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Abstract. — For every prime number p ě 3 and every integer m ě 1, we prove the
existence of a continuous Galois representation ρ : GQ Ñ GlmpZpq which has open image
and is unramified outside tp,8u if p ” 3 mod 4 and is unramified outside t2, p,8u if p ” 1
mod 4. We also revisit the question of the lifting of residual Galois representations in terms
of embedding problems; that allows us to produce Galois representations with open image in
the group of upper triangular matrices with diagonal entries equal to 1, unramified outside
tp,8u, for m “small” comparing to p.

Let GQ be the absolute Galois group of Q, and let p be a prime number.
The last decades have shown the importance in arithmetic geometry of continuous Galois
representations

ρ : GQ Ñ GlmpZpq
deriving from geometric objects. Thanks to Serre in [25], one knows that the action of GQ
on torsion points of elliptic curves without complex multiplication produces 2-dimensional
Galois representations with open image in Gl2pZpq. But as observed by Greenberg in [11],
it seems more difficult to produce geometric Galois representations with open image in
dimensions m ě 3. In [11], Greenberg himself suggested a method from group theory
for constructing higher-dimensional Galois representations with open image. Let us be a
little more specific.
Let K be a number field having r2 pairs of non-real embeddings, and let G be a finitely
generated pro-p group of p-rank at most r2 ` 1. When the field K is p-rational (see
§1.2 for the full definition and background), the Galois group of the maximal p-extension
of K unramified outside p is a free pro-p group of rank r2 ` 1. Hence the group G can
be realized as the Galois group of an extension over K unramified outside p, thanks to
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the universal property of free groups. This approach allowed Greenberg to realize Galois
representations ρ : GQ Ñ GlmpZpq with open image and such that ρ is unramified outside
tp,8u, under the hypotheses that p is a regular prime andm satisfies 1`4rm{2s ď p. The
regularity of p is important because for the cyclotomic field K “ Qpζpq, it is equivalent
to the p-rationality of K.
A few years later this method was extended by Cornut and J. Ray [4] for more general
linear groups, but always under the assumption that p is regular and that all large m are
excluded when p is fixed.
In fact, it is possible to relax the condition on p-rationality to realize Galois represen-
tations with big image: this has been done by A. Ray in [24]. For example, when
p ě 2m`2`2ep , where ep is the index of irregularity of p, A. Ray shows the existence of
continuous Galois representations ρ : GQ Ñ GlmpZpq unramified outside tp,8u with open
image. But as in [11] and [4], the dimension of the representations is bounded for fixed p.
By a different approach, Katz in [15] constructs geometric Galois representations over
cyclotomic extensions, and by descent he gets finitely ramified continuous Galois repre-
sentations of GQ with open image in GlmpZpq, for p ” 1 mod 3 or p ” 1 mod 4 for every
even m ě 6. We note that the representations constructed by Katz are motivic but are
ramified at sets consisting of primes of potentially many different residue characteristics.
More recently Tang [29]p1q by using a lifting theorem of Fakruddhin-Khare-Patrikis,
showed the existence of Galois representations with open image when p " m; in this
case there is no control of the set of ramification of the Galois representations due to the
nature of the Ramakrishna style lifting argument.
In this work, by extending the arithmetical approaches of [11], we are able to prove
(Corollary 4.6):

Theorem A. — Given a prime number p ě 3, and an integer m ě 1, there exist con-
tinuous Galois representations ρ : GQ Ñ GlmpZpq with open image satisfying:
piq ρ is unramified ouside tp,8u if p ” ´1 mod 4,
piiq ρ is unramified ouside t2, p,8u if p ” 1 mod 4, and has ramification index 2 at 2.

Remark. — The representations we construct have the property that “half” of the eigen-
values of complex conjugation are `1, the others being ´1.

Remark. — For m “ 1 take the Zp-extension of Q.

Here is the key idea of our approach. We exploit a result of Kuranishi [16] that shows
that a semisimple Lie algebra can be generated by 2 elements; in particular we use the
explicit form for slm recently given by Detinko-De Graaf [5], and Chistopolskaya [3]. Thus
we apply the embedding criteria of Greenberg to some special subgroup H of SlmpZpq
generated by two elements. Instead of considering number fields of large degree, namely
Qpζpq, we reduce the study of the existence of Galois representations with open image to
certain imaginary quadratic extensions for which p does not divide its class number.
By passing through the maximal abelian 2-extensionK{Q inside Qpζpq, the same strategy
allows us to produce, for many primes p ” 1 mod 4 and unbounded m, continuous Galois
representations ρ : GQ Ñ GlmpZpq ramified only at tp,8u with open image. This is the

p1qTang’s paper https://arxiv.org/abs/2205.00502 is later than the first version of this work.
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case for all but six primes p ” 1 mod 4 less than 4 ¨ 105; for those situations the number
fields K are p-rational. See Section 4.3.1 and Corollary 4.8.

The strategy of Greenberg applies when the number field K fixed by the kernel of the
residual representation is p-rational. In this work we also extend this approach. To do this
we revisit the question of the lifting of residual Galois representations (of order coprime
to p) in terms of embedding problems, by using the criteria of Hoechsmann.

For a finitely generated pro-p group G, let Gab :“ G{rG,Gs be the abelianization and
Gp,el :“ Gab{pGabqp the maximal p-elementary quotient.
Set ε “ 0 if p ą 2, and ε “ 1 if p “ 2, and consider the following congruence subgroup

Gl1m “ tA P GlmpZpq, A ” 1 mod p1`ε
u.

We prove (Theorem 3.3):

Theorem B. — Let Γ “ G ¸∆ be a profinite group where G is a finitely generated pro-p
group and where ∆ is a finite group of order coprime to p. Let H be a closed subgroup of a
p-adic analytic uniform group G Ă Gl1m generated by elements having the same valuation.
Let

ρ0 : ∆ ãÑ GlmpZpq
be an injective representation of ∆. Suppose that ∆ acts by conjugation (via ρ0) on G
and on H, such that the ∆-module Hp,el is isomorphic to a sub-∆-module of G p,el. Let

f : Γ “ G ¸∆� Hp,el
¸∆1

be a surjective map induced by this isomorphism, where f|∆ “ ρ0 and ∆1 “ ρ0p∆q.
Suppose moreover that:
piq H2pG ,Qp{Zpq “ 0; and
piiq G abrps and the tangent space g of G are orthogonal to each other as ∆-modules.
Then the embedding problem

Γ “ G ¸∆
ψ

wwww

f
����

H ¸∆1
g
// // Hp,el ¸∆1

has a proper continuous solution ψ.

For the notion of valuation, see Section 2.2.2, and for the notion of being orthogonal, see
Definition 1.11.
As example of application, we focus on Tm Ă SlmpZpq, the group of upper triangular
matrices with diagonal entries equal to 1.

