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Abstract

The success rate of assisted reproductive technologies could be greatly improved by selectively choosing egg cells
(oocytes) with the greatest chance of fertilization. The goal of mechanical profiling is, thus, to improve predictive
oocyte selection by isolating the mechanical properties of oocytes and correlating them to their reproductive potential.
The restrictions on experimental platforms, however – including minimal invasiveness and practicality in laboratory
implementation – greatly limits the data that can be acquired from a single oocyte. In this study, we perform
indentation studies on human oocytes and characterize the mechanical properties of the zona pellucida, the outer
layer of the oocyte. We obtain excellent fitting with our physical model when indenting with a flat surface and
clearly illustrate localized shear-thinning behavior of the zona pellucida, which has not been previously reported.
We conclude by outlining a promising methodology for isolating the mechanical properties of the cytoplasm using
neural networks and optical images taken during indentation.
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1. Introduction

Isolating the mechanical properties of multi-component biological structures presents a uniquely chal-

lenging inverse problem that is widespread in the field of bio-characterization [1, 2, 3]. Many times, it is

impossible to directly probe the response of individual components, such as the interior and exterior re-

gions of cell, making it difficult to characterize their mechanical properties. Properly characterizing each
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component is highly desirable, however, as their mechanical behavior may highlight biological properties –

in the case of the oocyte, fertility. Due to this, we commonly rely on indirectly characterizing the compo-

nents, which introduces costly and badly posed inverse problems, to backtrack the mechanical parameters.

Developing reliable and efficient methods for solving these problems would, thus, be beneficial for many

bio-characterization applications including predictive oocyte selection for assisted reproductive technologies

(ARTs).

The potential for using mechanical properties as a metric for oocyte fertility has been largely established.

One of the most promising properties is the stiffness of the zona pellucida, which has been categorically

linked to fertilization [4, 5, 6, 7, 8, 9, 10]. Most of these studies, however, were performed on oocytes both

before and after successful fertilization; a standard metric for predicting the fertility of an oocyte based on

the stiffness of its zona prior to use in ART has not yet been proposed. Thus, while most sources agree

that the stiffness of the zona should be considered, it is likely not a sufficient indicator of fertility by itself.

The viscosity of the cytoplasm has also been qualitatively linked to fertility in injection tests [11]. Reliably

measuring this quantity has remained difficult experimentally, however, as the cytoplasm does not likely

contribute to the mechanical responses that are accessible using an ART-compatible experimental protocol

[12]. Due to the difficulty of reliably measuring the mechanical properties of the oocyte, morphological

characterization and selection is still widely preferred for ART protocols [13].

The first limitation of oocyte profiling involves collecting high-quality data from individual egg cells.

Experimental efforts for classifying the mechanical properties of cells are in rich abundance and include,

among others, laser optical tweezers [14], optical stretchers [15], magnetic bead measurement [16], and atomic

force microscopy (AFM) [17, 18]. For oocytes, the thickness of the outer zona pellucida necessitates slight

changes in these classical methods, which also introduces theoretical challenges in the modeling approach.

Early experiments used micro tactile sensors to perform shallow indentation (5µm) experiments and measure

the Young’s modulus of the zona pellucida using Hertz contact [19, 6]. Micropipette aspiration is also

common [20, 7, 8], but many assumptions must be employed (i.e. modeling the oocyte as a half-space [21])

in order to determine the mechanical parameters. Some studies used theoretical approaches [4, 5], but model

calibration relied on simple linear elasticity assumptions or beam and shell formulations that may not be

appropriate for soft materials [6]. More recently, viscoelastic characterization of oocytes has been attempted

using micropipette indentation [22], beam deflection [9], and indentation [23, 24, 12]. The complexity of

modeling these experiments is quickly increasing, however, and has led to difficulty and uncertainty in

obtaining the correct mechanical parameters [23, 24].

Many efforts for increasing the reliability of model calibration in bio-characterization problems have been

introduced. For instance, digital image correlation [25] has been used to supplement predictions of FEM

simulations in 2D and 3D [26, 27], allowing for in vivo mechanical profiling of some biological tissues [28, 29].

Neural networks have been previously incorporated into studies to perform mechanotyping of cell aggregates
2
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Figure 1: Photograph of the mechanical indentation contraption. The pipette holds an oocyte in front of the indenter inside a

Petri dish filled with culture medium (the oocyte diameter is 150 µm and is not visible in the picture).

[30] as well as predict traction profiles within a cell under applied loading [31]. Convolutional neural networks

(CNNs) show particular promise in studies that incorporate images [32]. For the oocyte, an inverse FEM

method (iFEM) was used to assist in calibrating a mechanical model with three parameters by combining

force and image data [23]. Notably, it was found that including image data greatly improved convergence of

their optimization strategy. Images have also been used to estimate volume changes of the zona pellucida

during indentation [23, 12], where it was speculated that volume change occurs at large deformations due to

water expulsion from the porous microstructure. While these studies are promising in their approach, there

remains a large variance of mechanical parameters for the oocyte presented in the literature [5, 19, 33, 7].

