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We introduce and demonstrate the concept of a multi-
pixel detector integrated at the tip of an individual mul-
ticore fiber. A pixel consists here of an aluminum-coated
polymer microtip incorporating a scintillating powder.
Upon irradiation, the luminescence released by the scin-
tillators is efficiently transferred into the fiber cores
owing to the specifically elongated metal-coated tips
which ensure efficient luminescence matching to the
fiber modes. Each pixel being selectively coupled to one
of the cores of the multicore optical fiber, the resulting
fiber-integrated X-ray detection process is totally free
from inter-pixel cross-talk. Our approach holds promise
for fiber-integrated probes and cameras for remote X-
and Gamma-ray analysis and imaging in hard-to-reach
environments. © 2023 Optica Publishing Group

1

http://dx.doi.org/10.1364/ao.XX.XXXXXX2

3

The need for novel tools able to detect ionizing radiations4

within tiny recesses and/or extreme environments (of high pres-5

sure, temperature or radioactivity) is seen to rapidly grow in6

many scientific, medical and industrial domains. Being com-7

pact, robust and flexible, optical fibers are widely considered8

as a promising optical tool for addressing this demand, as they9

allow a direct control on light encoded information collected10

from hard-to-reach locations.11

Fiber probes based on the integration of a scintillating el-12

ement onto the tip of the optical fiber have been widely ex-13

plored for the local and real-time dosimetry of ionizing radia-14

tions. Given their inert, passive, and possibly biocompatible15

nature, such devices are particularly appealing in a variety of16

applications and techniques ranging from in-vivo dosimetry17

in cancer therapies to in situ dosimetry within harsh environ-18

ments such as a nuclear reactor [1–5]. Reaching such a degree19

of miniaturization from a direct X-ray-to-electron conversion20

within microfabricated silicon[6], diamond[7] or perovskite [8]21

structures remains a challenge. Note however that perovskite22

materials provide a new generation of scintillators of unmatched23

properties, thus opening new prospects in the design of indirect24

detection of X-rays [9].25

Most of fiber-integrated X-ray detector consist of single pixel26

systems obtained by coupling a scintillating micro-cell to an27

individual fiber. Bringing multi-pixel X-ray detectors within28

hard-to-reach environments would enable new opportunities in29

radiation analysis, opening the prospect of in vivo or in situ real-30

time imaging. However, integrating a pixel array in a compact31

fiber-integrated architecture remains a challenge. The parallel32

implementation of a single pixel fiber probe in a fiber bundle33

represents limits in terms of compactness and image sampling34

[10] since optical fibers are usually larger than 90 µm (outer35

diameter including protective coating).36

Compactness and resolution issues can be alleviated by im-37

plementing multiple pixels onto the same optical fiber. Linares38

et al. developed a three-pixel detector integrated at the end of an39

individual fiber that is sufficiently compact to be inserted within40

a catheter (for brachytherapy monitoring) [11]. However, since41

the luminescence spectra of the three different scintillators used42

as detection pixels noticeably overlap, the detector suffers from43

inter-pixel cross-talk. The development of an array of detection44

pixels at the tip of an individual optical fiber has so far never45

been reported.46

In this paper, we demonstrate a seven-pixel X-ray detection47

platform engineered at the tip of an individual fiber. Our de-48

tector is achieved by coupling seven metal-coated scintillating49

micro-tips to a multicore fiber, each microtip being coupled to50

one of the fiber cores. The resulting seven parallel detection chan-51

nels are shown to be totally independent from each other, thus52

holding promise for a high contrast real-time imaging in hard-to-53

reach environment. Multicore fibers have recently demonstrated54

new prospects for sensing applications [12, 13] and lab-on-fiber55

technology [14, 15] with recent important achievements in opti-56

cal detection [16, 17]. We here extend the multicore-fiber-based57

technology to the analysis and imaging via ionizing radiations.58

Our fiber-integrated multipixel detection system is fabricated59

using a photopolymerization process at one endface of a 1.5-60

meter multicore fiber from Fibercore (Model SM-7C1500). The61

optical fiber shows seven 6.3-µm-diameter cores arranged in a62

hexagonal lattice, with a 35-µm inter-core spacing. The photo-63
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polymerization process involves a scintillating photopolymer64

