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Phase separation accompanied by further domain growth and coarsening is a phenomenon common
to a broad variety of dynamical systems. In this connection, controlling such processes represents
a relevant interdisciplinary problem. Using methods of numerical modelling, we demonstrate two
approaches for the coarsening control in bistable systems based on the example of a spatially-
extended model describing an optically-addressed spatial light modulator with two color illumination
subject to optical feedback. The first method implies varying system parameters such that the
system evolves as the pitchfork or saddle-node normal forms. The second method leverages noise
whose intensity is used as an additional system parameter. Both, deterministic and stochastic
schemes allow to control the direction and speed of the fronts separating spatial domains. The
considered stochastic control represents a particular case of the noise-sustained front propagation
in bistable systems and involves the properties of the optical system under study. In contrast, the
proposed deterministic control technique can be applied to bistable systems of different nature.
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Keywords: spatially-extended system, bistability, front propagation, coarsening, noise, control, pitchfork
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I. INTRODUCTION

Besides the well-known Turing patterns, reaction-
diffusion systems exhibit a big variety of spatio-temporal
dynamics [1–4] including traveling fronts, solitary and
periodic pulses, spiral turbulence, scroll waves and
noise-induced pattern formation. In particular, bistable
reaction-diffusion media can exhibit dynamics, where for
the case when two kinds of domains form and evolve in
space, separating fronts between them arise and propa-
gate. Such propagating wavefronts [33] are of frequent
occurrence in chemistry, see, for instance, the Schlögl
model [5–7] developed for the explanation of an auto-
catalytic reaction mechanism, as well as in electronics
[8], flame propagation theory [9], just to name a few.

In the simplest case, front propagation appears in 1D-
space. If a studied bistable media evolves in 2D-space,
then the peculiarities of front propagation are addition-
ally determined by the shape of domains formed by such
fronts. In such a case, one observes an effect often re-
ferred to as ’coarsening’. Coarsening is a particular form
of front propagation, and corresponds to the expansion
of domains that invade the entire space on the cost of
other domains. It is a fundamental phenomenon demon-
strated in the context of different areas: physics of liquid
crystals [10] and magnetism [11–14], physics and chem-
istry of materials [15–18], laser physics [19–21], electron-
ics [22] and animal population statistics [23]. It occurs in
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bistable spatially-extended systems [11] and time-delay
oscillators [19, 20, 22] when a bistable system is prepared
in an inhomogeneous state including both steady states.
Under such conditions, separating fronts start to propa-
gate such that growing spatial domains appear and one
state (phase) therefore starts to dominate the whole sys-
tem. Analogous processes can arise in stochastic systems
as an accompaniment of noise-induced phase transitions
[24, 25].

It is well-known that the presence of any kind of asym-
merty in bistable spatially-extended systems has a prin-
cipal impact on the speed of wavefront propagation, for
instance, in bistable reaction-diffusion models [7, 26]: the
bigger is the asymmetry, the faster wavefronts propagate.
Moreover, control over the system’s asymmetry allows to
stop the wavefront propagation or to even invert its di-
rection. In the current paper we illustrate these facts
by means of numerical modelling on an example of a
spatially-extended bistable dynamical system describing
the optical device considered in Ref. [27]. In particular,
we use the Taylor-series-based technique of the pitchfork
and saddle-node bifurcation implementation developed in
Ref. [27] to control the system’s asymmetry and conse-
quently to control coarsening.

The second strategy for controlling the propagating
fronts is based on noise [26, 28, 29]. In particular, it has
been established that multiplicative noise can influence
the systematic part of front dynamics [4, 26, 30]. We
numerically show how the stochastic scheme of the prop-
agation control can be implemented in terms of optics on
the example of the optical device stochastic model.

Generally speaking, we consider two options for coars-
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FIG. 1: Single-PS-layer OASLM under simultaneous blue and green illumination when the blue light beam is reflected by the
dichroic mirror and creates feedback. The system contains a defocusing lens to emulate local diffusion by spatially broadening
the field distribution of the back-reflected optical field. Lenses L1 and L2 create 4f-imaging of the OASLM’s state back on itself
after reflection by the mirror.

ening control in bistable dynamical systems: determinis-
tic and stochastic approaches. The deterministic control
scheme is a universal methodology for approaching the
model equations to the pitchfork or saddle-node bifur-
cation normal forms and can be applied to dynamical
systems of different nature. In contrast, the stochastic
approach involves the specificity of the concrete opti-
cal device model and hence is not universal. However,
the obtained results complement a manifold of stochastic
phenomena associated with propagating fronts by optical
processes and are potentially interesting for specialists in
optics, nonlinear dynamics and theory of stochastic pro-
cesses.