Without standard metrics for the mechanical properties of the oocyte, it is not possible to select egg cells

for ART based on their mechanical response.

In this work, we perform indentation tests on human oocytes in the MII stage of maturation. Indentation

is performed with a custom ART-compatible setup using both a flat surface and a sharp indentation tip.

To model the oocyte, we use a physically-based mechanical model based on theories of dynamic polymer

networks [34, 24]. Ultimately, we propose a novel tool to interpret indentation data using a mechanical

model of the experiment and neural networks. We begin by describing our ART-compatible experimental

protocol, which gathers force-depth data during indentation. We next describe our mechanical model for

the oocyte, which is parameterized by physical quantities. Finally, we calibrate and fit our mechanical data

using a neural network that was trained on finite element simulations of the same indentation experiment.

The results are separated into two sections: (i) mechanical calibration results of our nine oocytes and (ii) a

theoretical methodology for decoupling cell component responses using images and mechanical data.

2. Experiments

For this study, a mechanical characterisation platform has been specially designed to fulfill all the require-

ments of ART (Fig. 1). This platform (patented under the number WO2018172688: device for mechanically

characterising an element of interest such as an oocyte), takes individual human oocytes for classification

and is located at the ART center in the Regional University Hospital of Besançon. Each one comes from

supernumerary oocytes excluded from the intracytoplasmic sperm injection (ICSI) procedure of patients

who have started an ART protocol in Besançon hospital. Please refer to the Appendix for images of each
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Figure 2: Oocyte indentation test using a flat (left) or a sharp indenter (right). The first photograph (1/4) is taken before

beginning the experiment. The second photograph (2/5) is taken the moment the indenter makes contact with the oocyte.

The final photograph (3/6) is at the maximum indentation depth of 10µm.

oocyte take before indentation. The following section provides further details of our experimental procedure.

2.1. Oocyte preparation

Each tested oocyte comes from a regular ICSI protocol. First, the cumulus cells surrounding the oocyte

are cleared away by association of hyaluronidase digestion for about 20 seconds. Then, a mechanical removal

of the cumulus is performed using denudation pipettes. Finally, oocytes are rinsed in IVF medium and

individually observed under an inverted microscope (×200 magnification). The mature oocytes at the

metaphase II (MII) meiotic maturation stage, with the presence of the first polar body and the absence of

germinal vesicle, are reserved for the assisted reproductive technology (ART) and not characterized here.

The remaining immature oocytes are incubated in the usual IVF medium at 37°C and 5% CO2 for a duration

of 1 to 3 hours. It should be noted that in these culture conditions, some oocytes can progress to the final

maturation process and reach the MII stage. The use of these immature oocytes has been approved for our

experiments by the clinical ethics committee of The Besancon University Hospital on June 9th 2010. We

finally note that approval by the ethics committee is still going on, preventing us to test oocytes that will

be transferred to patients.

2.2. Experimental platform

After cumulus removal and rinsing, the oocytes are tested on a patented indentation platform using both

flat and sharp indenters. This platform is a modified intracytoplasmic sperm injection (ICSI) platform that

includes a nanoforce sensor based on a linear magnetic spring with a typical stiffness of 0.001 N/m [35]. A
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magnetic device is used to generate the indentation trajectory – note that the magnetic field is quasi-static

and of very low amplitude, thus having no noticeable effects on the cells. More details on this may be found

in Gana et al [36]. This platform is used to characterize oocytes by working in a standard Petri dish filled

with culture medium and by adding a magnetic indenter. The indenter, an 0.85 mm diameter glass tube

of 14 mm length and 5.6 mg weight, applies a controlled compression onto the egg. Indenter position is

measured by both external magnetic and electromagnetic devices (see the two magnets on Fig. 1). Once an

oocyte is placed in front of the indenter tip, an advanced position feedback control system [37, 38] ensures

the user-defined indentation trajectory. The force measurement is performed with the use of an extended-

state Kalman filter (ES-LKF) that dynamically estimates the force Foo applied by the indenter tip on the

oocyte [39] as it is displaced to the user-controlled distance, doo(t) (Fig. 2).

Tests were performed using a flat surface or with a sharp shape, which is effectively a sphere of radius

5 µm (see Fig. 2). The recovered data are indentation force, displacement curves versus time and optical

images at different stages of loading. There are six image references corresponding respectively to the initial

state before loading (1/4), the indenter contact state at zero force (2/5), and the maximum displacement

state (3/6) for both flat or sharp indenter shape (See labels in Fig. 2). The stress relaxation response of

a set of nine different oocytes was obtained using this procedure. An indentation depth of δ = 10µm was

applied at a rate of δ̇ = 1µm/s. The indentation was then held fixed for 50 seconds to allow for relaxation.

3. Physical model of the human oocyte

Each oocyte consists of five primary structures as depicted in Fig. 3. In mature oocytes (MII stage), there

is also a polar body inside the perivitelline space. The second polar body is only extruded after fertilization

and is not taken into account in this study. While the morphological structure of the perivitelline space and

the polar body have been linked to fertility success [40], little is known regarding their mechanical properties.