locally exposed to a laser light travelling through the fiber. One65

fiber endface is immersed within the polymer/scintillator mix-66

ture while an expanded laser beam (λ=521 nm, laser diode from67

Thorlabs) is projected onto the other end to homogeneously il-68

luminate all the seven cores of the fiber. The so-excited seven69

parallel fiber modes carry almost the same power, thereby simi-70

larly triggering polymer hardening at the core outputs. The total71

laser power at the fiber output and exposure time are 0.7 µW and72

4 seconds, respectively. After fiber rinsing with ethanol, seven73

scintillating microtips arranged in a hexagonal lattice appear74

at the fiber output face. Being realized from the fiber modes75

themselves at a wavelength closely approaching that of the scin-76

tillator luminescence, the so-produced elongated scintillating77

microtips are expected to reciprocally efficiently transfer their78

X-ray excited luminescence into the fiber [18]. To increase probe79

efficiency, the multipixel detection array can be metal coated to80

limit the luminescence leaving the microtips outside the fiber.81

Metal coating involves here the deposition of a few-nanometer-82

thick titanium adhesion layer followed by a 125-nm thick alu-83

minum layer. Aluminum is chosen for its high reflectivity at84

visible wavelengths and high transparency to X-rays. Note that85

polymer growth at the endface of a multicore fiber has been86

reported by Dika et al. [19].87
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Fig. 1. (a) SEM image of a fiber-integrated multi-pixel detec-
tion array on top of a seven-core optical fiber. Each pixel is in
direct optical coupling with one of the fiber core. (b) Scheme of
the experimental set-up for the detector demonstration.

To produce the scintillating photopolymer, we first grind88

a commercial Gd2O2S:Eu powder (Phosphor Technology,89

Ref.UKL63/UF-R1) in a mortar with a pestle. The ground pow-90

der is then mixed with ethanol to be filtered with a cellulose91

acetate membrane whose pore diameter is of 1.2 µm. Finally, the92

filtrate is dried to form a superfine powder. Next, the scintil-93

lating material is mixed with a photosensitive polymer, which94

combines an eosin Y (tetrabromofluoroescein) used as a sensi-95

tizer dye, a co-initiator (MDEA: N-methyldiethanola-mine) and96

a multifunctional acrylate monomer, pentaerytritoltriacrylate97

(PETIA) [20]. This photosensitive formulation provides robust98

microstructures at the endface of an optical fiber [18, 21]. A99

weight ratio of 1:5.2 between the photopolymer and the scintil-100

lating powder ensures a high concentration of scintillator within101

the mixture. Gd2O2S:Eu shows excellent yield, linearity and102

stability upon exposure [22, 23]. This scintillator also shows sub-103

millisecond decay and low afterglow upon exposure at energies104

of the order of a few keV, thereby leading to a response time that105

is fast enough for numerous applications. Faster luminescence106

may however be achieved for instance with Gd2O2S:Tb material107

[5, 24, 25] or perovskites [9]. We verified that, upon excitation108

with X-rays, the residual luminescence of the photosensitive109

polymer is orders of magnitudes weaker than the emission from110

scintillators (as already evidenced in Ref. [18]).111

Figure 1(a) displays a scanning electron micrograph of a re-112

sulting fiber-integrated multipixel detector. The pixel array takes113

the form of seven aluminum-coated scintillating micro-tips of114

similar geometries located on top of the seven fiber cores.115
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Fig. 2. (a) Optical image of the fiber output face when the pixel
array is exposed to a 1x1 mm2 radiation field (see inset of (b)).
(b) Intensity plots along the three white lines of (a). Each pixel
is identified with a number ranging from 1 to 7.