II. MODEL UNDER STUDY

The central element of the system discussed in this
paper (see Fig. 1) is an optically-addressed spatial light
modulator (OASLM). Our OASLM model was developed
in [27] based on an experimental study of the OASLM
sample fabricated according to the concept reported in
[31]. The OASLM is a light-transmissive device, and it
is assumed in the following that the OASLM fully trans-
mits the incident light, i.e. has zero absorption. This is a
valid approximation, as the devices relies on nanometer
thin photo-sensitive layers. The OASLM operates as an
optically controlled birefringent phase plate leveraging
a nematic liquid crystal (LC) layer, the phase retarda-
tion of which, Γ, is a dynamic quantity. The LC-layer
is located between two two a-As2S3 chalcogenide thin
films that simultaneously function as a photosensitive

(PS) and alignment layers. The OASLM is connected
to a DC-power source resulting in a voltage drop across
the LC layer that is uniform without illumination. How-
ever, illumination spatially modifies the PS’s conductiv-
ity and in turn the local voltage drop across the LC layer.
Due to the induced dipole moment, LC molecules change
their orientation in response, which results in a spatial
birefringence distribution that is a function of the opti-
cal illumination profile. Consequently, an optical wave
crossing the LC experiences a change of its polarization
state due to phase retardation Γ between the ordinary
and the extraordinary axes and Γ(I) = (αI + β)−1 + γ
[27]. Noteworthy, the second PS-layer does not increase
the device’s dynamical complexity and has no principal
impact on the dynamics, besides doubling the responsiv-
ity of the device [27]. In the rest of the manuscript we
therefore only consider an OASLM with a single PS-layer
located on the left side of the LC-layer.

In our generic setup, depicted in Fig. 1, the single-PS-
layer OASLM operates in the phase modulation regime
(the OASLM’s rotation angle ψ = mπ where m ∈ Z).
After traversing the OASLM, a dichroic mirror transmits
the green light beam but reflects the blue with reflectivity
R, which then interferes with the original blue illumina-
tion. Thus, the dichroic mirror creates optical feedback
and potentially coupling. Generally, optical interference,
i.e. a temporal beating originating from the superpo-
sition blue and green light, can be ignored due to the
vast difference in frequencies of both light sources. It is
assumed that the PS’s thickness is significantly smaller
than the wavelength.

Using Jones matrix calculus, we describe the op-
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tical field distributions which determine the system
dynamics. Here, we consider uniformly distributed

horizontally polarized blue illumination, ~E0(x, y) =
[E0, 0]. After passing the OASLM one obtaines
~E1(x, y) = exp (i(φ0 + Γ(x, y))) ~E0(x, y), where φ0 is
the constant retardation induced by the OASLM with-
out illumination and i is the imaginary unit. The setup
in Fig. 1 contains two optical lenses L1 and L2 to cre-
ate 4f-imaging of the OASLM’s state back on itself af-

ter reflection by the mirror, and a defocusing lens LD
within the optical feedback path. Defocusing leads to
blurred imaging, as illustrated in Fig. 1, and its impact
can be mathematically described as a convolution with a
Gaussian of a width that can be controlled through the
positioning lenses. Applying this, one obtains a spatial

distribution of the returned light Jones vector ~E2(x, y)
as

~E2(x, y) =

(
R exp(φ1) ~E1(x, y)

)
∗
(

1

2πσ2
exp

(
− x2

2σ2
− y2

2σ2

))
, (1)

where φ1 is the retardation accumulated in the ex-
ternal cavity round-trip, ’∗’ is the convolution opera-
tion and the Gaussian function plays a role of a point
spread function widened from the normal imaging setup
via the defocusing lens. Finally, the optical wave
passes through the OASLM again and one obtains field
~E3(x, y) = exp (i(φ0 + Γ(x, y))) ~E2(x, y) the resulting
blue light field at the PS-layer on the left side of the

OASLM is ~Eb(x, y) = ~E0(x, y) + ~E3(x, y) with inten-

sity Ib(x, y) =
∣∣∣ ~Eb(x, y)

∣∣∣2. To simplify the model, dif-

fusive processes inside the OASLM are neglected and
width σ of the optical convolution kernel is chosen to
be several times greater than the OASLM resolution,
σOASLM = 3.5µm (see details in papers [27, 31]). Finally,
optical feedback is considered instantaneous relative to
the OASLM’s response time ε. The temporal evolution
of the blue light’s retardation then takes the form