Furthermore, the perivitelline space is largely nonuniform and its exact structure varies between oocytes. To

incorporate these into an indentation study would, thus, require a detailed morphological characterization

of each oocyte, which is outside the scope of this study. Finally, the oolemma is a ≈ 5nm plasma membrane

of lipids and proteins surrounding the cytoplasm [41, 42]. While the damage behavior of this structure has

been linked to fertility [43, 44, 45], its stiffness is not large enough to contribute to the global mechanical

response at small indentations (less than ≈ 20µm) [46, 47, 48].

We therefore devote our primary attention to the cytoplasm and the zona pellucida. We note that for our

indentation tests, the contact zone is largely homogeneous [49], and the Saint-Venant heterogeneity effect

may be neglected in the cytoplasm. As both the zona pellucida and the cytoplasm are comprised of networks

of filaments and proteins, we begin by outlining a general formulation for the mechanics of dynamic polymer

networks. The general theory is then specialized for the cases of these components.
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Figure 3: Photograph of an oocyte being held by a micropipette. The primary components of the human oocyte in the MII

stage are labeled for convenience.

3.1. Kinematic description of polymer networks

The theory begins with a statistical description of the bio-polymer network, based on the end-to-end

vector r of chains, which exist between two crosslinking junctions [34, 50]. In biopolymers, these chains have

diverse structures that may be rigid, semi-stiff, or flexible [51]. In turn, their interactions may be unchanging

with time (static), dynamic, or a combination of the two (Fig. 4). Within a full network, there exists a

distribution P (r), which describes the likelihood of a particular chain having end-to-end vector r. In this

case, the alignment and state of stretch of the network is described at the macro-scale by the conformation

tensor µ = 3⟨r ⊗ r⟩/r20, where ⟨·⟩ is the statistical averaging operator such that ⟨·⟩ =
∫
P ⟨·⟩dr. This tensor

thus embeds a description of the current average stretch of a chain in the network and is similar to an

Eulerian elastic strain measure. When the network is stress-free, the spherical identity tensor is retrieved

(i.e., µ0 = I), indicating that there is no elastic strain in the network.

We consider the polymer network to exist within each point of a continuum body Ω0 ∈ R3. When

deformed, the motion χ(X, t) describes how each point X ∈ Ω0 moves to its current position x ∈ Ω. We

define the deformation gradient F = ∂χ/∂X to describe the mapping for a line element dX ∈ Ω0 to its

deformed state dx ∈ Ω. If the chains deform affinely, the instantaneous evolution of an end-to-end vector r

is defined by the velocity gradient of the macroscopic body ℓ = ∂ẋ/∂x as ṙ = ℓr [34].

Let us consider two types of networks, which we will refer to as ‘static’ and ‘dynamic’ in nature (Fig.

4). Static networks, which are assumed to be perfectly elastic, are formed by strongly crosslinked chains

that do not reneighbor in time. In dynamic networks, the crosslinking junctions are created by weak

bonds, which may dissociate and reassociate at appreciable rates. The chains still behave elastically at

small timescales, but release their energy upon detaching. Thus, the motion of r may not be affine at long

timescales, as the chain might detach during motion. Each of these network types are commonly found in

biological materials in varying concentrations [52]. To characterize the dynamic networks, let us assume
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Figure 4: Schematic depiction of static and dynamic polymer networks during a stress relaxation experiment. Static networks

deform elastically, while dynamic networks eventually dissipate all energy and relax to zero stress. Hybrid networks exhibit a

combination of these behaviors depending on the fraction of static to dynamic bonds.

that chain detachment and reattachment events are defined by a first-order kinetic law and occur with equal

probability. We characterize the rate of detachment events by its frequency kd, measured in units of s−1.

We have previously demonstrated [34, 24] the following evolution law for the conformation tensor µ of the

dynamic network:

µ̇ = ℓµ+ µℓT − kd

(
µ− 3

Tr (µ−1)
I

)
, (1)

where the process of chain kinetics is assumed to behave isochorically, which is enforced by the final term

[53]. For the static network, in which the detachment rate kd is zero, the final term of this equation vanishes.

Solving the differential equation in this special case, we observe the conformation tensor of a static polymer

network, µs, with a net deformation defined by the deformation gradient F to obey the law:

µs = b = FF T . (2)

Thus, the conformation tensor of a static network that deforms affinely is equal to the left Cauchy-Green

tensor b [34]. Moving forward, the subscript or superscript s denotes a quantity derived for the static

network (i.e., kd = 0).

3.2. Energy considerations and constitutive laws

Deforming the macroscopic body stores elastic energy per the local chain stiffness of each constituent

network. In the subsequent derivations, we assume an equal-strain treatment that decomposes a multi-

component polymer network into the energy stored by chains of the same type (static, dynamic, etc.). The
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global deformation F is assumed equal for each network and the stresses σi of each component are summed

for the assembly. For brevity, we omit the subscript i and treat each thermodynamic quantity as describing

a single network.