Corollary C. — Let e ě 0, and let p be a prime number with index of irregularity
ep ď e. There is a constant ce depending on e such that for every

m ď cepp´ 1q1{pe`1q,

there exist continuous Galois representations ρ : GQ Ñ GlmpZpq unramified outside tp,8u
and with open image in Tm. One can take c0 “ 1{2 and c1 “ 1{4.
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The paper contains four sections. In Section 1 and in Section 2, we recall facts about
pro-p groups, the maximal pro-p-extension of a number field unramified outside p, and
generalities regarding uniform groups and Zp-Lie algebras. In Section 3, we develop the
approach of lifting residual representations via the embedding problem; in particular we
prove Theorem B. The last section is devoted to applications with the proofs of Theorem A
and Corollary C. It seems likely the methods we introduce can apply more generally for
realizing other groups, and with partial ramification at p as well; we also discussed this
at the end of the last section.
Notations. Throughout this article p is a prime number.
‚ If M is a finitely generated Zp-module, set dpM :“ dimFpM{M

p, M rps :“ tm P

M, pm “ 0u, and TorpMq “ tm PM, Dk, pkm “ 0u.
‚ If G is a finitely generated pro-p group, set Gab :“ G{rG,Gs, Gp,el :“ Gab{pGabqp, and
dpG :“ dpG

ab.
‚ If A is a Hausdorff, abelian and locally compact topological group, set A^ to be the
Pontryagin dual of A.
For the computations we have used the program PARI/GP [23].

1. On pro-p groups and on pro-p extensions unramified outside p: the results
we need

1.1. On pro-p groups. — For classical properties on cohomology and homology of
pro-p groups, see for example [22, Chapters I and II].
Let 1 ÝÑ G ÝÑ Γ ÝÑ ∆ ÝÑ 1 be an exact sequence of profinite groups where G is a
finitely presented pro-p group, and ∆ is a finite group of order coprime to p. Recall that
by the Schur-Zassenhaus Theorem one has Γ » G¸∆.

Proposition 1.1. — LetM be a finite Γ-module of exponent p on which G acts trivially.
Then for i ě 1, we have the isomorphism: H ipΓ,Mq » pH ipG,Z{pq bMq∆.

Proof. — First, by the algebraic universal coefficients Theorem for G-homology over Fp,
one has the isomorphism
(1) F : HipG,Z{pq bM^ „

Ñ HipG,M
^
q,

where the tensor product is taken over Fp, and where F is defined by
F prf s bmq “ rf bms,

showing that (1) is also an isomorphism of ∆-modules. See for example [13, Chapter VI,
§15, Theorem 15.1]. By Pontryagin duality, we obtain H ipG,Mq » H ipG,Z{pq bM , as
∆-modules. Since |∆| is coprime to p, by the Hochschild-Serre spectral sequence one also
has H ipΓ,Mq » H ipG,Mq∆ (see for example [22, Chapter II, §1, Lemma 2.1.2]). By
combining these two observations we finally obtain the claimed isomorphism.

Let us write
Gab

» Ztp ‘T ,

where T is the torsion subgroup of Gab.

Proposition 1.2. — LetM be a finite Γ-module of exponent p on which G acts trivially.
If H2pG,Qp{Zpq “ 0 then H2pG,Mq »

`

T rps^ bM
˘∆.
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Proof. — By taking the G-homology of the exact sequence 0 Ñ Zp Ñ Zp Ñ Z{pZ Ñ 0,
we get the exact sequence of Fpr∆s-modules

H2pG,Zpq{p // H2pG,Z{pq // // H1pG,Zpqrps.

After observing that H2pG,Zpq^ » H2pG,Qp{Zpq “ 0, then H2pG,Z{pq is isomorphic to
`

H1pG,Zpqrps
˘^
» T rps^, and we conclude by Proposition 1.1.

The proof of Proposition 1.2 also allows us to obtain:

Proposition 1.3. — One has

dpH
1
pG,Z{pq ´ dpH2

pG,Z{pq “ t´ dpH2pG,Zpq.

Suppose now that G is a free pro-p group on d generators, and let H be a pro-p group of
p-rank d1 ď d. Since G is projective, the pro-p group H can be seen as quotient of G. For
our work we need a little bit more to take into account the action of ∆. The following
proposition can be found in the paper of Greenberg [11, Proposition 2.3.1] and partially
in an unpublished paper of Wingberg [30].

Proposition 1.4. — Let Γ “ G ¸ ∆ be a profinite group where G is free pro-p on d
generators and where ∆ is a finite group of order n coprime to p. Let H be a finitely
generated pro-p group on d1 generators, with d ě d1. Suppose that there exists a homo-
morphism ∆ Ñ AutpHq such that the ∆-module Hp,el is isomorphic to a sub-∆-module
of Gp,el. Then there exists a normal subgroup N of G, stable under ∆, such that G{N is
∆-isomorphic to H and so we have a surjection Γ� H ¸∆.

Here, AutpHq is the group of continuous automorphisms of H.
A proof is given in [12, Section 2.2] in the spirit of [30].

1.2. Restricted ramification. — Let K be a number field. As usual pr1, r2q is the
signature of K. When p “ 2 we assume K totally imaginary. Set
‚ EK :“ Zp b Oˆ

K the pro-p completion of the group of units of the ring of integers
OK of K,

‚ ClK the p-Sylow subgroup of the class group of K,
‚ Kp the completion of K at p|p, Up the local units of Kp,
‚ Up :“ lim

ÐÝ
n

Up{U
pn

p the pro-p completion of Up, and Up :“
ź

p|p

Up,

‚ ιK,p : EK Ñ Up the diagonal embedding of EK into p-adic units.
1.2.1. The pro-p group GK,p. — This section contains only well known results, but is
included for the sake of clarity.

Let Kp{K be the maximal pro-p extension of K unramified outside p; set GK,p “

GalpKp{Kq. The pro-p group GK,p is finitely presented. More precisely, one has (see
[22, Chapter VIII, Proposition 8.3.18; Chapter X, Corollary 10.4.9, Theorem 10.7.13]):

Theorem 1.5. — The pro-p group GK,p is of cohomological dimension ď 2, and
dpH

1pGK,p,Z{pq ´ dpH2pGK,p,Z{pq “ r2 ` 1.
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Let us write
Gab
K,p » FK,p ‘TK,p,

where TK,p :“ TorpGab
K,pq is the torsion of Gab

K,p, and where FK,p :“ Gab
K,p{TK,p » Ztpp is

the free part; the quantity tp is the Zp-rank of Gab
K,p. By class field theory one has (see

for example [8, Chapter III, §1, Corollary 1.6.3]):
tp “ dimQpQp b cokerpιK,pq “ r2 ` 1` dimQpQp b kerpιK,pq.(2)

Recall also that Leopoldt’s conjecture asserts that kerpιK,pq “ 1, and thanks to Baker
and Brumer [2] one knows that Leopoldt’s conjecture is true for abelian extensions K{Q.
One also has the following well-known result (see for example [22, Chapter X, Corollary
10.3.7]):

Proposition 1.6. — One has kerpιK,pq “ 1 ðñ H2pGK,p,Zpq “ 0.