~E0(x, y) =

[
E0

0

]
, ~E1(x, y) = exp (i(φ0 + Γ(x, y)))

[
E0

0

]
,

~E2(x, y) =

(
R exp(φ1) ~E1(x, y)

)
∗
(

1

2πσ2
exp

(
− x2

2σ2
− y2

2σ2

))
,

~E3(x, y) = exp (i(φ0 + Γ(x, y))) ~E2(x, y), Ib(x, y) =
∣∣∣ ~E0(x, y) + ~E3(x, y)

∣∣∣2 ,
ε
dΓ(x, y)

dt
= −Γ(x, y) +

1

αbIb(x, y) + α̃gI0g + β
+ γ,

(2)

where α̃g =
λg

λb
αg is the retardation effect of I0g on the

blue signal.
If one neglects spatial aspects of the dynamics and ex-

cludes the optical convolution implemented by LD, the
system is reduced into an ordinary differential equation
(see paper [27]) for the temporal evolution of the retar-
dation:

ε
dΓ

dt
= −Γ +

1

αbIb(Γ) + α̃gI0g + β
+ γ,

Ib(Γ) = I0b

{
1 +R2 + 2R cos(2φ0 + φ1 + 2Γ)

}
.

(3)

The action of the convolution operation in spatially-
extended model (2) is associated with homogenous cou-
pling of the system state at any point on the plane

(x,y) with its neighbour states in some range x ∈ [x −
∆x;x + ∆x], y ∈ [y − ∆y; y + ∆y]. Defocusing repre-
sents a natural physical approach for the homogeneous
coupling implementation similarly to diffusive effects oc-
curring inside the OASLM. If the coupling radius does
not exceed the OASLM’s linear pixel size, one deals with
local coupling, whose impact is identical to the action
of diffusion. Then one can expect to observe the ef-
fects of wave propagation and coarsening in Eq. (2),
where the system parameters correspond to the regime
of bistability in single-oscillator of Eq. (3). Our nu-
merical study is based on modelling Eq. (2) using the
Heun method [32] with time step ∆t = 10−3. In the
rest of the manuscript Eq. (2) are studied for the fixed
parameter set R = 0.95, αb = 0.117 [m2Rad−1W−1],
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FIG. 2: Pitchfork (panel (a)) and saddle-node (panel (b))
bifurcation condition curves for varying I0b and I0g in Eq.
(3) (see Ref. [27] for details). System parameters are:
ε = 1 [s], αb = 0.117 [m2Rad−1W−1], αg = 98.5 × 10−6

[m2Rad−1W−1], β = 0.052 [Rad−1], γ = −0.55 [Rad], φ0 =
π/2 [Rad], φ1 = π [Rad], λb = 450×10−9 [m], λg = 532×10−9

[m], R = 0.95.

αg = 98.5 × 10−6 [m2Rad−1W−1], β = 0.052 [Rad−1],
γ = −0.55 [Rad], φ0 = π/2 [Rad], φ1 = π [Rad], ε = 1
[s], σ = 10−5 [m], and varying I0b and I0g. The blue
and green light wavelength are chosen according to ex-
periments carried out in article [27], λb = 450×10−9 [m]
and λg = 532× 10−9 [m] correspondingly.

III. DETERMINISTIC CONTROL

As demonstrated in [27], one can implement the pitch-
fork and the saddle-node bifurcation of steady states in
our system described by Eq. (3), if I0b and I0g are cho-
sen according to the corresponding bifurcation condition
curves depicted in Fig. 2. In more detail, when I0b and
I0g are varied according to the curves in Fig. 2, the
right-hand side function f(Γ) of Eq. (3) represented in

the form
dΓ

dt
= f(Γ) evolves in some range of Γ as a cubic

and a quadratic function. Then Eq. (3) is considered as
the pitchfork and saddle-node bifurcation normal forms,
dΓ

dt
= bΓ−dΓ3 and

dΓ

dt
= a+ cΓ2. Here, we use these bi-

furcation conditions to control the effect of coarsening in

Eq. (2). We consider Eq. (3) in the form
dΓ

dt
= f(Γ) and

illustrate the right-hand side function f(Γ) for varying
I0b and I0g. For all parameter values, f(Γ) shows three
steady states corresponding to the condition f(Γ) = 0:
stable steady states A and B and an unstable equilibrium
between them (see Fig. 3 and Fig. 4). We visualise the
fact that the symmetry properties of Eq. (3) describing
the local dynamics without coupling are reflected in the
duration and direction of coarsening in Eq. (2). For this
purpose, we fix the initial spatial pattern at t = 0 and
observe the spatial evolution when I0b and I0g change.