To begin, we assume a form of the free energy density of the network based on dynamic network theory

[34]. By summing the energy contributions of each chain in the network, the energy density per unit

volume ψ is found to resemble the free-energy density of a Neo-hookean solid [54]. To account for elastic

compressibility, we decouple volumetric and isochoric contributions of deformation, yielding the following

free energy density:

ψ =
ckT

2
(Tr µ̄− 3) +

κ

2
(Je − 1)2, Je =

√
detµ, (3)

where c is the density of chains per unit volume, kT is the thermodynamic energy-scale, κ is the bulk

modulus of the network, and µ̄ is the isochoric part of the conformation tensor such that µ̄ = J
−2/3
e µ. Note

that volumetric energy contributions arise only from the elastic parts of volume change defined by Je. The

Cauchy stress σ = 2J−1
e µ∂ψ/∂µ is then derived from this expression to be:

σ =
ckT

Je
dev{µ̄}+ κ(Je − 1). (4)

For the static network, µ̄ is replaced by b̄ in the above expression and we recover the constitutive law

for an incompressible Neohookean solid. Thus, we obtain two simple constitutive laws that can be used

to describe static or dynamic components of the oocyte. Given an applied deformation (as defined by

the velocity gradient ℓ), the kinematic equation (1) can be used to solve for the conformation tensor as a

function of time, whose solution simplifies to the left Cauchy-Green tensor in the case of a static network.

In the following section, we propose a simple modeling strategy for the full oocyte using these two network

descriptions.

3.3. Model specialization to each component of the oocyte

The following paragraphs outline a brief physical description of each component of the oocyte along with

its approximated network description. The result is a set of six parameters (Table 1) that need to be fit

for each oocyte. The parameters are categorized by three physical properties: (i) the density c of static or

dynamic chains per unit volume, (ii) the detachment rate kd of dynamic chains, and (iii) the compressibility

κ of the network. Note that the detachment rate defines the relaxation time τ = 1/kd of the material.

The cytoplasm. The cytoplasm consists of a viscous fluid and houses various organelles that regulate

the functions of the cell. While few studies directly measure the properties of the cytoplasm itself [55], it

is generally considered to behave as a viscous fluid. It is known that the organelles rearrange at different

stages of maturation, but at the MII stage of our oocytes, an ultrastructural study revealed the distribution

8
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Table 1: Model parameters

Component Parameter Units

Zona Pellucida csz m−3

cdz m−3

κ Pa

kz s−1

Cytoplasm cc m−3

kc s−1

of organelles to be relatively homogeneous [56]. Further, image analysis of indentation tests has supported

the view of the cytoplasm as incompressible [23]. From this, we choose to model the cytoplasm as an

incompressible dynamic network, which behaves as a Maxwell element in practice [34, 24]. There is thus one

kinematic quantity to track, µc, which is the conformation tensor of the cytoplasm. The kinematic equation

and constitutive law for this component are then:

µ̇c = ℓµc + µcℓ
T − kc

(
µc −

3

Tr (µ−1
c )

I

)
, σc =

cckT

Jc
(µc − I) + p(Jc − 1). (5)

Here, cc is the number density of effective chains per unit volume and kc is the characteristic rate of

detachment. These parameters ultimately govern the effective stiffness of the cytoplasm and it relaxation

time, respectively. The pressure p acts as a Lagrange multiplier to constrain the incompressibility condition.

The zona pellucida. The zona pellucida is perhaps the most complex structure found in the oocyte.

This, combined with the compiling evidence of the importance of its mechanical properties, provides sufficient

motivation for using a physically based model to predict its mechanical response. The underlying structure

consists of four glycoproteins meshed in tight bundles [49]. Some of these filaments are responsible for

binding of sperm and its crossing through the zona pellucida, while others are likely primarily used as

structural scaffolding [57, 58]. The latter of which deform with the global deformation, and show little to no

reconfiguration. Similar to our previous work [24], we therefore model the zona pellucida as a hybrid network

material consisting of one static network and one dynamic network. In this case, there are two conformation

tensors to track: (i) the conformation of static chains in the zona, µs
z, and (ii) the conformation of dynamic

chains in the zona, µd
z . The total stress on the assembly is then summed for each network, yielding the

following governing equations:

µ̇s
z = ℓµs

z + µs
zℓ

T , µ̇d
z = ℓµd

z + µd
zℓ

T − kdz

(
µd

z −
3

Tr ((µd
z)

−1)
I

)
,

σz =
cszkT

Js
z

dev{µ̄s
z}+

cdzkT

Jd
z

dev{µ̄d
z}+ κ(Je − 1).

(6)
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Figure 5: Comparison of FEM simulations with experimental images for sharp (a) and flat indentation (b). The elastic energy,

ψ, is normalized by the chain density c of the respective component (zona pellucida or cytoplasm).

