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Abstract: In our previous work, we have shown that nonlocal interactions in acoustic 

metamaterials can lead to highly unusual roton-like dispersion relations exhibiting a minimum 

of frequency versus wavenumber similar to that of superfluid Helium-4. However, this behavior 

was limited to only one or two propagation directions of sound. Here, we design a three-

dimensional cubic-symmetry airborne acoustic metamaterial with nonlocal interactions along 

three orthogonal directions. By using numerical finite-element calculations, we show that the 

metamaterial supports roton-like behavior along all three orthogonal directions, but the 

behavior is far from isotropic. We compare these calculations with a simplified semi-analytical 

model, leading to good overall agreement. Corresponding experiments appear in reach, but are 

demanding due to the required dense and complex three-dimensional network of acoustic 

channels that connect compartments of air. 
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1. Introduction 

The dispersion relation of sound waves in most ordinary acoustic media such as, e.g., air or 

water is given by a constant speed of sound that connects the frequency and the wavenumber 

of the wave[1, 2]. To improve the possibilities of controlling and steering acoustic waves, efforts 

have been undertaken to design airborne or waterborne metamaterials with stop bands arising 

from Bragg reflections[3, 4] or adjustable positive phase velocity by geometrical detours[5, 6] or 

with negative phase velocity with respect to group velocity by exploiting local resonances[7, 8]. 

More recently[9-12], with roots going back all the way to Brillouin[13], we have used nonlocal 

interactions in airborne acoustic metamaterials as a means to obtain dispersion relations of the 

lowest branch that resemble that of sound waves in superfluid helium. There, the dispersion 

relation starts with frequency being proportional to wavenumber. For larger wavenumbers, 

frequency exhibits a maximum, followed by a region of negative slope and a minimum, which 

is referred to as the roton[14-23]. The region of negative slope corresponds to backward waves 

over a large relative bandwidth, i.e., to a situation for which the phase velocity is opposite to 

the group velocity. For sufficiently small damping, the group velocity vector points in the same 

direction as the energy flow.   

In our previous work, we were able to design three-dimensional acoustic-metamaterial 

architectures for which roton-like dispersion behavior becomes possible for one[9] or two[11] 

orthogonal propagation directions of sound. These metamaterials were composed of 

compartments of air connected by air channels supporting the local and nonlocal interactions 

among the compartments. Here, we extend this idea to a three-dimensional cubic-symmetry 

acoustic metamaterial for which the unusual roton-like behavior occurs for all three principal 

cubic directions. While this extension is straightforward conceptually, the design challenge has 

been a geometric one. The many channels mediating the local and nonlocal interactions in three 

dimensions have to be arranged such that no intersections occur, while maintaining sufficiently 

large channel cross sections to allow for sufficiently strong nonlocal interactions.  

 

2. Metamaterial design 

Figure 1a depicts a unit cell of designed acoustic metamaterial for airborne sound. The light-

yellow cuboid located in the center of the unit cell is a compartment for air. The light-yellow 

cylinders and the light-blue cylinders represent air channels for mediating nearest-neighboring 

(local) interactions and third-nearest-neighboring (nonlocal) interactions, respectively. In 

contrast to a single channel for coupling pressures in two neighboring compartments, that are 

four channels between two third-nearest-neighboring compartments (one is highlighted in Fig. 

1b) in order to main the cubic-symmetry. This design drastically increases the number of 

channels in the metamaterial and significantly complicates the geometry[11]. Therefore, we 

specially design and arrange these channels in space (cf. detours of light-blue channels in Fig. 

1a) to avoid unwanted intersections between them. Light-yellow channels and light-blue 

channels have radius 𝑅1 and 𝑅3, respectively. Once the length of the channels is fixed, relative 

strength between local interactions and nonlocal interactions can be tailored via these two 
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radii[11]. Sufficiently large ratios 𝑅3/𝑅1 leads to the wanted roton-like dispersion relations, as 

we will demonstrate below. 

 

Fig. 1. Illustration of the designed cubic-symmetry acoustic metamaterial. a One metamaterial  

unit cell with lattice constant 𝑎. An infinite bulk metamaterial is obtained by replicating the 

cubic unit cell in three dimensional space according to a simple-cubic lattice. The light-yellow 

cuboid represents an air compartment. Pressures in two neighboring compartments and two 

third-nearest-neighboring compartments are coupled by air channels in light-yellow and light-

blue, respectively. b An array of four unit cells along 𝑥-directions. One channel connecting the 

first cuboid compartment to the last along the array is heighted in red. We choose 𝑑/𝑎 = 0.5 

for our below calculations. 