A. Pitchfork bifurcation conditions

Let us fix light intensities I0g = 22, I0b = | ~E0|2 = 0.015
[W/m2] in Eq. (2). This parameter set corresponds to
the regime of bistability in the single-oscillator model de-
scribed by Eq. (3), but the pitchfork bifurcation condi-
tions are not fulfilled (this parameter set corresponds to
point 1 in Fig. 2 (a)) and the right-hand side function of
Eq. (3) is asymmetric, see Fig. 3 (a). In that case, the
spatially extended model described by Eq. (2) exhibits
coarsening, see Fig. 3 (b1-b3). The system asymmetry is
reflected in the fact that the basin of attraction of state
B is larger than the one of state A, and the unstable fixed
point is closer to attractor A than to the stable steady
state B. This results in the spatial evolution of Eq. (2)
such that the red domains corresponding to state B ex-
tend and invade the entire space (x,y).

Increasing I0g allows to fulfil the pitchfork bifurcation
conditions at I0g ≈ 30.1 [W/m2] (point 2 in Fig. 2 (a)),
for which the asymmetry of the right-hand side func-
tion f(Γ) is minimized, see Fig. 3 (c), and coarsen-
ing is substantially slower. Consequently, a longer time
is necessary for the transformation of the same initial
metastable state as in Fig. 3 (b1) (the initial states in
Fig. 3(b1,d1,f1) are identical) into the quiescent regime
when either steady state A or B invades the entire space,
see Fig. 3 (d1-d3). It should be noted that in the case of
minimal asymmetry, the probabilities to observe the final
state Γ(x, y) = A or Γ(x, y) = B starting from random
initial conditions are almost identical.

If one continues to increase the green light intensity,
the phase space structure is inverted in comparison with
the initial configuration, as can be seen from comparison
of f(Γ) in Fig. 3 (a,e). The motion of fronts separat-
ing domains reverses, and coarsening direction becomes
opposite: steady state A invades the whole space, see
Fig. 3(f1-f3) corresponding to I0b = 0.015 [W/m2] and
I0g = 36 [W/m2] (point 3 in Fig. 2 (a)).

B. Saddle-node bifurcation conditions

Varying I0b and I0g according to the curve obtained
using the saddle-node bifurcation conditions, correspond-
ing to the blue line in Fig. 2 (b), allows to move the
right-hand side function of Eq. (3) up and down, see
Fig. 4 (a,c,e). A symmetric configuration of f(Γ) can
be achieved during this motion, see Fig. 4 (c), and the
same effects as in the previous section can be observed.
First, the system’s asymmetry is well-pronounced, as il-
lustrated in Fig. 4 (a), and the state B rapidly invades
the space (x,y), see Fig. 4 (b1-b3). When I0b and I0g
are adjusted such that the saddle-node bifurcation condi-
tions are fulfilled, the system passes through the symmet-
ric state (see Fig. 4 (c)), and the coarsening effect slows
down as illustrated in Fig. 4 (d1-d3). Further changing
I0b and I0g inverts the asymmetry, see Fig. 4 (e), and the
motion of fronts separating blue and red domains reverses



5

x

y

0
0

10−3

10−3

(c) (d1)
x

y

0
0

10−3

10−3

15 18Γ

f
(Γ

)

−1

1

x

y

0
0

10−3

10−3

Γ
(x
,y
)

17.8

15.2

(d2) (d3)

x

y

0
0

10−3

10−3

(a) (b1)
x

y

0
0

10−3

10−3

15 18Γ

f
(Γ

)

−1

1

x

y

0
0

10−3

10−3
t = 5 t = 13

Γ
(x
,y
)

17.8

15.2

(b2) (b3)

I0g = 22

I0g = 30.1
t = 50t = 15

x

y

0
0

10−3

10−3

(e) (f1)
x

y

0
0

10−3

10−3

15 18Γ

f
(Γ

)

−1

1 t = 0

x

y

0
0

10−3

10−3

Γ
(x
,y
)

17.8

15.2

(f2) (f3)

t = 50
I0g = 36

t = 16

A

B

A

B

A

B

[W/m
2
]

[W/m
2
]

[W/m
2
]

[Rad]

[Rad]

[Rad]