Proof. — This is a consequence of Proposition 1.3 and Theorem 1.5.

Regarding TK,p, we have the following:

Proposition 1.7. — Suppose ClK “ 1. Then TK,p » Tor
´

Up{ιK,ppEKq
¯

.

Proof. — By class field theory one has Up{ιK,ppEKq » Gab
K,p when ClK “ 1.

Hence, given a number field K, up to a finite set of primes (those that divide the class
number of K) the computation of TK,p is reduced to the computation of the torsion of
Up{ιK,ppEKq. Nontrivial elements in Tor

`

Up{ιK,ppEKq
˘

are rare; one has the following
conjecture ([7, Conjecture 8.11]).

Conjecture 1.8 (Gras). — Given a number field K, then TK,p “ 1 for p " 0.

Regarding this conjecture many computations provide some evidence, but very little is
known in general. See [8, Chapter IV, §3 and §4] and [9] for a good exposition.
Nevertheless, the p-group TK,p is a deep arithmetical object associated to K, as we can
see from the next proposition, for example.
The fact that GK,p may be a noncommutative free pro-p group can be found, maybe for
the first time, in a paper of Shafarevich [28, §4]. Let us recall that when GK,p is free
pro-p then K is said to be p-rational ([21]).

Proposition 1.9. — The pro-p group GK,p is free pro-p (on r2 ` 1 generators) if and
only if kerpιK,pq “ 1 and TK,p “ 1.

Proof. — If GK,p is free pro-p then Gab
K,p » Ztpp , TK,p “ 1, H2pGK,p,Qp{Zpq “ 0, and by

Proposition 1.6 one gets kerpιK,pq “ 1.
For the converse, suppose that kerpιK,pq “ 1 and GK,p » Ztpp . By Proposition 1.6,
H2pGK,p,Zpq “ 0; by Proposition 1.2, one gets H2pGK,p,Z{pq “ 0 (take ∆ trivial and
M “ Z{p), and then GK,p is free pro-p.
Regarding the p-rank of GK,p, see Theorem 1.5.

Example 1.10. — Take p ą 3, and let K{Q be an imaginary quadratic field. Observe
that EK “ 1 and that Up is torsion free. Hence when ClK “ 1, the pro-p group GK,p is
free pro-p on 2 generators.
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1.2.2. With semisimple action. — Let ∆ be a finite group of order coprime to p. Let Ψp

be the set of irreducible Fp-characters of ∆. LetM be a finite Fpr∆s-module. For ϕ P Ψp,
set rϕM to be the ϕ-rank of M . In particular if χpMq denotes the character of M , then
χpMq “

ř

ϕPΨp
prϕMqϕ. Put χ´1pMq :“

ř

ϕPΨp
prϕMqϕ

´1, where ϕ´1pgq :“ ϕpg´1q.

Definition 1.11. — Two finite Fpr∆s-modulesM and N are said to be orthogonal, and
write M K N , if for every ϕ P Ψp one has rϕM ¨ rϕN “ 0.

We denote by Reg the character of the regular representation, by 1 the trivial character,
and for a subgroup D of ∆, by Ind∆

D1D the induced character from D to ∆ of the trivial
character 1D of D.
Since χpM bNq “ χpMqχpNq and χpM^q “ χ´1pMq, one has:

Lemma 1.12. — Let M and N be two finite Fpr∆s-modules.

Then
´

M^ bN
¯∆
“ 0 if and only if M K N .

Proof. — Indeed, χ
´

M^bN
¯∆
“ xχpM^qχpNq,1y “ xχpNq, χpMqy “

ř

ϕprϕM ¨ rϕNq.

For the end of this section, let us consider the following setting.
Let K{k be a finite Galois extension of degree coprime to p; put ∆ “ GalpK{kq. Observe
that Kp{k is Galois and that ∆ acts on GK,p, TK,p, FK,p, etc.
Put Γ “ GalpKp{kq » GK,p ¸∆.
First, the next Theorem will be essential to lift residual representations.

Theorem 1.13. — Let M be a finite Γ-module of exponent p on which GK,p acts triv-
ially. Assuming Leopoldt’s conjecture for K at p, then H2pΓ,Mq »

`

TK,prps
^
bM

˘∆. In
particular H2pΓ,Mq “ 0 if and only if TK,prps KM .

Proof. — This is a consequence of Proposition 1.2, Proposition 1.6 and Lemma 1.12.

Remark 1.14. — When K contains ζp, the character of TK,prps is related to the mirror
character of Cl1K , where Cl1K is the p-Sylow of the p-class group of K. Typically when
K “ Qpζpq, rϕTK,prps “ rϕ˚ClK , where ϕ˚ :“ ωϕ´1. In this case, Qpζpq is p-rational if
and only if p is regular. For more general results see [10].

To finish, the following proposition will be the starting point for realizing residual repre-
sentations as Galois extensions of number fields.

Proposition 1.15. — Assuming the Leopoldt conjecture for K at p, one has

χpFK,p{pq “ 1` nReg ´
ÿ

v|8

Ind∆
∆v

1∆v ,

where n “ rk : Qs, and where ∆v is the group of decomposition of v in K{k. In particular
if K{k is a CM-field one has χpFK,p{pq “ 1` nϕ, where ϕ is the nontrivial character of
GalpK{kq.

Proof. — One has Qp bFK,p “ Qp bUp

M

Qp b ιK,ppEKq. Then use for example [10, §5
Theorem 5.12, and §6].
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2. Uniform groups and Lie algebras

2.1. Generalities. — For this section we refer to [6, Chapters 4, 7 and 9].
Set ε “ 0 if p ą 2, and ε “ 1 if p “ 2.
Let G be a finitely generated pro-p group. Set G1 “ G, and for n ě 1, Gn`1 “ Gp

nrG,Gns.
The pGnq is the p-descending central series of G. For n ě 1, consider the map:

αn : Gn{Gn`1 Ñ Gn`1{Gn`2
x ÞÑ xp.

Definition 2.1. — The pro-p group G is said to be uniform if G{Gp1`εqp is abelian and
if for every n, the map αn induces an isomorphism.

Hence when G is uniform, there exists some d such that Gn{Gn`1 » pZ{pqd; the integer d
is called the dimension of G.

Theorem 2.2. — Let G be a uniform pro-p group. Then for all n ě 1, Gn`1 is uniform
and also equal to:
piq pGnq

prGn, Gns,
piiq Gpn

“ xgp
n
, g P Gy,

piiiq pGnq
p “ xgpn, gn P Gny.