Here, the number density of static chains per unit volume is denoted csz, while that of the dynamic chains

is cdz . The dynamic chains detach at a constant rate kz, and the volumetric deformation of the network is

described by its combined effective bulk modulus κ. Note that, in practice, the solution given in Eq. (2)

is used for the conformation tensor of the static network instead of propagating its value in time. We also

note that the zona pellucida has been show to exhibit high poroelastic behavior when compressed [12]. In

this work, however, they illustrate that significant volumetric changes (and, in turn, poroelastic behavior)

are not present for small indentation depths (as defined by the ratio of the indentation depth δ to oocyte

radius R approaching zero). All of the experiments that we perform meet this criteria, thus, we neglect the

poroelastic response in the current work.

4. Methodology: Finite Element Simulations and Neural Networks

The model presented in the previous section outlines six independent parameters to fit for each indenta-

tion experiment. Due to this and the complexity of the oocyte, performing this fitting Would be costly and

challenging for a typical optimization strategy (e.g., Nelder-Mead or genetic algorithm). Instead, we take

advantage of a simple regressive neural network to solve the inverse problem using a global set of training

data that can be quickly obtained by running Finite Element problems in parallel. This section provides an

overview of the simulations, neural network definitions, and calibration methodology.

4.1. Finite Element simulations

All simulations are performed in the commercial software COMSOL Multiphysics® using the Structural

Mechanics Module. To simplify the geometry and provide a clearer comparison to our images, the oocytes

were approximated an axisymmetric body that is initially a sphere. For each oocyte, we used image analysis

to determine the correct approximate radius of the body as well as the thickness of the zona pellucida.

This was done by collecting data points on both the membrane and the outer zona pellucida using a Canny
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algorithm and then fitting them each to a circle using a least-squares approximation. Note that these

steps were performed on images of free oocytes (before being in contact with the indenter). The contact

problem was solved using a lagrange multiplier method for highest accuracy. To model each compartment,

the reduced Transient Network Theory [34] (described in the previous section) was programmed into the

external materials interface using a dynamically-linked library. A numerical approximation [59] was used

for the material consistent tangent to maintain the Eulerian description of the Transient Network Theory

in a Lagrangian context.

The outputs of the FEM simulations are: (i) the total (summed) contact force on the indenter during

the simulation and (ii) the displacement profiles of each compartment. Figure 5 illustrates a comparison of

the FEM simulations immediately following the loading phase for both sharp and flat indentation. While

we have not yet incorporated the deformation profiles of the cytoplasm and zona pellucida into our fitting,

a good agreement can be observed between the FEM simulations and experiments. For flat indentation, the

elastic energy is much higher, but more localized to the region surrounding the indenter tip. The profiles

of the oocyte, including that of the cytoplasm, are found to match well with the images taken at maximum

loading.

4.2. Neural network definition and calibration

We formally define the inputs of our neural network as the solution set Y := f ∈ R, where f is the

force history during loading. With the set of material parameters X := {csz, cdz , κ, kz, cc, kc}, the mechanical

model presented in the previous section defines the forward map Φ : X → Y . The objective of our neural

network is to determine the inverse map Φ−1 : Y → X. A reasonable range of material parameters was

obtained by determining the largest and smallest cited values of shear moduli and relaxation times reported

in the literature [7, 60, 12, 24]. We then applied a generous buffer of 1.5 times this range to define the set

of material parameters X := {csz, cdz , κ, kz, cc, kc} to train our neural network. We sampled this set using

a stratified sampling technique to obtain 1500 unique simulations that uniformly span the set X. Finally,

each material parameter was normalized between 0 and 1 before training to improve convergence.

In this study, one advantage of using neural networks is for their convenience in reusing the same

simulations as training data. By running our simulations on high performance computing clusters, collecting

1500 unique simulations was much faster than attempting to fit data using any simple optimization scheme

that relies on running new simulations during optimization (thus being difficult to run in parallel). The

architecture of our neural networks was kept as simple as possible to avoid overfitting the data. For networks

only calibrating force data, the first layer (following input) performed convolution to normalize the size of

the dataset to exactly 75 points (this number was chosen by observation to work well with our particular

problem). Following normalization and ReLU activation (standard after convolutional layers [61]), the next

layers of the network consisted of four fully connected layers of size 75, 75, 25, and 6, respectively. Finally, a
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Figure 6: Training verification on a representative set of simulations after neural network calibration at δ = 10µm. (left)

Parameters that the network was able to predict accurately after training. (right) Parameters that the network was not able

to predict accurately after training. All parameters normalized between 0 and 1 for visualization.

sigmoidal activation layer was used before regression to constrain output to our defined range. The regressive

neural networks were then trained using Adaptive Moment Estimation (Adam) over 10 epochs on 85% of

the training data, with 15% being reserved for validation.

Fig. 6 illustrates a summary of the trained network’s predictions versus the true value of our reserved

training data. Deviations from the straight line indicate errors in the prediction of the neural network; if

accuracy were 100%, all data points would lie on the black line. We find that the network is not able to

accurately predict all six of the material parameters listed in Table 1. For the calibrated parameters, we

may quantify the degree of agreement with the coefficient of determination R2, whose value is R2 = 0.76,

R2 = 0.82, and R2 = 0.92 for kz, c
d
z , and c

s
z, respectively. While this does not demonstrate excellent fitting,

it is sufficient for performing a fitting as will be demonstrated in the next section. Furthermore, our findings

indicate that the force response at this level of indentation is insensitive to the properties of the cytoplasm,

within a reasonable range. Thus, the network is inclined to ‘guess’ for these parameters, resulting in a

horizontal bias at values around the mean of its trained data near 0.5 (Fig. 6b). For these parameters, the

R2 is negative, indicating that the mean value of the dataset is a better fit than the black line in the figure.