The microfabricated detector is demonstrated at the116

METROLOGIE beamline of the synchrotron SOLEIL [26]. The117

experimental set-up is depicted in Fig. 1(b). A monochromatic118

12-keV radiation is projected onto the microstructured facet of119

the fiber (the beam and fiber axes are aligned). At 12 keV, a flux120

of 2.1 109 photons.s−1 is measured across a 1x1mm2 radiation121

field. An adjustable diaphragm is positioned in front of the fiber,122

to control the beam width. The diaphragm and fiber detector are123

positioned on two independent 3D motorized stages. The bare124

output face of the fiber is imaged with a standard sCMOS cam-125

era (Zyla model from Andor Technology) equipped with a (x10,126

0.3) microscope objective (Olympus). The camera is positioned127

outside the irradiation zone of the primary beam: although the128

optical fiber is shown straight in Fig. 1(b), it follows a S-shaped129

curvature in the set-up. We verified that negligible stem effect130

(i.e., Cerenkov effect) [27, 28] is generated by the fiber itself upon131

exposure: no signal is detected when a bare scintillator-free mul-132

ticore fiber is placed within the above-described test-bed. The133
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camera is used as a photometer array to simultaneously read the134

seven instant optical signals delivered in parallel by the fiber-135

integrated multipixel platform. The readout signals are obtained136

by integrating image intensity over 64x64-pixel regions of inter-137

est (ROI) tightly enclosing the seven output light spots (one ROI138

per spot). Images are recorded at a rate of 3.3 Hz.139

Figure 2(a) shows an image of the output endface of the multi-140

core fiber. The observed seven light spots originate from the scin-141

tillation light generated upon irradiation by the fiber-integrated142

pixel array and guided through the fiber to the camera. These143

light spots are well separated in the image, thereby avoiding arti-144

factual inter-pixel crosstalk in the optical readout process. Since145

a relatively homogeneous distribution of light spots is imaged146

by the camera (see Fig. 2(b)), we conclude that the concentra-147

tion of scintillators across the microtip array is almost constant148

and the fabrication process satisfies pixel homogeneity. Only149

one pixel shows a noticeably weaker optical signal. The main150

reason is either a lower concentration of scintillators at the tip151

location during photopolymerization, or a tip shape that is less152

efficient to outcouple light into the fiber. Regularity of the tip153

shape could be improved with single-mode multicore fibers (not154

commercialized yet). Given the few-mode nature of the fiber at155

the photopolymerization wavelength, the guided light used for156

tip fabrication shows tight intensity inhomogeneities which may157

affect tip shape and pixel sensitivity. Note that correction factors158

can be applied to the pixel array to correct signal offsets. .159
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Fig. 3. (a) Repeatability of the multipixel detection system
over ten successive exposures of 10s. Each point corresponds
to the accumulated readout signal for each exposure. In the in-
set are reported the relative standard deviation to the average
accumulated signal from each pixel. Pixels are identified with
a number ranging from 1 and 7 (cf. Fig. 2(a)). (b) Linearity of
the detector versus exposure duration (i.e., accumulated dose).