 

3. Numerical and theoretical modeling 

3.1 Finite element calculations 

We numerically solve dispersion bands for the designed acoustic metamaterial by using the 

commercial software COMSOL Multiphysics with the Acoustic Pressure Module. Specifically, 

the following governing equation for linear acoustics is solved[1] 

 𝛁 ⋅ (𝛁�̃�𝐤,𝑛(𝐫)) = −
𝜔𝑛

2 (𝐤)

𝑣air
2 �̃�𝐤,𝑛(𝐫),                                                                                               (1) 

for finding the eigenfrequencies 𝜔𝑛(𝐤), with band index 𝑛 and Bloch wavevector 𝐤, and the 

corresponding eigenmodes �̃�𝐤,𝑛(𝐫) . Here, �̃�𝐤,𝑛(𝐫)  should be understood as the pressure 

variation relative to a constant background atmospheric pressure. 𝑣air represents the speed of 

sound in air and is chosen as 𝑣air = 340 m/s for the FEM simulations and the below simplified 

theoretical treatment. We apply Bloch periodic boundary conditions to the six surfaces of the 

cubic metamaterial unit cell (cf. Fig. 1). All other boundaries are treated to be sound rigid[1]. 

The eigenfrequencies and eigenmodes are obtained by using the MUMPS solver in Comsol 

Multiphysics. 

 

3.2 Transmission line model 

Next, we adopt a transmission line approach similar to our previous work[11] and theoretically 

derive acoustic dispersion bands of our designed metamaterial. Transmission line theory is 



  

4 

generally applicable to the low-frequency range, where the corresponding wavelength is much 

larger than cavities and diameters of channels in the acoustic metamaterial. These conditions 

are well satisfied for the lowest bands as demonstrated by FEM calculations and theory later. 

Below, we provide the main steps for the analysis. 

We consider an infinite bulk metamaterial composed of the unit cell shown in Fig. 1(a). For 

brevity, we number each lattice site by three integers (𝑚, 𝑛, 𝑙) with 𝑚, 𝑛, 𝑙 = 0, ±1, ±2 …. . At 

low frequency range, acoustic pressure fields in each cuboid compartment can be assumed to 

be uniform[11]. Following the Floquet-Bloch wave theorem[2], we denote the acoustic pressure 

in the cuboid compartment at lattice site (𝑚, 𝑛, 𝑙) to be  𝑃𝑚𝑛𝑙 = �̃� exp(i(𝑘𝑥𝑚𝑎 + 𝑘𝑦𝑛𝑎 +

𝑘𝑧𝑙𝑎 − 𝜔𝑡)), with �̃�  being a constant prefactor, 𝜔 being the angular frequency, 𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧 

being three components of the Bloch wavevector 𝐤 = (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧), and the imaginary unit i. On 

this basis, we address wave propagation in the channels in Fig. 1.  

We first consider wave propagations in the light-yellow channels that connect two neighboring 

compartments. As one example, we analyze the channel that connects the compartment at site 

(𝑚, 𝑛, 𝑙) to its immediate neighbor along 𝑥-direction at site (𝑚 + 1, 𝑛, 𝑙). Within the low-

frequency range, only the zeroth guided mode, of which pressure fields inside the channel are 

uniform on the cross section, is a propagation mode in the tube while other guided modes are 

evanescent[1]. We obtain pressure fields inside the channel as a superposition of a forward 

zeroth guided mode, from the cuboid at site (𝑚, 𝑛, 𝑙)  to that at site (𝑚 + 1, 𝑛, 𝑙) , and a 

corresponding backward mode[24] 

       𝑃(𝑠) = (𝐴+ exp (i
𝜔

𝑣air
𝑠) + 𝐴− exp (−i

𝜔

𝑣air
𝑠)) exp(−i𝜔𝑡).                                             (2) 