Proof. — See [6, Chapter 3, Theorem 3.6].

Recall that a p-adic analytic group is a topological group G having a structure of p-adic
analytic manifold for which the product and the inverse are analytic. Since Lazard [17]
one knows that uniform pro-p groups are the socle of p-adic analytic groups. Indeed:

Theorem 2.3. — piq A uniform group G of dimension d is a p-adic analytic group of
dimension d (as analytic manifold).
piiq Every p-adic analytic group of (analytic) dimension d contains an open subgroup
which is uniform of dimension d.
piiiq Let G be a pro-p group which is a p-adic analytic group, then G ãÑ GlmpZpq for
some m.

Proof. — See [6, Interlude A].

In what follows, we will consider uniform groups G as subgroups of GlmpZpq.

2.2. Exponential and logarithm. —
2.2.1. The Lie algebras glm and slm. — Take m ě 2. Let glm be the Zp-free module of
dimensionm2 generated by the matrices Ei,jppq :“ p1`εEi,j, where Ei,j are the elementary
matrices. Then glm is a Zp-Lie algebra, subalgebra of the algebra glmpQpq of the matrices
of size mˆm with coefficients in Qp, equipped with the Lie bracket pA,Bq “ AB ´BA.
It is not difficult to see that pglm, glmq Ă p1`ε glm: the algebra glm is said to be powerful
(see [6, Chapter 9, §9.4]).
Thanks to [17, Chapter IV, Theorem 1.3.5.1], one knows that the exponential series

exppxq :“
ÿ

ně0

1
n!x
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and the logarithm series

logpzq :“
ÿ

ně1

p´1qn`1

n
pz ´ 1qn

converge for x P glm and z P Gl1m, where

Gl1m “ tA P GlmpZpq, A ” 1 mod p1`ε
u.

Moreover exp and log are inverse on these two spaces. Hence exppglmq “ Gl1m and since
glm is powerful, Gl1m is uniform ([6, Chapter 5, Theorem 5.2]).
Let slm be the Zp-Lie subalgebra of glm consisting of matrices with zero trace. The algebra
slm is also powerful, and then Sl1m :“ exppslmq is uniform; one has Sl1m “ SlmpZpq XGl1m
(see for example [6, Chapter 9, Exercise 8]). More, since slmpQpq :“ Qp b slm is simple,
one has slmpQpq “ pslmpQp, slmpQpqq which implies that the abelianization of Sl1m is finite.
2.2.2. Uniform groups and Zp-Lie algebras. — Let us start with a classical result showing
the power of the exponential and the logarithm.
For k ě 1, consider the congruence subgroups:

Glkm “ tA P GlmpZpq, A ” 1 mod pk`εu, Slkm :“ SlmpZpq XGlkm.

Proposition 2.4. — piq One has Glkm “ expppk´1glmq, and Slkm “ expppk´1slmq.
piiq The subgroups Glkm (resp. Slkm) correspond to the p-descending central series of Gl1m
(resp. Sl1m). In other words, Glkm “ pGlmqk and Slkm “ pSlmqk.

Proof. — For piq see [6, Chapter 4, Lemma 4.14]; for piiq see [6, Chapter 5, Theorem
5.2].

In fact, Gl1m is a special case of the following result:

Theorem 2.5. — There is an equivalence between the category of uniform pro-p
groups G and the category of powerful Zp-Lie algebras L (i.e. verifying L » Zdp and
pL,Lq Ă p1`εL). When G Ă Gl1m this correspondence is given by the exponential and the
logarithm; in particular L “ logpGq P glm.

Proof. — See [6, Chapter 9, Theorem 9.10].

Definition 2.6. — Let G Ă Gl1m be a uniform pro-p group of dimension d. Set g :“
logpGq Ă glm, and gp :“ g{pg. Observe that gp is a Fp-vector space of dimension d.

As for Gl1m in Proposition 2.4, the p-descending central series pGnq of a uniform group
G Ă GlmpZpq is easy to describe. Indeed:

Proposition 2.7. — One has Gn “ expppn´1gq. In particular, Gn{Gn`1 » pn´1g{png »
gp.

Proof. — See [6, Chapter 4, Lemma 4.14].

Let L Ă glm be a powerful Zp-Lie algebra. For x P L, put wLpxq :“ maxtk, x P pk´1Lu,
wLp0q “ 8; it is a valuation on L (following Lazard’s terminology, see [17, Chapter I,
§2.2]). When starting with a uniform group G, for g P G define wGpgq :“ wgplogpgqq,
where g “ logpGq: this is a filtration on G (see [17, Chapter II, §1]).
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2.2.3. The Lie algebra g as a sub-module of glm. — Let G Ă Gl1m be uniform; set
g “ logpGq. Recall that g is the powerful sub-Lie Zp-algebra of glm such that exppgq “ G.
Let ∆1 be a finite subgroup of GlmpZpq of order coprime to p, acting by conjugation
on G; observe that ∆1 also acts on Glm, on glm,p :“ glm{pglm, and on gp. Since p - |∆1|,
the Zpr∆1s-module glm is projective (see [26, Chapter 14, §14.4]) and then, glm,p and
glmpQpq :“ Qp b glm have the ‘same’ character (as ∆1-modules). Of course, for the same
reason, gp and gpQpq have the same character. Since gpQpq Ă glmpQpq we obtain:

Proposition 2.8. — Let ∆1 Ă GlmpZpq be a subgroup of order coprime to p acting on g
by conjugation. Then gp is isomorphic to a sub-∆1-module of glm,p.

Definition 2.9. — When the action is given via a Galois representation ρ0 : ∆ Ñ

GlmpZpq (here ∆1 “ ρ0p∆q), the ∆-module gp is called the adjoint of G following ρ0.

2.3. Semisimple algebras. — The next Theorem, due to Kuranishi ([16]), is essential
for our strategy. See also [1].

Theorem 2.10 ([16]). — Let L be a semisimple Qp-Lie algebra. Then L can be gen-
erated by 2 elements.

Definition 2.11. — Two topological groups G and H are said to be commensurable if
they have a common open subgroup.

As corollary of Theorem 2.10 we get

Corollary 2.12. — Let G Ă Gl1m be a uniform group such that gpQpq is semisimple.
Then there exist two elements g and g1 in G such that the group G and the (closed)
subgroup H generated by g and g1, are commensurable.

Proof. — Let g :“ logpGq be the powerful Zp-Lie algebra associated to G. Set L :“
Qp b g. By Theorem 2.10 there exist x, y P L such that L “ xx, yy. By multiplying x
and y by some powers of p, we can assume that x and y are also in g.
Set g “ exppxq and g1 “ exppyq, and let H “ xg, g1y be the closed subgroup of G
generated by g and g1. The pro-p group H is p-adic analytic as a closed subgroup of a
p-adic analytic group; let U be an open uniform subgroup of H. Then for r " 0, gpr and
pg1qp

r are in U . Hence the Zp-Lie algebra LU “ logpUq of U contains prx and pry, and
then Qp b LU “ L . Thus, U and G are locally isomorphic and even commensurable
(due to the fact that U Ă G), see for example [27, Part II, Chapter V, §2, Corollary 2],
or [6, Chapter 9, §9.5, Theorem 9.11]. In other words, G and H are commensurable.

