conclusion.  

 

 

 
 

Figure 8: Pulse train with the highest peak power relative to the average power. (a) Temporal 

intensity profile plotted on linear (panel 1) and logarithmic (panel 2) scales. The predictions from 

the NN (red circles) are compared with the results of NLSE simulations (black curves). Also shown 

is the initial condition (dotted blue curves). The waveforms are normalised to the same peak power 

in panel 1 and to the same average power in panel 2. (b) Spatiotemporal evolution of the wave 

obtained from the NN (panel 1) and NLSE simulations (panel 2). 
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B/ Spectral focusing process  

The second problem that we study deals with nonlinear spectral focusing. Indeed, whereas self-

phase modulation (SPM) is traditionally associated with broadening of the spectrum of a light 

signal and a concomitant energy transfer from the most powerful central frequency component to 

the neighbouring components, some system configurations may lead to the opposite phenomenon 

with a redistribution of the energy towards the central part of the spectrum [36, 37]. While SPM-

induced spectral compression has been well studied for single pulses, only a few works have 

considered the case of continuous waves, where this spectral focusing phenomenon is also known 

as inverse FWM [38, 39]. Here, we consider an initial wave made of three spectral lines of equal 

amplitude. From a reduced FWM model in the anomalous dispersion regime [9, 13], one may 

anticipate that given the closed trajectory traced in the phase space, after a stage of spectral 

expansion, the wave will move back a slightly modulated wave. However, the resulting spectral 

compression is not very efficient. Therefore, here we consider the regime of normal dispersion 

where efficient spectral focusing is known to arise [40]. Figure 9(a) illustrates the space of input 

parameters that support a concentration of more than 80% of the initial energy into the central 

frequency component. We can see that the initial phase offset needs be around ±/2 and that a 

larger initial N number enables a shorter propagation length. The optimum combination of 

parameters found is  = –1.32 rad,  = 0.025 and N = . The related longitudinal evolution of 

the spectrum is shown in Fig. 9(b), which highlights the increasingly higher focusing of the energy 

into the central frequency component as well as the development of new and low-energy spectral 

sidebands.  

The resulting compressed spectrum is shown in Fig. 9(c), highlighting that very efficient spectral 

focusing has taken place: while the three initial frequency components had the same intensity, the 

intensity of the lateral sidebands is now more than 13 dB below that of the central component. The 

two next neighbouring sidebands have similar intensity level. This spectral focusing is 

accompanied by significant reshaping in the time domain, where the initially sinusoidally 

modulated intensity profile is transformed into a train of rectangular-like pulses [40, 41]. The 

comparison between the NN predictions and the NLSE simulation results in both the time and 

frequency domains confirm the suitability of the NN to be used as a surrogate of the NLSE physical 

model.  
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Figure 9: Spectral narrowing process. (a) Regions in the space of input parameters (, , N) that 

enable focusing of more than 80% of the initial energy into the central frequency component, for 

an initial wave made of three initial spectral lines of equal amplitude and evolving in the normal 

dispersion regime of the fibre. (b) Longitudinal evolution of the optical spectrum obtained from 

the NN (panel 1) and NLSE simulations (panel 2). (c) Compressed optical spectrum plotted on a 

logarithmic scale. The predictions from the NN (red circles) are compared with the results of NLSE 

simulations (black diamonds). Also shown is the initial condition (blue crosses). The inset shows 

the compressed spectrum on a linear scale. (d) Corresponding temporal intensity profiles. The NN 

predictions, the results of NLSE simulations and the initial condition are plotted with red circles, 

a black curve, and a blue dotted curve, respectively. The waveforms are normalised to the same 

average power. 