Herein, 𝑠 indicates the distance along the central axis of the channel with 𝑠 = 0 being one end 

of the channel, where it connects to the cuboid at site (𝑚, 𝑛, 𝑙). Then, 𝑠 = 𝐿1, with 𝐿1 = 𝑎 − 𝑑 

being the channel length, representing the other end. 𝐴+ and 𝐴− are two unknown amplitude 

coefficients. The corresponding particle velocity is derived as 

      𝑣(𝑠) =
1

i𝜔𝜌air

∂𝑃

𝜕𝑠
=

1

𝜌0𝑣air
(𝐴+ exp (i

𝜔

𝑣air
𝑠) − 𝐴− exp (−i

𝜔

𝑣air
𝑠)) exp(−i𝜔𝑡) ,          (3) 

with 𝜌air representing average air density. Now, we apply continuity conditions at both ends of 

the channel, i.e., acoustic pressures must be the same as that in the corresponding cuboids[24] 

   𝑃(0) = �̃� exp(i𝑘𝑥𝑚𝑎 + i𝑘𝑦𝑛𝑎 + i𝑘𝑧𝑙𝑎 − i𝜔𝑡),                                                                         (4) 

  𝑃(𝐿1) = �̃� exp(i𝑘𝑥(𝑚 + 1)𝑎 + i𝑘𝑦𝑛𝑎 + i𝑘𝑧𝑙𝑎 − i𝜔𝑡),                                                            (5) 

Substituting Eq. (2) into Eqs. (4) and (5) yields the two amplitude coefficients, 𝐴+ and 𝐴−, 

   𝐴+ =
�̃�

2i
exp(i𝑘𝑥𝑚𝑎 + i𝑘𝑦𝑛𝑎 + i𝑘𝑧𝑙𝑎) csc (

𝜔𝐿1

𝑣air
) (exp(i𝑘𝑥𝑎) − exp(−i

𝜔𝐿1

𝑣air
)),               (6) 

   𝐴− =
�̃�

2i
exp(i𝑘𝑥𝑚𝑎 + i𝑘𝑦𝑛𝑎 + i𝑘𝑧𝑙𝑎) csc (

𝜔𝐿1

𝑣air
) (−exp(i𝑘𝑥𝑎) + exp(i

𝜔𝐿1

𝑣air
)).               (7) 

The particle velocity in Eq. (3) can be simplified to 
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   𝑣(𝑠) =
i 𝑃𝑚𝑛𝑙

𝜌air𝑣air
csc (

𝜔𝐿1

𝑣air
) (cos (

𝜔𝑠 − 𝜔𝐿1

𝑣air
) − cos (

𝜔𝑠

𝑣air
) exp(i𝑘𝑥𝑎)).                              (8) 

From this expression, the total air mass flowing out of the cuboid at lattice site (𝑚, 𝑛, 𝑙) through 

the above channel is given by 

  𝑄𝑚+1,𝑛,𝑙 = 𝜌air𝑆1𝑣(0) = i
𝑆1𝑃𝑚𝑛𝑙

𝑣air
csc (

𝜔𝐿1

𝑣air
) (cos (

𝜔𝐿1

𝑣air
) − exp(i𝑘𝑥𝑎)).                             (9) 

Herein, 𝑆1 = 𝜋𝑅1
2 represents the cross section of the nearest-neighbor channel. Likewise, the 

air mass flow out the cuboid compartment at lattice site (𝑚, 𝑛, 𝑙) through nearest-neighboring 

channels along the y-direction and 𝑧-direction to the compartment at lattice sites (𝑚, 𝑛 + 1, 𝑙) 

and (𝑚, 𝑛, 𝑙 + 1) are given by 

  𝑄𝑚,𝑛+1,𝑙 = i
𝑆1𝑃𝑚𝑛𝑙

𝑣air
csc (

𝜔𝐿1

𝑣air
) (cos (

𝜔𝐿1

𝑣air
) − exp(i𝑘𝑦𝑎)),                                                     (10) 

  𝑄𝑚,𝑛,𝑙+1 = i
𝑆1𝑃𝑚𝑛𝑙

𝑣air
csc (

𝜔𝐿1

𝑣air
) (cos (

𝜔𝐿1

𝑣air
) − exp(i𝑘𝑧𝑎)).                                                     (11) 