The two next examples make explicit Theorem 2.10.

Example 2.13. — Take m “ 2. Set x “ E1,2ppq ` E2,1ppq, and y “ E1,1ppq ´ E2,2ppq.
Observe that px, yq “ 2p1`ε`E2,1ppq ´ E1,2ppq

˘

, hence x and y generate the Lie algebra
sl2pQpq. Set g “ exppxq and g1 “ exppyq, and H “ xg, g1y. Then H has Sl2`2ε

2 as open
subgroup.

Example 2.14 ([5] or [3]). — Take m ě 3. The Lie algebra slm is simple. Set x “
řm´1
i“1 Ei,i`1ppq, and

y “

"

Em,1ppq m odd,
Em´1,1ppq ` Em,2ppq m even.

10



Observe that xx, yyZp Ă slm. Thanks to [5, Proposition 2.5 and Proposition 2.6] and [3,
Example 2] one has xx, yy “ slmpQpq. Put g “ exppxq, g1 “ exppyq andH “ xg, g1y Ă Gl1m.
Observe that wGpgq “ wGpg

1q “ 1. Then H has Slkm as an open subgroup for some k " 0.

3. Lifting in uniform pro-p groups

The goal of this section is to give lifting criteria for uniform groups including the well-
known conditions when G “ Sl1m (see [20, §1.6]).

3.1. Compatible actions. — Let G be a pro-p group of p-rank ě d, and let be a
homomorphism ∆ Ñ AutpG q, where ∆ is a finite group of order coprime to p.
Set Γ “ G ¸∆. Observe that G p,el is a Fpr∆s-module.
Let M be a sub-Fpr∆s-module of G p,el, and let ρ0 : ∆ãÑGlmpZpq be an injective repre-
sentation of ∆. Put ∆1 “ ρ0p∆q. Hence M is also a ∆1-module by ρ0psq ¨m :“ s ¨m.
Let PrM : G Ñ G p,el ÑM be a projection of G on M .
Let H Ă GlmpZpq be a pro-p group such that dpH “ dpM . Suppose that ρ0p∆q acts on H
by conjugation. Hence Hp,el becomes a ∆-module via ρ0, by s ¨g1 :“ ρ0psq¨g

1. We suppose
now that the action of ∆ on M is compatible with that of ∆ on Hp,el: in other words,
χpHp,elq “ χpMq, as ∆-modules. Hence there exists a ∆-isomorphism β : Hp,el „ÑM .

3.2. Embedding problem. — Let G Ă Gl1m be a uniform pro-p group of dimension d.
Set g :“ logpGq Ă glm. Given 1 ď s ď d and k ě 1, let z1, ¨ ¨ ¨ , zs P p

k´1g be some
independent elements in pk´1g{pkg » pZ{pqd. Set gi “ exppziq. Then for i “ 1, ¨ ¨ ¨ , k,
one has wGpgiq “ k.
Let us consider the closed subgroup H of G generated by the gi’s. The group H is p-adic
analytic. Observe that H Ă Gk Ă Glkm.
For n ě 1, put Hrns :“ H XGn`k´1. Hence Hr1s “ H.

Lemma 3.1. — piq The pro-p group H is of p-rank s, and Hp,el » H{Hr2s.
piiq For each n ě 1, Hrns CH, the quotient Hrns{Hrn`1s is p-elementary abelian, and H
acts trivially (by conjugation) on Hrns{Hrn`1s.
piiiq The Hrns are open in H, and

č

n

Hrns “ t1u.

Proof. — piq One has the commutative diagram:

H{Hr2s
� � // Gk{Gk`1

»

log
// pk´1g{pkg

H{HprH,Hs

P

ffff

log

77

Hence the family tg1Hr2s, ¨ ¨ ¨ , gsHr2su is free inH{Hr2s, showing that dpH ě dpH{Hr2s ě s.
But H is generated by the gi’s. Thus dpH “ s, and P is an isomorphism.
piiq Clearly Hrns CH. Since Gn`k “ Gp

n`k´1rG,Gn`k´1s one has:
Hrns{Hrn`1s “ H XGn`k´1{H XGn`k

“
`

H XGn`k´1
˘

Gp
n`k´1rG,Gn`k´1s

L

Gp
n`k´1rG,Gn`k´1s.

Hence Hrns{Hrn`1s is p-elementary abelian, and G and then H acts trivially on
Hrns{Hrn`1s.

11



piiiq Point piiq shows that the Hrns are of finite index in H, and then open since H is pro-p
finitely generated. Regarding the intersection, that is obvious since

č

n

Gn “ t1u.

We now summarize conditions of Section 3.1.
Via β and ρ0, suppose that Hp,el can be seen as a sub-∆-module M of G p,el. Hence there
exists a surjective morphism f2 : Γ Ñ H{Hr2s ¸∆1, such that
piq pf2q|G “ β´1 ˝ PrM ,
piiq pf2q|∆ “ ρ0.
Recall that H{Hr2s “ Hp,el.
More generally, suppose that for some n ě 2, there exists a surjective morphism

fn : Γ Ñ H{Hrns ¸∆1,

where pfnq|∆ “ ρ0. Then let us consider the embedding problem pEnq:

Γ “ G ¸∆
ψn

vv

fn
����

1 // Hrns{Hrn`1s // H{Hrn`1s ¸∆1
gn

// // H{Hrns ¸∆1

where gn is the natural map (in particular gn|∆1 is the identity).
Thanks to the criteria of Hoechsmann, pEnq has a solution when H2pΓ, Hrns{Hrn`1sq “ 0,
where the action of Γ on Hrns{Hrn`1s is induced by conjugation via fn. See for example
[22, Chapter III, §5, Proposition 3.5.9]. In fact we need more:

Proposition 3.2. — If pEnq has a solution ψn, then ψn is an epimorphism (the solution
is called proper).

Proof. — The question is to see if the map ψn is surjective. Since H{Hrn`1s and H{Hrns
are p-groups, it is equivalent to see if these two groups have the same minimal number
of generators: this is the case since H{Hr2s “ Hp,el.

3.3. Main Theorem. — We can now state the key theoretical result of our paper. Let
us write G ab » T ‘ Ztp, where T is the torsion part of G ab. Let us keep the notations
of the previous sections. In particular G Ă Gl1m is a uniform group of dimension d, H
is a closed subgroup of G, β is a ∆-isomorphism from Hp,el to a sub-∆-module of G p,el,
ρ0 : ∆ ãÑ GlmpZpq is a representation of ∆, and ∆1 “ ρ0p∆q. We suppose moreover that
∆1 acts by conjugation on G. Hence, via ρ0, the group ∆ acts also on g :“ logpGq Ă gln,
and on gp :“ g{pg (see §2.2.3).