 

C/ Undular bore patterns  

As the last example, we investigate the spatiotemporal evolution of an initially sinusoidally 

modulated wave (A = 3dB and  = 0) in both the anomalous and normal dispersion regimes of the 

fibre. In both cases, the initial N number is set to 6 and a propagation length up to  = 0.04 is 

chosen. The results are summarised in Fig. 10, where we can observe the very different temporal 
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dynamics experienced by the signal according to the regime of dispersion. In the anomalous 

dispersion regime (Fig. 10(a)), the signal pulses are significantly compressed, as evidenced by the 

temporal intensity profile recorded at the point of maximum compression  = 0.029. After this 

point, the pulses experience the typical dynamics observed for the breather solutions of the NLSE 

[42]. Conversely, in the presence of normal dispersion (Fig. 10(b)) the pulses incur very strong 

reshaping towards a parabolic form [8], followed by a stage of temporal broadening. Therefore, 

their wings start overlapping, leading to short-period oscillations. With further overlap, the number 

of oscillations increases and tends to undular bore patterns [43]. Once again, the results obtained 

from the NN agree well with those of direct NLSE simulations.  

 

 
 

Figure 10: Temporal reshaping of an initially sinusoidal signal with A = 3 dB and N = 6 upon 

nonlinear propagation in the fibre. (a) Temporal narrowing in the anomalous dispersion regime 

and (b) formation of undular bores at normal dispersion. Panels 1 show the temporal intensity 

profiles at the point of maximum compression and after a propagation length of  = 0.04, 

respectively. The predictions from the NN (red circles) are compared with the results of NLSE 

simulations (black curves). Also shown is the initial signal (blue curves). The waveforms are 

normalised to the same peak power. Panels 2 and 3 show the longitudinal evolutions of the 

temporal intensity profiles as obtained from the NN and NLSE simulations, respectively.  



 

21 

 

V. Conclusion 

Following the great achievements of ML techniques in the field of photonics [44, 45], we have 

successfully trained an artificial NN to study the temporal and spectral evolutions of waves with 

three or four frequency components propagating in both the anomalous and normal dispersion 

regimes of a nonlinear optical fibre. Rather than considering the evolution of the temporal 

waveform as reported in many previous works, we have worked in the frequency domain, enabling 

significant reduction of the number of relevant output parameters. We have verified that the 

predictions from the trained NN show very close agreement with the results of direct numerical 

simulations of the NLSE for both the temporal and spectral intensity profiles. Although not 

explicitly shown in this work, as we have recorded both the modulus and phase of the spectral 

field, we were also fully able to reconstruct the phase and chirp profiles of the propagating waves. 

And we have also observed good agreement between the temporal chirp profiles predicted by the 

NN and those obtained from the NLSE model.  

Taking advantage of the significant boost in computational speed enabled by the NN and using the 

underlying scaling rules of the propagation problem, we were able to probe the whole space of 

input parameters for solutions meeting pre-defined characteristics and to pinpoint the optimum 

parameter ranges. While the goal of the present paper is not to benchmark our search and 

optimisation strategy with evolutionary optimisation such as genetic algorithms [30], it is fully 

possible to combine the power of a genetic algorithm with the speed of a NN in an hybrid scheme. 

Benefitting from our NN-based surrogate model, we have demonstrated that starting from very 

simple initial wave conditions can lead to the formation of flat-top frequency combs in the fibre, 

thus eliminating the need for additional external line-by-line adjustments after propagation. We 

have also shown that compelling inverse four-wave mixing can occur for well-chosen initial 

parameters. We believe that the observation of these effective processes will stimulate new 

research to elucidate, based on physical arguments, the initial conditions that are required. We also 

anticipate applications of our results in the area of parametric optical amplification [46] and in the 

generation of high repetition-rate pulse trains with tailored intensity profiles. Indeed, whereas our 

initial studies have demonstrated that waves with three or four frequency components can be 

shaped into parabolic, triangular or rectangular-like pulse intensity profiles [18], the duty cycle of 

the resulting pulse trains could not be adjusted in those studies. Our new tool combined with a 
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suitable merit function could help us identify the appropriate initial conditions for the generation 

of custom waveforms. 
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