The next section provides an analysis of the material parameters that were calibrated successfully.

5. Results: Mechanical calibration

The verification data presented in Fig. 6 indicates that the network was not able to learn the properties

of the cytoplasm and the compressibility of the zona pellucida. Thus, the map Φ−1 : Y → X is nonconvex

for the full set of material parameters. One possible explanation for this is that at small indentations depths,

these material parameters do not contribute significantly to the response. As sharp indentation yields a more
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Figure 7: Model comparison to fitted experimental datasets for five of nine oocytes. All calibrated curves were within 5%

relative error of the model (including those not illustrated for clarity).

localized response, we focus our material calibration on experiments done with the flat indenter.

5.1. Small-strain flat indentation: properties of the zona pellucida

The neural network successfully output estimates for the properties of the zona pellucida for all nine

of our oocytes. Table 2 provides ranges for the shear modulus of the static network, the shear modulus of

the dynamic network, and the relaxation time of the zona pellucida (chosen to match more closely with the

notation of linear viscoelastic models). After minor manual calibration, we ran FEM simulations with the

corresponding material parameters. The resulting force vs. time curves are illustrated in Fig. 7 for five of

the nine oocytes (reduced for brevity and illustration - note that the relative error for all fits was within

5%). We observed an excellent fitting for the model and experiments for all experiments.

Table 2: Fitted material properties of the zona pellucida

Property Definition Range Units

Static modulus cszkT 1.3 ± 0.05 kPa

Dynamic modulus cdzkT 0.51 ± 0.11 kPa

Relaxation time 1/kz 8.9 ± 0.11 s

Note that the equivalent instantaneous shear modulus of our model is the sum of the static and dynamic

modulus, around 2.8 kPa (which assumes a sufficiently quick loading rate). The shear modulus of the zona

pellucida in oocytes is typically reported in the literature to be on the order of 1 kPa [5, 19, 33, 7], but

its value may depend on the experiment and theoretical model used as well as the species of oocyte. For

human oocytes, there have been reported values of 1.0− 1.5 kPa using microinjection [62] and 2.0− 2.5 kPa
13
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using micropipette aspiration [7]. This is in good agreement with our results, as the combined static and

dynamic moduli should reflect a limiting maximum shear modulus. Our results indicate that the structural

static network more heavily influences the response due to the higher concentration of static chains. The

magnitude of the relaxation behavior is controlled by the relative size of the dynamic network, which relaxes

approximately 15% of the stress placed on the oocyte during loading before reaching an equilibrium.

The viscoelastic properties of the oocyte are much less frequently reported in the literature. Further,

most studies reporting time-dependent properties are tested on murine or porcine oocytes, which can vary

greatly in size and mechanical properties than human oocytes. For instance, one study that used micropipette

indentation on murine oocytes reported relaxation times of 2.3−4.0 s [22]. Another study used micropipette

aspiration and reported two relaxation times of 1.7 s and 14 s, respectively [63]. To our knowledge, there

has not yet been a study reporting on the relaxation time of human oocytes. Our results indicate that the

relaxation time of the human zona pellucida is on the order of 10 seconds. Note that the relaxation curves

in Fig. 10 are well-approximated by a single relaxation time. This indicates that, in these experiments,

relaxation was dominated by a single timescale – that of the dynamic network in the zona pellucida.

5.2. Sharp indentation: local response reveals softening of the zona pellucida

In a previous study [24], our group hypothesized that indentation using a sharp object would directly

probe the properties of the zona pellucida, allowing us to decouple its response from the cytoplasm and that

of the global body. To check this hypothesis, we performed indentation using a sharp indenter following

the initial round of experiments. These new data form the superset Y 2 := {ff ,fs}, where ff is the flat

indentation force vector and fs is the sharp indentation vector. We then train a neural network to determine

the map Φ−1 : Y 2 → X using the same parametric space as in the previous section.

After training, we determined a new set of material parameters for each oocyte. Notably, the addition

of sharp indentation data did not change the predictions of the network by a significant margin. We ran

FEM simulations with the calibrated material parameters to compare the predicted response of the model.

In this case, the model consistently overestimated the behavior of the sharp indenter (Fig. 8). Two clear

deviations from the model are noted: (i) the slope of the experimental loading curve softens and (ii) the

measured amount of stress relaxation is much less than predicted by the model. These two trends were

consistently observed for our set of nine oocytes.

The behavior revealed by the sharp indentation experiments implies that our simple model of linear

viscoelastic components is not enough to capture the behavior of the oocyte under localized compression.

