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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-
invasive imaging technique widely used in neuroscience to understand
the functional connectivity of the human brain. While rs-fMRI multi-
site data can help to understand the inner working of the brain, the
data acquisition and processing of this data has many challenges. One
of the challenges is the variability of the data associated with different
acquisitions sites, and different MRI machines vendors. Other factors
such as population heterogeneity among different sites, with variables
such as age and gender of the subjects, must also be considered. Given
that most of the machine-learning models are developed using these rs-
fMRI multi-site data sets, the intrinsic confounding effects can adversely
affect the generalizability and reliability of these computational meth-
ods, as well as the imposition of upper limits on the classification scores.
This work aims to identify the phenotypic and imaging variables pro-
ducing the confounding effects, as well as to control these effects. Our
goal is to maximize the classification scores obtained from the machine
learning analysis of the Autism Brain Imaging Data Exchange (ABIDE)
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rs-fMRI multi-site data. To achieve this goal, we propose novel meth-
ods of stratification to produce homogeneous sub-samples of the 17
ABIDE sites, as well as the generation of new features from the static
functional connectivity values, using multiple linear regression mod-
els, ComBat harmonization models, and normalization methods. The
main results obtained with our statistical models and methods are an
accuracy of 76.4 %, sensitivity of 82.9 %, and specificity of 77.0 %,
which are 8.8 %, 20.5 %, and 7.5 % above the baseline classification
scores obtained from the machine learning analysis of the static func-
tional connectivity computed from the ABIDE rs-fMRI multi-site data.

Keywords: machine learning, confounding effects, rs-fMRI multi-site data,
functional connectivity, ABIDE

1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-
invasive imaging technique based on the blood oxygen level of the brain (Ogawa
et al, 1990, 1993), widely used in neuroscience to understand the functional
connectivity of the human brain. An active area of research in neuroscience
is the modeling of rs-fMRI data, using complex graph theory, to discover the
functions and structure of the human brain, and for the detection of brain dis-
orders (Sporns et al, 2004, 2005; Stam and Reijneveld, 2007; van den Heuvel
et al, 2008; Bullmore and Bassett, 2011; Sporns, 2012; Bassett and Sporns,
2017).

Initial fMRI studies based in data collected in a single imaging site, usually
had limited statistical power, due to the difficulties to obtain large amounts of
data such as the limited participants with brain disorders in one geographical
location, as well as limited resources (Van Horn and Toga, 2009). To overcome
these limitations, multi-site neuroimaging data have been extensively used in
network neuroscience research in the last decade (Friedman et al, 2006, 2008;
Van Horn and Toga, 2009; Biswal et al, 2010; Gradin et al, 2010; Poline et al,
2012; Noble et al, 2017; Rao et al, 2017). The Autism Brain Imaging Data
Exchange (ABIDE) functional magnetic resonance database (Craddock et al,
2013; Di Martino et al, 2014, 2017) exemplifies a modern multi-site rs-fMRI
database which provides a larger sample size of rs-fMRI data obtained from
a more heterogeneous population living in different geographical locations,
resulting in higher statistical power compared to the rs-fMRI data obtained
for a single site (Van Horn and Toga, 2009; Biswal et al, 2010). The ABIDE
database is a powerful tool for enhancing the reproducibility and the reliabil-
ity of the statistical methods and models implemented for the diagnosis and
discovery of autism spectrum disorders (Abraham et al, 2017; Eslami et al,
2019; Almuqhim and Saeed, 2021).

One main challenge for the neuroscience research community using rs-fMRI
multi-site databases is the existence of confounding effects, associated with
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variables resulting from imaging and population heterogeneity among different
sites. Several studies have shown that these confounding factors affect the
performance of the machine learning models when executed on rs-fMRI multi-
site data (Plitt et al, 2015; Kassraian-Fard et al, 2016; Abraham et al, 2017).
One main effect is the increase in variability, as well as the imposition of upper
limits on the classification scores, due to the decrease of statistical power of
the machine learning classification of patients and control subjects.