Theorem 3.3 (Theorem B). — With the above notations, suppose given
f : Γ “ G ¸∆� Hp,el

¸∆1,

where f|∆ “ ρ0, such that: piq H2pG ,Qp{Zpq “ 0; and piiq T rps K gp. Then the
embedding problem

Γ “ G ¸∆
ψ

wwww

f
����

H ¸∆1
g
// // Hp,el ¸∆1

has a proper continuous solution ψ.
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Proof. — We proceed step by step.
‚ First, for n ě 2 suppose we are given a surjective morphism fn : Γ Ñ H{Hrns ¸ ∆1,
where pfnq|∆ “ ρ0. And consider the embedding problem pEnq.
‚ Observe now that

Hrns{Hrn`1s H XGn`k´1
L

H XGn`k
„
// pH XGn`k´1qGn`k{Gn`k� _

��

Gn`k´1{Gn`k Gn`k´1Gn`k{Gn`k„
oo

Since G is uniform, Gn`k´1{Gn`k » gp, and this isomorphism is also compatible with the
action of ∆. In particular, Hrns{Hrn`1s is a sub-∆-module of gp.
‚ Since fnpG q Ă H{Hrns, by Lemma 3.1 the group G acts trivially (via fn) on Hrns{Hrn`1s.
By Proposition 1.2 and piq we get

H2
pΓ, Hrns{Hrn`1sq »

´

T rps^ bHrns{Hrn`1s

¯∆
.

‚ But by hypothesis T rps K gp. Then as Hrns{Hrn`1s ãÑ gp, one has T rps K Hrns{Hrn`1s.
By Lemma 1.12 we finally get H2pΓ, Hrns{Hrn`1sq “ 0: the embedding problem pEnq has
some proper solution ψn thanks to Proposition 3.2.
Put fn`1 :“ ψn.
‚ By hypothesis f2 is given. Hence by the previous computation one deduces that pE2q has
a proper solution, which gives the existence of one f3. Then pE3q has a proper solution,
etc. To conclude, it suffices to take the projective limit of a system of compatible solutions
ψn, and to remember that

č

n

Hrns “ t1u.

Remark 3.4. — Observe thatH¸∆1 ãÑ GlmpZpq. Hence the continuous map ψ induces
a continuous Galois representation ρ : Γ Ñ GlmpZpq with image containing H as open
subgroup. Moreover for δ P ∆, one has ψpδq “ ρ0pδq; thus ρ|∆ » ρ0. In other words,
ρ is a lift of ρ0. Finally observe that changing the map β or the map PrM changes the
representation ρ.

4. Applications

Before developing the arithmetical context, let us make a quick observation.

Proposition 4.1. — Let k be a number field such that r2 ą 0. Suppose the Leopoldt
and Gras conjectures for k at p. Take p " 0. Then for every p-adic analytic group G
for which the Lie algebra is semisimple, there exist a continuous Galois representation
ρ : Galpk{kq Ñ GlmpZpq with image commensurable with G.

Proof. — Our hypotheses imply the pro-p group Gk,p is free of p-rank r2 ` 1 ě 2. Let
U Ă G be a uniform subgroup of G. The group U is commensurable with a subgroup H
generated by 2 elements (Corollary 2.12). We conclude by noting that H is a quotient of
GK,p, thanks to the universal property of free groups.

When k is totally real (and p is odd), one strategy is to start with a residual Galois
representation of Galpk{kq of order coprime to p (typically of order 2) in which at least
one real place is ramified.
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4.1. The principle. — The principle proposed is the one developed by Greenberg [11],
with a generalization based on Theorem 3.3 when the field of the residue image is not
p-rational.
‚ Let us start with a Galois extension K{k with Galois group ∆ of order coprime to p.
Recall that ∆ acts on GK,p, etc. Set Γ “ GalpKp{kq » GK,p ¸∆.
Suppose kerpιK,pq trivial (equivalently, assume Leopoldt’s conjecture for K at p). Then
H2pGK,p,Qp{Zpq “ 0 by Proposition 1.6.
‚ For i “ 1, ¨ ¨ ¨ , s, let Li{K be cyclic degree p extensions in Kp{K. Let L be the
compositum of the Li’s and set M “ GalpL{Kq. We suppose that ∆ acts on M .
‚ Let ρ0 : ∆ ãÑ GlmpZpq be a Galois representation of GalpK{kq. Set ∆1 :“ ρ0p∆q.
‚ Let G Ă Gl1m be a uniform group, and let H be a closed subgroup of G as in Section 3.2.
We suppose now that ∆1 acts by conjugation onH, such that there exists a ∆-isomorphism
β : Hp,el ÑM .
Hence, we also get GalpL{Kq ¸ ∆ » Hp,el ¸ ∆1. We then have a continuous Galois
representation

ρ1 : GalpKp{kq Ñ Hp,el
¸∆1

such that:
piq pρ1q|GalpKp{Kq “ β´1 ˝ PrM ,
piiq ρ1|∆ “ ρ0.
The Galois representation ρ1 plays the role of the function f of Theorem 3.3.
If K is p-rational, which is the context of [11], one can apply Proposition 1.4 to obtain:

Corollary 4.2. — If GK,p is free, then the representation ρ0 lifts to a Galois represen-
tation ρ : GalpKp{kq Ñ GlmpZpq with image containing H as an open subgroup.

If K is not p-rational, we use Theorem 3.3.
‚ As ∆1 acts by conjugation on H, we assume moreover that it also acts on G. Set
g :“ logpGq Ă gln. Hence gp becomes a ∆-module (via ρ0).
As consequence of Theorem 3.3 and Remark 3.4, we get:

Corollary 4.3. — If kerpιK,pq “ 1 and TK,prps K gp, then ρ0 lifts to a Galois represen-
tation ρ : GalpKp{kq Ñ GlmpZpq with image containing H as an open subgroup.

By Proposition 1.9 observe that kerpιK,pq “ 1 and TK,prps “ 1 imply that K is p-rational.

Remark 4.4. — Let ρ1 : GalpKp{kq Ñ GlmpZpq be a Galois representation having image
commensurable with SlmpZpq, and unramified outside a finite set S that contain all p-adic
places. Let ω1 : GQ Ñ Zˆp be the cyclotomic character. Now, recall that since SlmpQpq

is semisimple, every open subgroup of Sl1m has finite abelianization. Hence the image
of the Galois representation ρ :“ ρ1 b ω1 : GalpKp{Qq Ñ GlmpZpq has p-adic dimension
m2; in conclusion the image of ρ is open in GlmpZpq. Observe also that ρ is unramified
outside S.