Apart from the channels connecting immediate neighboring compartments, we further need to 

consider wave propagations in channels between third-nearest-neighboring compartments. The 

analysis is similar. The total air mass flow through each channel from the compartment at lattice 

site (𝑚, 𝑛, 𝑙) to the compartment at lattice sites  (𝑚 + 3, 𝑛, 𝑙), (𝑚, 𝑛 + 3, 𝑙) and (𝑚, 𝑛, 𝑙 + 3) 

are, respectively, 

  𝑄𝑚+3,𝑛,𝑙 = i
𝑆3𝑃𝑚𝑛𝑙

𝑣air
csc (

𝜔𝐿3

𝑣air
) (cos (

𝜔𝐿3

𝑣air
) − exp(3i𝑘𝑥𝑎)),                                                   (12) 

  𝑄𝑚,𝑛+3,𝑙 = i
𝑆3𝑃𝑚𝑛𝑙

𝑣air
csc (

𝜔𝐿3

𝑣air
) (cos (

𝜔𝐿3

𝑣air
) − exp(3i𝑘𝑦𝑎)),                                                  (13) 

  𝑄𝑚,𝑛,𝑙+3 = i
𝑆3𝑃𝑚𝑛𝑙

𝑣air
csc (

𝜔𝐿3

𝑣air
) (cos (

𝜔𝐿3

𝑣air
) − exp(3i𝑘𝑧𝑎)),                                                   (14) 

with 𝑆3 = 𝜋𝑅3
2 being the cross section area of the nonlocal channel and 𝐿3 representing their 

length. The expression of 𝐿3 is rather lengthy and is not given here. For the compartment at 

lattice site (𝑚, 𝑛, 𝑙), the conservation law for air mass requires[24] 

  i
𝜔

𝑣air
2 𝑉c�̃�𝑚𝑛𝑙 = (𝑄𝑚+1,𝑛,𝑙 − 𝑄𝑚−1,𝑛,𝑙 + 𝑄𝑚,𝑛+1,𝑙 − 𝑄𝑚,𝑛−1,𝑙 + 𝑄𝑚,𝑛,𝑙+1 − 𝑄𝑚,𝑛,𝑙−1)

+ 4(𝑄𝑚+3,𝑛,𝑙 − 𝑄𝑚−3,𝑛,𝑙 + 𝑄𝑚,𝑛+3,𝑙 − 𝑄𝑚,𝑛−3,𝑙 + 𝑄𝑚,𝑛,𝑙+3 − 𝑄𝑚,𝑛,𝑙−3).    (15) 

𝑉𝑐 = 𝑑3 represents the compartment volume. 𝑄𝑚−1,𝑛,𝑙 is the mass flow in through the channel 

that connects the cuboid at site (𝑚 − 1, 𝑛, 𝑙) and to that at site (𝑚, 𝑛, 𝑙) and 𝑄𝑚−3,𝑛,𝑙 is the mass 

flow in through each of the four channels between the two cuboids at sites (𝑚, 𝑛, 𝑙) and (𝑚 −

3, 𝑛, 𝑙). Other symbols can be understood in analogy. We remark here that the factor 4 in front 

of the second term on the right-hand side of Eq. (15) is due to four nonlocal channels between 

two third-nearest-neighboring compartments.  

After substituting the mass flow formula into Eq. (15) and some mathematical simplifications, 

we derive an implicit expression for the acoustic dispersion bands of the designed cubic-

symmetry acoustic metamaterial 
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𝜔

𝑣air
𝑉𝑐 = 𝑆1 csc (

𝜔𝐿1

𝑣air
) (6 cos (

𝜔𝐿1

𝑣air
) − 2 cos(𝑘𝑥𝑎) − 2cos (𝑘𝑦𝑎) − 2cos (𝑘𝑧𝑎))

+ 4𝑆3 csc (
𝜔𝐿3

𝑣air
) (6 cos (

𝜔𝐿3

𝑣air
) − 2 cos(3𝑘𝑥𝑎) − 2cos (3𝑘𝑦𝑎)

− 2cos (3𝑘𝑧𝑎)).                                                                                                      (16) 

This equation does not provide a closed expression for the angular frequency 𝜔 =

ω(𝑘𝑥 , 𝑘𝑦, 𝑘𝑧)., However, (16) can be easily solved numerically for a given Bloch wavevector 