A first group of confounding effects are those resulting from the imaging
acquisition such as MRI scanner vendor, scanner technology, magnetic field
strength and inhomogeneities, and scanning protocols and parameters for the
image acquisition, such as scan length, repetition time, echo time, acquisition
time, and voxel size (Friedman et al, 2006, 2008; Gountouna et al, 2010; Brown
et al, 2011; Birn et al, 2013; Kostro et al, 2014; Chen et al, 2014; Forsyth et al,
2014; Feis et al, 2015; Mirzaalian et al, 2016; Abraham et al, 2017). The control
and reduction of these imaging confound effects have been partially solved
by implementing standard protocols and parameters for the image acquisition
procedures (Friedman et al, 2008; Glover et al, 2012; Shinohara et al, 2017;
Chavez et al, 2018).

A second group of confounding effects are those related to phenotypic
data derived from the heterogeneous population from which the MRI data is
obtained, i.e., clinical information of patients (e.g., taking medications, severity
of disorder symptoms), instructions given to the subjects during testing (e.g.,
eyes open or closed), as well as relevant demographic data (e.g., age range, IQ-
range, gender) (Van Horn and Toga, 2009; Dukart et al, 2011; Birn et al, 2013;
Chen et al, 2014; VanderWeele and Shpitser, 2013; An et al, 2017; Rao et al,
2017; Dansereau et al, 2017; Fortin et al, 2018; Badhwar et al, 2020; Reardon
et al, 2021; Reiter et al, 2021; Benkarim et al, 2022). Some studies have imple-
mented stratification techniques (Parsons, 2014) of the rs-fMRI data of the
ABIDE sites to control the confounding effects due to diverse phenotypic data.
These stratification techniques were used to generate sub-samples integrated
by subjects sharing common characteristics such as: gender, age, right-handed,
and eyes open, to obtain more homogeneous and suitable data sets for the
statistical analysis of the static functional connectivity derived from rs-fMRI
multi-site data (Chen et al, 2013; Nielsen et al, 2013; Vigneshwaran et al, 2013;
Chen et al, 2015; Plitt et al, 2015; Iidaka, 2015; Kassraian-Fard et al, 2016;
Abraham et al, 2017; Guo et al, 2017; Kam et al, 2017; Sadeghi et al, 2017;
Parisot et al, 2018; Wang et al, 2019; Kong et al, 2019; Khosla et al, 2019; Li
et al, 2020; Sherkatghanad et al, 2020; Reiter et al, 2021).

During the last decade, important research efforts have been dedicated to
identifying the confound variables and controlling the corresponding effects
over the statistical analysis of multi-site MRI data. Diverse studies imple-
mented statistical regression models to quantify and control the confounding
effects over predictive modelling using multi-site structural MRI data (Rao
et al, 2017), as well as rs-fMRI data (Dansereau et al, 2017). The harmoniza-
tion models, also known as combined batch (ComBat) harmonization models,
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are based on an empirical Bayes model, originally proposed to control batch
effects introduced by different samples in gene expression microarrays experi-
ments by Johnson et. al. (Johnson et al, 2007). This model was reformulated in
the context of heterogeneous multi-site diffusion tensor imaging data by Fortin
et. al. (Fortin et al, 2017), to remove confounding effects introduced by the
technical differences of the scanners used by the different sites, while conserv-
ing the variability introduced by selected phenotypic variables. Some studies
also implemented the ComBat harmonization models to correct site effects in
the statistical analysis of static functional connectivity computed from multi-
site rs-fMRI data (Yu et al, 2018; Yamashita et al, 2019; Reardon et al, 2021;
Torbati et al, 2021; Chen et al, 2022).

In this study we used the ABIDE rs-fMRI data with the 17 international
imaging sites summarized in Table 1. The goals of our study were twofold i)
the identification of the phenotypic and imaging variables producing the con-
founding effects, and ii) to control these confounding effects to maximize the
classification scores obtained from the machine learning analysis the rs-fMRI
ABIDE multi-site data. To achieve these goals, we propose two set of methods.
The first set of methods were implemented to generate new features for the
machine learning models. These new features were computed from the static
functional connectivity values computed from the rs-fMRI multi-site data. The
first methods implemented in this set were multiple linear regression (MLR)
models mainly applicable to the identification of the confounding variables,
however the experimental results showed that they were also useful to maxi-
mize the classification scores computed with the machine learning models (see
Section 2.4.1). The second methods implemented in this set were ComBat
harmonization models implemented to control the confounding effects and to
maximize the classification scores (see Section 2.4.2). Since the independent
variables of the MLR and ComBat harmonization models give only partial
explanation of the variability of the dependent variables, we also generated
new features by using normalization methods on which the confound variables
were unknown (see Section 2.4.3). The second set of methods were based in the
stratification techniques defined by Parsons (2014) and (Neyman, 1992) which
basically consists of probability sampling methods on which the subjects of
the target population are divided into sub-samples or strata where within each
sub-sample the subjects have similar characteristics. These techniques were
implemented to produce homogeneous sub-samples of the 17 ABIDE sites on
which the subjects were in different ranges of age and/or full IQ (FIQ) (see
Section 2.5).