4.2. Galois representations via imaginary quadratic fields. — We start with
an imaginary quadratic extension K{Q. Let p ą 2 be a prime number. Put ∆ “

GalpK{Qq “ xsy, and let ϕ be the nontrivial character of ∆.
‚ Suppose that GK,p is free pro-p. By Proposition 1.15, χpGp,el

K,pq “ 1` ϕ. Take

M “ Gp,el
K,p “ xh1, h2y » pZ{pq2,
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such that s ¨ h1 “ h1 and s ¨ h2 “ h´1
2 .

‚ We recall the observation of Example 2.14 from [3] and [5].
Take m ě 3, and consider z1 “ E1,2ppq ` E2,3ppq ` ¨ ¨ ¨ ` Em´1,mppq P glm, and

z2 “

"

Em,1ppq m odd
Em´1,1ppq ` Em,2ppq m even.

Set g1 “ exppz1q P Gl
1
m and g2 “ exppz2q P Gl

1
m, and H “ xg1, g2y. Take the uniform

group G :“ Sl1m. Of course H Ă G. As seen in 2.14 (thanks to Corollary 2.12), the
analytic groups H and SlmpZpq are commensurable.
Set A “

ř

ip´1qi`1Ei,i. By conjugation, A ¨ z1 “ ´z1 and A ¨ z2 “ z2, and then A acts by
´1 on g1 and by `1 on g2. Of course A acts also on SlmpZpq.
Let ρ0 : GalpK{Qq Ñ GlmpZpq be the Galois representation defined by ρ0psq “ A.
Here kerpρ0q “ 1, and the map β : M Ñ Hp,el defined by βph1q “ g1H

prH,Hs and
βph2q “ g2H

prH,Hs is an isomorphism of ∆-modules.
For m “ 2, consider Example 2.13 and take z1 “ E1,1ppq´E2,2ppq, z2 “ E1,2ppq`E2,1ppq,
g1 “ exppx1q, g2 “ exppx2q, and A “ E1,1 ´ E2,2.
In conclusion, the principle of Section 4.1 allows us to lift ρ0 to a Galois representation
of GalpKp{Qq Ñ GlmpZpq.

Theorem 4.5. — Given p ě 3, and m ě 1. Let K{Q be an imaginary quadratic field
extension such that K is p-rational. Then there exist continuous Galois representations
ρ : GalpKp{Qq Ñ GlmpZpq with open image.

Proof. — Apply Corollary 4.2: there exists a continuous Galois representation
ρ1 : GalpKp{Qq Ñ Sl1m ¸ ρ0p∆q ãÑ GlmpZpq with image containing Slkm for some
k " 0, as open subgroup. We conclude with Remark 4.4.

As a corollary, we obtain:

Corollary 4.6 (Theorem A). — There exist continuous Galois representations ρ :
GalpQ{Qq Ñ GlmpZpq with open image satisfying:
piq ρ is unramified ouside tp,8u if p ” ´1 mod 4,
piiq ρ is unramified ouside t2, p,8u if p ” 1 mod 4.

Proof. — Take K “ Qp
?
´pq. Thanks to an explicit version of Brauer-Siegel (see for

example [18]), p - |ClK |, and therefore K is p-rational (see Example 1.10). For p “ 3,
the number field Qp

?
´3q is 3-rational. Apply Theorem 4.5.

Remark 4.7. — Observe that ramification at 2 only occurs in Qp
?
´pq{Q.

4.3. Galois representations via Qpζpq. —
4.3.1. When the maximal 2-subextension of Qpζpq is p-rational. — Let a be the odd part
of p´ 1; in other words, p´ 1 “ a2λ with 2 - a; so λ “ v2pp´ 1q.
Take k “ Q, L “ Qpζpq and let K{k be the maximal 2-extension in L. Let s be a
generator of ∆ “ GalpK{Qq. Recall that ιK,p is injective, and by Proposition 1.15,

χpFK,p{pq “ 1` ωa ` ω3a
` ¨ ¨ ¨ ` ωpp´2qa,

where ω : GQ Ñ Fˆp Ă Zˆp is the mod p reduction of the cyclotomic character.
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Take m ě 3. Let g1 and g2 be the elements of Sl1m as in the previous section. Set
H “ xg1, g2y Ă Sl1m.

Set Aapsq “
m
ÿ

i“1
ωiapsqEi,i. Consider the Galois representation ρ0 : GalpK{Qq Ñ GlmpZpq

defined by ρ0psq “ Aapsq. Then Aapsq ¨ z1 “ ω´apsq z1 and

Aapsq ¨ z2 “

"

ωapm´1qpsq z2 m odd
ωapm´2qpsq z2 m even.

Put g1 “ exppz1q and g2 “ exppz2q. The action of Aapsq is odd on g1, and even on g2. Of
course Aapsq acts also on Sl1m.
Thanks to the decomposition of χpFK,p{pq, we can find h1 and h2 in FK,p such that
s ¨ h1 “ h

ωa psq
1 , and s ¨ h2 “ h

ωapm´1qpsq
2 if apm ´ 1q “ 0 mod p ´ 1 for m odd, and

s ¨ h2 “ hω
apm´2q

2 if apm´ 2q “ 0 mod p´ 1 for m even; there is no condition for the odd
character, but the even character must be trivial.
We obtain the first condition (regarding the existence of h1 and h2): for m odd we must
have v2pm´ 1q ě v2pp´ 1q; for m even we must have v2pm´ 2q ě v2pp´ 1q.
Put M “ Fph1 ` Fph2 Ă Gp,el

K,p. Then ∆ acts on M , and the two ∆-modules M and Hp,el

are isomorphic.
Let us start with a character ωki that appears in χpClLrpsq, that is equivalent to say that
ω1´ki appears in χpTL,prpsq. The characters of TL,prps are ω1´ki , and such a character
becomes a character of TK,prps if and only if a divides ki ´ 1.
Hence K is p-rational if and only if a - ki ´ 1 for every i. By using Corollary 4.2 and
Remark 4.4, we obtain:

Corollary 4.8. — Let p ” 1 mod 4 be a prime number, and let m ě 3. Write p ´ 1 “
2λa where 2 - a. Let tωk1 , ¨ ¨ ¨ , ωkeu be the characters corresponding to the nontrivial
components of the p-Sylow of the class group of Qpζpq. Suppose that:
piq v2pm´ 1q ě v2pp´ 1q if m is odd, and v2pm´ 2q ě v2pp´ 1q if m is even;
piiq a - pki ´ 1q for i “ 1, ¨ ¨ ¨ , e.
Then there exist continuous Galois representations ρ : GQ Ñ GlmpZpq unramified outside
tp,8u, and with open image.