[R
a
d
]

[R
a
d
]

[R
a
d
]

[m] [m] [m]

[m] [m] [m]

[m] [m] [m]

[m
]

[m
]

[m
]

[m
]

[m
]

[m
]

[m
]

[m
]

[m
]

[R
a
d
]

[R
a
d
]

[R
a
d
]

[s]

t = 0

t = 0

[s]

[s]

[s]

[s]

[s]

[s]

[s]

[s]

FIG. 3: Coarsening and the pitchfork bifurcation conditions: evolution of the right-hand side function of Eq. (3) and coarsening
in Eq. (2) for increasing green light intensity: I0g = 22 [W/m2] (panels (a) and (b)) corresponding to point 1 in Fig. 2 (a),
I0g = 30.1 [W/m2] (panels (c) and (d)) corresponding to point 2 in Fig. 2 (a), I0g = 36 [W/m2] (panels (e) and (f)) corresponding
to point 3 in Fig. 2 (a). Other parameters are: ε = 1 [s], αb = 0.117 [m2Rad−1W−1], αg = 98.5 × 10−6 [m2Rad−1W−1],
β = 0.052 [Rad−1], γ = −0.55 [Rad], φ0 = π/2 [Rad], φ1 = π [Rad], λb = 450 × 10−9 [m], λg = 532 × 10−9 [m], R = 0.95,
I0b = 0.01506 [W/m2], σ = 10−5 [m].

its direction, see Fig. 4 (f1-f3).

IV. STOCHASTIC CONTROL

Consider a stochastic model of the optical setup illus-
trated in Fig. 1. For that purpose, it is assumed that the
green light illumination contains a stochastic contribu-
tion according to I0g(x, y) = I0g + ξ(x, y). Here, ξ(x, y)
represents a source of spatial coloured noise described by
the first-order Ornstein-Uhlenbeck process

τc
dξ(x, y)

dt
= −ξ(x, y) +

√
2Dgτcn(x, y, t), (4)

where τc is the coloured noise correlation time, n(x, y, t)
is a normalized source of white Gaussian noise, Dg plays
a role of the noise intensity. The temporal and spa-
tial correlation properties of the noise source n(x, y, t)
at any point ~r0 are described by the delta function
< n(~r0, t) >= 0, < n(~r0, t)n(~r0, t + τ) >= δ(τ), <
n(~r0, t)n(~r0 + ~rd, t) >= δ(~rd) (here, the brackets < ... >
denote the mean value), which means that the correla-
tion time of the source n(x, y, t) equals zero and the noise

signal values n(x, y, t) at any different points (x1, y1) and
(x2, y2) are statistically independent.

Physically, random spatial component ξ(x, y) can
be included into the green illumination by adding an
electronically-addressed spatial light modulator that spa-
tially modifies the green illumination. In such coloured
noise, the spatial random illumination is characterised
by a finite temporal correlation determined by the pa-
rameter τc. It is assumed in the following that the noise
correlation time τc is much smaller than the OASLM’s
response time ε. In addition, all instantaneous values
ξ(x, y, t) < −I0g are changed to ξ(x, y, t) = −I0g since
the summary green light intensity I0g + ξ(x, y, t) cannot
be negative. Finally, the stochastic spatial model of the
setup in Fig. 1 takes the form

ε
dΓ(x, y)

dt
= −Γ(x, y)

+
1

αbIb(x, y) + α̃g(I0g + ξ(x, y)) + β
+ γ,

τc
dξ(x, y)

dt
= −ξ(x, y) +

√
2Dgτcn(x, y, t),

(5)

where all the Jones vector component determining the
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blue light intensity are the same as in Eq. (2).
First, Eq. (5) are considered for a set of parameters

corresponding to Fig. 3 (a) when the basin of attrac-
tion of steady state B is larger than the basin of state A.
Equation (5) therefore exhibits coarsening and the sys-
tem state Γ(x, y) = B invades the entire space in the
absence of noise, Dg = 0 (see Fig. 5 (a-c)). However,
increasing noise intensity Dg slows down the effect of
coarsening, see Fig. 5 (d-f), and above a threshold at
around D ≈ 3.7 × 103 [s−1], noise inverts the the front
propagation dynamics and state A dominates, see Fig. 5
(g-i).

Similarly, if the system parameter set corresponds to
Fig. 3 (e), one observes invading state A [Fig. 6 (a-
c)]. In such a case increasing the noise intensity speeds
up the process [Fig. 6 (d-f)]. Thus, it is demonstrated
in Fig. 5 and Fig. 6 that, depending on the particular
system configuration, noise can speed up coarsening, slow
it down or even to invert the direction.