𝐤 = (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧). Note that for any given 𝐤, multiple solutions for 𝜔 can be derived from the 

implicit formula Eq. (15). These solutions correspond to different bands. In the long wavelength 

limit, i.e., 𝑘𝑥𝑎/𝜋 ≪ 1, 𝑘𝑦𝑎/𝜋 ≪ 1, 𝑘𝑧𝑎/𝜋 ≪ 1, and 𝜔 ≪ 𝑣air𝜋/𝐿3, we can turn Eq. (16) into 

an explicit expression for the angular frequency 𝜔 by Tayler expansion 

        𝜔 ≈ √
𝑆1/𝐿1 + 36𝑆3/𝐿3

𝑉𝑐 + 3𝐿1𝑆1 + 12𝐿3𝑆3
𝑣air𝑎√𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2.                                                           (17) 

The direction independent linear dispersion relation Eq. (17) indicates an isotropic behavior of 

our metamaterial in the long-wavelength limit, as expected from the cubic-symmetry. In the 

following Figs. 2-4, we show results for the transmission-line model as well as FEM 

calculations. Both results are in good agreement not just for the lowest bands but also for higher 

bands along arbitrary wave-propagation directions. 

 

4. Comparison between the semi-analytical model and FEM calculations 

First, we study the acoustic bands along the principal cubic direction. In Fig. 2, we plot the 

lowest band for a set of three different radii, i.e., 𝑅3/𝑎 = 0.01, 𝑅3/𝑎 = 0.02, and 𝑅3/𝑎 = 0.03. 

The lattice constant and the channel radius for local interactions are fixed to 𝑎 = 10 cm and 

𝑅1/𝑎 = 0.02. The theoretical results are denoted by dots and the FEM calculations are shown 

by solid curves to allow for direct comparisons. Higher bands occur above 600 Hz and are not 

shown in Fig. 2. From a small ratio of 𝑅3/𝑎 = 0.01 for the nonlocal channels to a larger one of 

𝑅3/𝑎 = 0.02, the dispersion band develops a roton-like behavior with a local minimum around 

𝑘𝑧𝑎/π ≈ 0.65. For even larger values of 𝑅3/𝑎 = 0.03, we observe an even more pronounced 

roton-like minimum with an even smaller 𝜔(𝑘𝑧𝑎/π ≈ 0.65).  

In Figs. 3 and 4, we start from the same set of geometrical parameters. Further increasing the 

radius of the nonlocal channels leads to an unwanted geometrical overlap between them. In the 

frequency range between 90 Hz and 160 Hz, each frequency has three eigenmodes with 

different wavenumbers, a characteristic feature of roton-like bands[9]. If a wave packet impinges 

from an ordinary medium (e.g., air) onto such a metamaterial, three refracted wave packets 

would emerge with different refraction angles[11]. The one with negative group velocity, 

d𝜔/d𝑘 < 0, leads to broadband negative refraction. In local metamaterials, the regime of 

negative refraction is usually limited to a narrow frequency range[25, 26]. As can be seen from 

Figs. 3 and 4, results of the semi-analytical model are nearly identical to the FEM calculations 

in the plotted frequency range below 200 Hz, of which the corresponding wavelength in air is 
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around 20 times larger than the lattice constant. The analytical model also shows high accuracy 

for higher bands as well as for general wave directions other than the principal cubic directions. 

Figure 3 exhibits the complete bands through sweeping the Bloch wavevector along the usual 

tour (Fig. 3(a)) for cubic crystals in reciprocal space. The relatively long nonlocal channels in 

the metamaterial support local resonances at low frequency, with negligible pressures in 

compartments. Therefore, the wavelength is around twice of the channel length and the 

corresponding frequencies can be estimated as 𝑣air/(2𝐿3) = 585 Hz. The multiple nearly flat 

bands around 600 Hz are due to these local modes. 

 

Fig. 2. Roton-like dispersion relations along the equivalent principal cubic directions. We 

choose a lattice constant 𝑎 = 10 cm and fix the normalized radius of the nearest-neighbor 

channels to 𝑅1/𝑎 = 0.02. Dispersion bands are plotted for three different radii of nonlocal 

channels, 𝑅3/𝑎 = 0.01, 𝑅3/𝑎 = 0.02, and 𝑅3/𝑎 = 0.03. Higher branches occur slightly below 

600 Hz (not depicted here, see Fig. 3). Results for the analytical model and FEM calculations 

are represented by dots and solid curves, respectively. Four arrows indicate the wavenumbers 

considered in Fig. 4. 