In particular, these trends indicate that much more energy is being dissipated during loading for the sharp

indenter. This could be explained by any mechanism that would tend to cause localized softening behavior,

which could be an important parameter for characterizing oocytes for their fertilization potential. Due to

the fact that less fractional stress relaxation occured, we believe that a reasonable explanation could be

14
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Figure 8: Example of flat and sharp response of one of the nine oocytes. The model overestimates the stiffness of the sharp

indentation due to softening of the zona pellucida. The dashed red line is strictly for visualization.

force-accelerated bond kinetics [64]; if the detachment rate of the localized region surrounding the sharp

indentation were sensitive to stress, then more relaxation would be induced during loading. Another expla-

nation could be the poroelasticity of the zona pellucida [12]. In one study, the timescale of poroelasticity

was cited as roughly three orders of magnitude faster than that of the relaxation in the zona pellucida

[65]. While our shallow indentations likely did not induce great volume changes, this mechanism could have

influenced our observed force response.

6. Results: Combining images and mechanical data

The approach of creating training data with FEM simulations offers the advantage of running in silico

experiments to determine experimental protocols that could yield more accurate fitting results. Given the

availability of optical images during mechanical tests, we postulate that the cell’s deformation profile could

provide an important data set to be used for a better parameter estimation. To illustrate the application of

including contour data in the calibration procedure, we first present two study cases of simpler systems.

6.1. Elastic indentation of a compressible body

We first consider a single spherical body of radius R that is comprised of a compressible, static network.

In this case, the body behaves as a Neohookean material with shear modulus G = ckT . The body is indented

by a rigid sphere of radius r = R/2 up to an indentation depth δ = R. During indentation, we measure the

contact force using an augmented Lagrangian method (direct contact method).

Figure 9a illustrates the force-indentation curves and indentation profile of two different bodies. In the

first case (blue), we indent a highly compressible body with shear modulus G = 1.0kPa. In the second case,
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Figure 9: a) Elastic indentation of two compressible bodies with different mechanical properties. For each case, the global

(force) response looks nearly identical. b) Performance comparison of network (NN) without and with image contour input.

Parameters are normalized between 0 and 1 for visualization.

we indent a nearly incompressible body with shear modulus G = 1.3kPa. Even though the compressibility of

the two bodies is drastically different, the force-indentation responses look nearly identical. Thus, a typical

nonlinear regression fitting procedure would fail to uniquely determine these material parameters, given only

the force-displacement curve.

To illustrate this point, we built and trained two neural networks to identify the shear and bulk moduli of

the body. To ensure a generalized solution, the domain of shear and bulk moduli, G and K, respectively, are

spanned over four orders of magnitude. We thus seek the inverse map Φ−1 : Y → X, with X := {G, κ} ∈

G × K. In the first network, the only input is the force-displacement vector f , which defines the solution

space Y1 := {f}. In the second network, we have included the parameterized curve ξ to define Y2 := {f , ξ}.

Both networks were trained an the same set of 850 simulations, resulting in two networks.

After training, we sought to verify the convergence of our networks and investigate the generality of their

predictions. A reserved dataset Yr with associated material parameters Xr is was run through each trained

network to check their predictions. Figure 9b displays the predicted versus true values for verification.

Clearly, the network without contour input is unable to identify the correct bulk modulus using only the

force-displacement information. For this reason, it tends to output 0.5, or half of the average value it was

trained on. In contrast, the network with image input was able to identify the shear modulus and bulk

modulus for each case even over this large range of parameters.
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Figure 10: Indentation of a multi-body sphere. a) Force-time curves for bodies with two different properties. Contours and

force curves follow the same legend. b) Calibrated neural networks (NNs) without and with image contour inputs. Normalized

parameters are displayed for visualization.

6.2. Viscoelastic indentation of a multi-body sphere

We next consider the effect of viscoelasticity on the indentation of a multi-layered body. Here, there

is a competition between the deformation of the first layer, which tends to distort the center, and the two

distinct timescales defining each layer. This is thus a particularly challenging inverse problem to solve as

the elastic and viscoelastic contributions of each compartment are fully coupled to the response of the body.

We again consider indenting a sphere of radius R. The sphere is made from two materials: an inner core

of radius r = 0.8R and an outer shell. As in the human oocyte, we here consider both materials to be

comprised of dynamic networks with different relaxation times. In this case, we maintain an incompressible

formulation for simplicity.

To define the solution space X, we first note that the elastic stiffness of the body does not change the

solution other than scaling the force-indentation curve. As our training data is normalized, we then only

need to be concerned with the ratio of shear moduli G1/G2, of the outer layer to the inner layer. Upon

running multiple sets of training data with varying ratios, we notice no difference in performance of the

neural network. We therefore maintain the ratio G1/G2 = 0.5 for simplicity. As each timescale ki, i = 1, 2

represents the same property, they are defined on the same domain T , which varies four orders of magnitude.

The solution space for this problem is thus defined by X := {k1, k2} ∈ T × T .