The response of our fiber-integrated multipixel detector in160

terms of dose linearity and repeatability is reported in Fig. 3.161

The measurement repeatability (Fig. 3(a)) is determined over162

ten exposures of ten seconds each. For the ten exposures at a163

near-constant radiation flux, the light intensities accumulated164

by each detection pixel show standard deviation from signal165

average spanning from 0.4 % to 1.29 %. Note that these errors166

are mainly due to slight variations of the X-ray intensity at the167

synchrotron beamline. The X-ray flux in a synchrotron is known168

to be a decaying function of time due to lifetime limitations of169

the electrons within the storage ring. To overcome this prob-170

lem, electrons are periodically injected into the storage ring to171

compensate beam losses and keep a constant photon flux at172

beamlines (cf. "top-up" operation). Since our measurements173

are realized between two successive "top-ups", we numerically174

compensated the X-ray intensity decay in our data acquisition175

from a linear regression calculation. A linear regression being a176

first approximation of the real time-varying decay of the X-ray177

beam, residual intensity fluctuations are preserved and explain178

the harmonic fluctuations of the data points visible in Fig. 3(a)).179

Therefore the offsets to the perfect repeatability imputed to our180

detection system are smaller than the values given in the figure181

inset. The linearity of the detector with regards to the deposited182

dose is assessed by accumulating the signals detected by each of183

its fiber-integrated pixels over 1, 3, 5, 10, 15, 20, 25, 30, 35 and184

40 seconds of irradiation at a near-constant flux (see Fig. 3(b)).185

The linearity factor R across the pixel array exceeds 0.999. Note186

that we did not observe noticeable performance degradation of187

our probe during our few-hour probe tests. We also verified188

detection stability with a single pixel fiber probe (implemented189

onto a multimode single mode fiber) during a 72h continuous190

exposure at the METROLOGY beamline.191

To evidence potential spurious inter-pixel cross-talk in the192

overall detection process, the X-ray radiation is narrowed until193

exposing a single pixel. To this end, the diaphragm diameter is194

decreased down to 35 µm and the resulting pinhole is centered195

with respect to one of the seven pixels of the fiber probes. Fig.196

4(a) reports an optical image of the output endface of the fiber197

when the tight X-ray pencil selectively irradiates the pixel at the198

center of the detection array. We see that only the exposed pixel199

delivers light to the camera via the multicore fiber, the neighbor-200

ing detection channels remain unexcited. This is confirmed on201

the intensity plots of Fig. 4(b). Outside the fiber core coupled to202

the pixel under exposure, the detected intensity does not exceed203

the dark current of the camera: inter-pixel cross-talk is therefore204

negligible.205

Our fiber detector has also been tested with the radiation206

from a Cu-target source (40 kV, 40 mA / Bruker D8 DISCOVER207

diffractometer). Figure 5 shows time traces simultaneously de-208

livered by the seven pixels of the fiber probe upon exposure.209

At the beginning and at the end of the acquisition, the source210

shutter is closed to verify that no spurious residual light (such as211

in-fiber coupled room light or scintillator afterglow) is detected212

by the system. We see that without X-rays, the afterglow gen-213

erally observed with Eu-doped gadolinium oxysulfide [22] is214

here negligible. When the shutter is open (during 110 seconds),215

seven signals are simultaneously detected with a signal-to-noise216

ratio ranging from 30 to 42. We measure a rise and fall times of217

our detection system limited by the detection rate of our camera.218

The shorter temporal response of the system is defined to the219

order of 1 ms by the decay time of the scintillators [29]. Note that220

the signal-to-noise ratio can be enhanced by finding an optimum221

combination between tip shape and scintillator concentration222

within the photopolymer. After metal deposition onto the tips,223

the pixel sensitivity is enhanced by a factor of about two.224

To conclude, we introduce the concept of a multi-pixel X-ray225
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Fig. 4. Detector response when the pixel array is exposed to a
35x35 µm2 radiation field centered with respect to the center
pixel (see inset, left part). Intensity profiles are plotted along
the three white lines of the top right inset which shows the
optical image of the fiber output face.
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Fig. 5. Readout signal from the seven detection pixels upon a
110 s exposure to X-rays from a Cu-target source. The source
shutter is closed during the first and last 40 s of the acquisi-
tion.

detector integrated at one endface of an individual multicore226

fiber. A seven-pixel array is demonstrated onto a narrow 125-µm227

diameter seven-core fiber, each pixel being engineered simul-228

taneously on top of each fiber core by photolithography. The229

resulting imaging system shows good repeatability and linear-230

ity regarding the accumulated radiation dose and it is totally231

free from inter-pixel crosstalk. Our fiber detector could be used232

to perform multi-point analysis of X-ray microbeams [30]. This233

multipoint detection unit could also be seen as the building block234

of a future ultracompact camera engineered from a bundle of235

multicore fibers. Note that our multipixel detection architecture236

can be engineered with a wide variety of scintillators, including237

halide perovskites of high potential for X-ray detection [9]. Being238

compact and flexible, such fibered camera systems would enable239

in situ or in vivo high resolution X-ray imaging in hard-to-reach240

locations. By leveraging the ubiquity of fiber-optics technology,241

this may represent new prospects in a broad range of scientific,242

medical, and industrial applications.243
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