Example 4.9. — For p ď 4 ¨ 105, there are only six cases for which piiq fails, and the
index of irregularity ep is 1 for all of them:

p 257 3329 11777 114689 163841 184577
k1 93 1951 8879 34343 140801 49029 ¨

4.3.2. Open image in Tm. — Let Tm Ă GlmpZpq be the group of upper triangular ma-
trices with diagonal entries equal to 1.
In this part we propose to give a strategy to produce Galois representations ρ : GQ Ñ

GlmpZpq with open image in Tm and unramified outside tp,8u.
Let tm Ă glm be the Zp-lie algebra generated by the matrices Ei,jppq, i ă j. The algebra
tm is powerful. Let T 1

m :“ expptmq be the exponential of tm. Then T 1
m “ Tm X Gl1m, T 1

m

is uniform and open in Tm.
Let us consider the following elements z1 :“ E1,2ppq, ¨ ¨ ¨ , zm´1 :“ Em´1,mppq. It is not
difficult to see that the zi, i “ 1, ¨ ¨ ¨ ,m´ 1, generate the Lie algebra tmpQpq.
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Let H be the closed subgroup of T 1
m generated by the gi :“ exppziq’s, i “ 1, ¨ ¨ ¨ ,m ´ 1.

The pro-p group H is of p-rank m´ 1 and commensurable with T 1
m.

Set λ “ pp´ 1q{2. We assume first that m ď λ.
We are still using L “ Qpζpq as in the previous section. Let s be a generator of ∆ “

GalpL{Qq. Recall that ιL,p is injective, and

χpFL,p{pq “ 1` ω ` ω3
` ¨ ¨ ¨ ` ωpp´2q.

Let ωki be the characters that appear in ClL, i “ 1, ¨ ¨ ¨ , ep.

Let b be an (odd) integer coprime to p ´ 1. Set Bbpsq “
m
ÿ

i“1
ωbaipsqEi,i, where ai “ 0

for i odd, and ai “ i´ 1 for i even.
Consider the Galois representation ρ0 : GalpL{Qq Ñ GlmpZpq defined by ρ0psq “ Bbpsq.
Then for 1 ď i ă m,

Bbpsq ¨ zi “

"

ω´bipsq zi i odd,
ωbpi´1qpsq zi i even.

Of course Bbpsq acts also on T 1
m, and the characters that appear in the decomposition of

χptmq are like ωbpj´lq with 1 ď j, l ď m.
By the choice of b, observe that the action of ∆ on H{Hp,el is compatible with the action
on FL,p. Hence by Theorem 3.3 the realization of H ¸∆ as Galois extension of Q can be
done when bpj´lq ı ki´1 mod p´1, for every 1 ď j, l ď m and i “ 1, ¨ ¨ ¨ , ep: in this case
the characters appearing in χptmq and in χpTL,pq are distinct, giving us orthogonality. Of
course this is automatic when ep “ 0.
Let us give an explicit criteria. To simplify, one assumes that the index of irregularity ep
of p is equal to 1. Let 0 ď nb ă p ´ 1 be the representant of b´1pk1 ´ 1q modulo p ´ 1.
Set Np “ maxb

`

minpnb, p´ 1´ nbq
˘

, and observe that for every 1 ď j, l ď Np, one has
bpj ´ lq ı k1 ´ 1 modulo p´ 1. We have proven (with Remark 4.4):

Corollary 4.10. — Suppose that ep “ 1. There exist continuous Galois representations
ρ : GQ Ñ GlmpZpq unramified outside tp,8u and with open image in Tm, for every
m ď Np.

Example 4.11. — ‚ Take p “ 37. Then ep “ 1, k1 “ 5, and Np “ 16.
‚ Take p “ 257. Then ep “ 1, k1 “ 93, and Np “ 124.

It is possible to give some asymptotic estimate.

Corollary 4.12 (Corollary C). — Let e ě 0, and let p be a prime number such that
ep ď e. There is a constant ce depending on e such that for every m ď cepp ´ 1q1{pe`1q,
there exist continuous Galois representations ρ : GQ Ñ GlmpZpq unramified outside tp,8u
and with open image in Tm. One can take c0 “ 1{2 and c1 “ 1{4.

Proof. — When e “ 0, L is p-rational, and the only condition is m ď λ “
p´ 1

2 .
More generally we study the equation

bpj ´ lq ” ki ´ 1 pmod p´ 1q,(3)
1 ď j, l ď m and i “ 1, ¨ ¨ ¨ , ep. One can assume 1 ď ki ´ 1 ď λ, and observe that j ‰ l.
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Let q ą 1 be an integer coprime to p´1. Suppose that qe ď λ. Among the e`1 intervals
r1, qq, rq, q2q, ¨ ¨ ¨ , rqj, qj`1q, ¨ ¨ ¨ , rqe, λs, at least one interval I contains no ki ´ 1; write
I “ rqi0 , qi0`1q or I “ rqe, λs.
Set b “ qi0 , and consider the Galois representation ρ0 : GalpK{Qq Ñ GlmpZpq defined as
before by ρ0psq “ Bbpsq. Observe now that qi0pj ´ lq P I if m ď q and m ď λ{qe; the
last condition corresponds to the case where I “ rqe, λs. In other words, the equation
(3) has no solution: the characters of the action of ∆ on Hp,el avoid the ωki´1’s. When
q “ opλe`1q these two bounds are essentially the same; and in this case m !e q

1{pe`1q is
suitable. For this, observe now that one can find an integer q coprime to p ´ 1 between
λ1{pe`1q and λ1{pe`1q ` cplogppqq2, where c is an absolute constant: this is the bound of
Iwaniec [14] for the Jacobsthal’s function; we then have λ1{pe`1q ă q ă c1eλ

1{pe`1q. Set
ce “

`

pc1eq
e21{pe`1q˘´1; observe that m ď cepp´ 1q1{pe`1q implies m ď q and qem ď λ (the

existence of a such positive integer m implies qe ď λ which is a condition above).
When e “ 1: by Bertrand’s postulate one knows that there exists a prime q coprime to
p´ 1 such that

?
2λ ă q ă 2

?
2λ. Here m ď

1
4
?
p´ 1 implies m ď q and qm ď λ.

The end of the proof is an application of Theorem 3.3 with Remark 4.4.

4.4. Other perspectives: Galois representations partially ramified at p. —
Let K be a number field, let S be a finite set of primes of K, and let KS be the maximal
pro-p extension of K unramified outside S; set GS “ GalpKS{Kq. A part of the results
of Section 1.2 can be adapted to GS; this section has been written with this idea in mind.
A key result to apply Theorem 3.3 is Proposition 1.6. As noted in [19, §3], one may have
H2pGS,Q{Zq “ 0, and eventually GS free, even if S does not contain all places above p.
Hence, clearly our strategy can produce Galois representations ρ : GS Ñ GlmpZpq with
open image, and for which the ramification at p is partial.
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