 

Fig. 3. Acoustic bands along high-symmetry directions of the designed cubic-symmetry 

metamaterial. a Sketch of the first Brillouin zone. We sweep the Bloch wavevector 𝐤 along the 

blue lines, which mark edges of an irreducible zone in reciprocal space. b First and higher 
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dispersion bands along the marked edges in a. As in Fig. 2, calculated bands are represented by 

dots and FEM results by solid curves. The geometrical parameters 𝑎 = 10 cm, 𝑅1/𝑎 = 0.02, 

and 𝑅3/𝑎 = 0.03 are used. 

 

 

Fig. 4. Plots of the first eigenfrequency at fixed length of the Bloch wavevector |𝐤| but different 

wavevector directions. a Results for FEM simulations. From left to right, we choose the length 

of the wavevector |𝐤| = 0.20 𝜋/𝑎, |𝐤| = 0.35 𝜋/𝑎, |𝐤| = 0.65 𝜋/𝑎, and |𝐤| = 0.85 𝜋/𝑎 (cf. 

also the four arrows in Fig. 2). The frequencies for different directions are encoded by the 

distances of points on the surface to the origin as well by as false-color scale. b Same as in a, 

but for the semi-analytical model. The geometrical parameters are the same as in Fig. 3. 

It is also interesting to compare wave propagation along different directions in the cubic-

symmetry metamaterial. In Fig. 4, we illustrate the direction dependences of the 

eigenfrequencies of the first band at a fixed length of the wavevector |𝐤|, but for different 

directions. From left to right, we have chosen the four different values: |𝐤| = 0.20 π/𝑎 , 

0.35 π/𝑎, 0.65 π/𝑎, and 0.85 π/𝑎 (also cf. arrows in Fig. 2). Panel a shows FEM calculations 

and panel b the semi-analytical model. For each point on these surface plots, the distance to the 

origin is a measure for the eigenfrequency for wave propagating in that direction. In this 

representation, spherical surfaces represent isotropic behavior. For a relatively small 

wavenumber of |𝐤| = 0.20 π/𝑎, the plot is indeed close to spherical, as theoretically predicated 

from Eq. (17). The surface generally grows outward with increasing wavenumber and the 

anisotropy becomes very obvious at finite wavenumbers. At the wavenumber |𝐤| = 0.35 π/𝑎, 

the surface along the principal cubic directions develops into a nearly flat surface. For an even 

larger wavenumber, the flat parts start to decrease towards the origin, due to occurrences of a 

negative group velocity (cf. Fig. 2), indicating a transition from nearly isotropic behavior of the 

metamaterial to a highly anisotropic one. This behavior is directly related to the spatial 

dispersion of our metamaterial which includes nonlocal interactions[27]. In phononic crystals or 

metamaterials, similar transitions from isotropy to highly anisotropic behavior usually occur 



  

9 

close to the edges of Brillouin zone[4]. In contrast, here, spatial-dispersion effects are 

pronounced at much smaller wavenumbers, which is favorable for theoretical modeling by an 

effective continuum model. Our metamaterial may provide a suitable platform for studying 

spatial dispersion and nonlocal effects by effective medium theory[27, 28]. Notches are most 

clearly observed at the roton minimum |𝐤| = 0.65 π/𝑎 and also emerge in the face-diagonal 

directions (right-most column) for wavenumbers |𝐤| = 0.85 π/𝑎 approaching the Brillouin 

zone edges. 

 

 

5. Conclusion 

Based on our previous acoustic metamaterials with nonlocal interactions, we have designed a 

cubic-symmetry acoustic metamaterial that supports roton-like acoustic bands along three 

principal cubic directions. We have theoretically derived corresponding dispersion relations for 

sound propagation by using transmission-line theory. The direct comparison with FEM 

calculations has validated the developed semi-analytical model, which predicts the behavior of 

the lowest acoustic branches along the principal cubic directions as well as other directions. 

Interesting spatial dispersion effects due to the pronounced nonlocality are observed in the 

metamaterial even for wavenumbers far from the Brillouin zone edge. The designed 

metamaterial may provide a platform for studying broadband negative refraction in three-

dimensional space or serve as a metamaterial model with cubic-symmetry for investigating 

nonlocal effects and related spatial dispersions by using effective-medium continuum theory. 
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