The theoretically rigorous explanation of the stochas-
tic coarsening control in OASLM-based spatial models is
significantly more challenging as compared with, for in-

stance, the theoretical analysis given in Refs. [4, 30] for
basic reaction-diffusion models with multiplicative noise.
In particular, the ’small-noise-expansion approach’ used
in [4, 30] cannot be applied in the context of Eq. (5) due
to the fact that any polynomial expression of Eq. (5) is
challenging to obtain, and will furthermore give rise to
stochastic terms in all the polynomial components. Con-
sequently, it becomes extremely difficult to distinguish
the systematic part of the noise influence. Nevertheless,
we would like to emphasize the similarity between the
processes observed in the basic models discussed in Refs.
[4, 26, 30] and in OASLM-based spatial model described
by Eq. (5). To visualise the fact that stochastic forcing
has an asymmetric impact on Eq. (5), a single-oscillator
stochastic model corresponding to Eq. (5) at σ → 0 is
taken into consideration. If σ → 0, the spatial coupling
is absent and the retardation Γ individually evolves ac-
cording to Eq. (3) at each point of the illuminated area,
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but in the presence of the noise term ξ

ε
dΓ

dt
= −Γ +

1

αbIb + α̃g(I0g + ξ) + β
+γ +

√
0.02na(t),

τc
dξ

dt
= −ξ +

√
2Dgτcn(t),

Ib = I0b

{
1 +R2 + 2R cos(2φ0 + φ1 + 2Γ)

}
,

(6)

where the additive white Gaussian noise term
√

0.02na(t)
has no impact on the system’s symmetry and is included
to obtain a stationary distribution of the normalised
probability density function for the dynamical variable,
Pn(Γ), in numerical simulations. The evolution of Pn(Γ)
caused by increasing noise intensity Dg illustrated in Fig.
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7 indicates that the left peak becomes broadened faster
than the right one. Thus, the action of noise ξ(t) is sig-
nificantly stronger in the vicinity of the left steady state
Γ∗ = A. This effect is similar to the noise-induced evolu-
tion of Pn(u) in the phenomenological model defined by

equation
dx

dt
= −x(x − a + ξa)(x + b + ξb) + ∇2x (see

paper [26]).

V. CONCLUSIONS

The peculiarities of the bifurcation transitions to the
bistable dynamics discussed in paper [27] in the context
of single-oscillator models, are reflected in the behaviour
of the corresponding spatially-extended systems, as for
example in Eq. (2) or similar models corresponding to
different OASLM’s rotation angles or incident light polar-
ization states, as formation of localized spatial domains
corresponding to the attraction of two coexisting steady
states. If the right-hand side function is asymmetric, the
steady state characterized by the larger basin of attrac-
tion, invades the entire space. This process is accompa-
nied by the effect of coarsening, which is determined by
both asymmetry and the shape of evolving domains.

Applying the saddle-node or pitchfork bifurcation con-
ditions, one can remove the system asymmetry and then
the dominating domain expansion is slowed down. More-
over, if the incident green and blue light intensities vary
and obey the saddle-node bifurcation condition, one can
controllably invert the front propagation direction. How-
ever, the saddle-node bifurcation conditions do not allow
to rigorously define the absolutely symmetric state, while

applying the pitchfork bifurcation conditions provide for
mathematical derivation of appropriate parameter val-
ues.

The second approach to control coarsening is the in-
troduction of noise into the system. In particular, the
presence of parametric noise modulating the green light
intensity gives rise to speeding up or slowing down and
inverting the effects of front propagation and coarsening.
The ability to control the dynamics by increasing noise
intensity strength results from the the fact that fluctu-
ation growth changes the system symmetry. Detailed
theoretical analysis of the stochastic control represents
an issue for further investigations.

The interdisciplinary significance of the obtained re-
sults consists in developed approach for the control of
propagating fronts in bistable spatially-extended systems
of any nature exhibiting the coexistence of two steady
states. Representing the function being responsible for
the local dynamics in a polynomial form by using the
Taylor-series expansion, one can derive the pitchfork or
saddle-node bifurcation conditions in the similar way as
in the current paper and then apply them to tune the sys-
tems’s symmetry and, resultantly, the front propagation
speed and direction. Finally, the developed approach for
controlling the symmetry of bistable spatially-extended
systems offers great opportunities for future implemen-
tations of spin-state networks.
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