As illustrated in Figure 10a, this situation has a very similar non-uniqueness when considering a large

range of kinetic rates (relaxation times). In the first test (solid blue curve), the kinetic rates of each network

are equal. In the second test (dashed orange curve), the inner core relaxes three times as fast as the outer
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Figure 11: Training verification on a representative set of simulations after neural network calibration for indentation of

δ = 40µm with and without taking into account contour input. Before introducing contour data, the network is unable to

predict the correct material paramters even at a higher indentation.

shell, but the average of their kinetic rates is the same. As a result, the global relaxation response looks

nearly identical. The contours of each compartment, however, are drastically different. We thus expect that

a regression procedure that incorporates the deformation profiles of the body would perform better.

To this hypothesis, we again train two neural networks on an identical set of 850 training simulations. The

solution space for the first network Y1 := {f} remains the same, but the second network now includes two

parameterized curves to form Y2 := {f , ξ1, ξ2}. After training, we perform the same verification procedure

as in the previous section. Fig. 10b then displays the predictions of our networks versus their true values.

Once again, the network that incorporated image inputs performed significantly better at decoupling the

difference in relaxation times between the two components.

6.3. Large-strain oocyte indentation: influence of contours

The minimally invasive restrictions on testing oocytes for ARTs inhibits performing large indentation

studies on our oocytes. However, for the 10µm indentations that we performed, we found that the contours

of the oocyte do not vary significantly enough to provide any data into our fitting procedure. We therefore

offer an in silico experiment to illustrate the benefits of including contour data in the large-strain indentation

of oocytes. To do this, we created a new set of training data at an indentation of δ = 40µm using our FEM

model. As before, the FEM model output force vs. time curves as well as contour data for both flat and

sharp indenters. The network was trained on the same set of parameters as in the previous section, and the

architecture was maintained by only scaling the size of the fully connected layers.

After training the network, we performed a verification test using 15% of the total data set (this data

had not been used to train the network). The verification data is presented in Fig. 11 after training the
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neural network on only force-time data (left) and on including contour data (right). In both plots, we see a

noticeable improvement from the data in Fig. 6. Clearly, at larger indentations, the cytoplasm has a much

more significant contribution to the mechanical response of the oocyte.

The contribution of including contour data into the training data is clearly illustrated in Fig. 11.

Although the network is able to capture the general trends with only force-time data, its accuracy is low.

The network trained with contour data displays greatly improved accuracy. Thus, we conclude that the

deformation patterns of the oocyte are largely a function of the compressibility of the zona pellucida and

the properties of the cytoplasm.

7. Conclusion

Properly characterizing the mechanical properties of human oocytes could provide an objective way to

assess its reproductive potential before use in ART. The end goal of this several year-long project is to

be able to select oocytes with the highest chance of successful pregnancy initiation and birth. In order to

provide the physician with an effective tool to measure those properties from indentation experiments, we

designed an experimental protocol that is fully compatible with ART laboratory standards. To improve our

chances of calibrating relevant material parameters, our theoretical modeling approach uses only physical

parameters that directly relate to the structure of the oocyte. While this study was only able to confidently

predict the properties of the zona pellucida, our procedure indicates two key findings: (i) the zona pellucida

exhibits nonlinear material behaviors during localized deformations (i.e., strain or strain-rate dependent

softening), and (ii) the deformation profiles of the oocyte are reflective of the properties of the cytoplasm

and the compressibility of the zona pellucida.

The softening of the zona pellucida could be explained by several mechanisms. Our initial findings

indicate that the relaxation time behaves nonlinearly with large stress concentrations, which could be ex-

plained by a force-dependent kinetic rate law such as Bell’s law [66]. This approach was shown previously

to result in nonlinear viscoelastic behavior such as shear thinning [64], which would be realized as softening

in a relaxation test. Other studies have shown that the zona pellucida exhibits strongly time-dependent

poroelastic behavior [12], which could also be considered in our simulations. Due to the small indentation

depth of this study, however, we do not believe that poroelasticity is significant. Finally, damage of the

underlying dynamic network could be considered [67]. This could be investigated by testing the same oocyte

and observing consistent and subsequent softening.

The limitation of using a small indentation depth creates a significant challenge in using all available data

for calibrating a mechanical model. Although we have illustrated that contour data is highly valuable in

isolating the contributions of the cytoplasm and the zona pellucida, there is not a large enough deviation in

the deformation profiles for it to be useful in the experiments performed in our lab. Future work with oocytes
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that permit large indentations could, however, be aimed at combining optical images of oocytes to calibrate

their mechanical behavior. It is important to note that, in contrast to our FEM simulations, the oocyte

is not a perfect sphere. Thus, future experiments that include image data of real oocytes must consider

the effect of asymmetry, as well as bias due to the imaging technique. Possible approaches could include

taking images of the oocyte from multiple angles as well as post-processing techniques to approximate an

axisymmetric slice of the body. These techniques could provide a promising avenue for narrowing the range

of possible material properties for the cytoplasm, as there is still much uncertainty of its physical range in

the literature.
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Appendix

Figure 12: Images of all tested oocytes. Oocytes were taken from four patients who have started an ART protocol. Letters

designate the patient of origin.

Figure 13: High resolution images taken of oocytes D1, D2, and D3 for morphological analysis.
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