The main contribution of the work presented in this paper is a compre-
hensive approach for the solution of the problem of confounding effects over
the machine learning classification models of rs-fMRI multisite-data, consist-
ing of the sets of proposed methods as well as the extensive set of experiments
performed with these methods. The experimental results were also thoroughly
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analyzed and compared to evaluate the effectiveness of each one of the imple-
mented methods. The proposed approach can be used and improved by the
neuroscience research community to help in the diagnosis of brain disorders.

Table 1 International Imaging Sites from ABIDE resting state fMRI preprocessed
(http://preprocessed-connectomes-project.org/abide/) used in this paper (Craddock et al,
2013).
Sites: California Institute of Technology (Caltech), Carnegie Mellon University (CMU), Kennedy Krieger

Institute (KKI), University of Leuven (Leuven), Ludwig Maximilian University (MaxMun), Oregon Health and

Science University (OHSU), Institute of Living at Hartford Hospital (Olin), University of Pittsburgh School of

Medicine (Pitt), Social Brain Lab (SBL), San Diego State University (SDSU), Stanford University (Stanford),

Trinity Center for Health Sciences (Trinity), University California Los Angeles (UCLA),University of Michigan

(UM), University of Utah School of Medicine (USM), and Child Study Center, Yale University (Yale).

MRI vendors: General Electric (GE), Phillips(P), Siemens(S)

Site C ASD Subjects Avg age Avg FIQ M/F MRI
Caltech 18 19 37 27.7 ± 10.3 111.5 ± 11.2 29/8 S
CMU 13 14 27 26.6 ± 5.6 114.6 ± 10.3 21/6 S
KKI 28 20 48 10.0 ± 1.3 106.2 ± 4.8 36/12 P

Leuven 34 29 63 18.0 ± 5.0 107.6 ± 18.0 55/8 P
MaxMun 28 24 52 25.3 ± 11.8 110.9 ± 11.4 48/4 S

NYU 100 75 175 15.3 ± 6.5 110.5 ± 14.9 139/36 S
OHSU 14 12 26 10.7 ± 1.8 111.0 ± 16.3 26/0 S
Olin 15 19 34 16.6 ± 3.4 113.2 ± 16.5 29/5 S
Pitt 27 29 56 18.9 ± 6.9 110.2 ± 12.1 48/8 S
SBL 15 15 30 34.4 ± 8.5 107.9 ± 9.4 30/0 P

SDSU 22 14 36 14.4 ± 1.8 109.4 ± 13.6 29/7 GE
Stanford 20 19 39 10.0 ± 1.6 111.4 ± 15.4 31/8 GE
Trinity 25 22 47 17.0 ± 3.4 110.0 ± 13.6 47/0 P
UCLA 44 54 98 13.0 ± 2.2 103.1 ± 12.7 86/12 S
UM 74 66 140 14.0 ± 3.2 106.9 ± 13.6 113/27 GE
USM 25 46 71 22.7 ± 8.3 105.2 ± 17.5 71/0 S
Yale 28 28 56 12.7 ± 2.9 99.8 ± 19.9 40/16 S

TOTAL 530 505 1035 878/157

2 Methods and materials

2.1 ABIDE resting fMRI multi-site data

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging tech-
nique widely used in neuroscience to measure brain activity and functional
connectivity. fMRI is based on the fact that hemoglobin, the carrier of oxygen
from the lungs to the tissues (Marengo-Rowe, 2006), changes their magnetic
properties depending on their level of oxygenation which in turn is determined
by the level of neuronal activity in the brain. Resting functional magnetic reso-
nance (rs-fMRI), obtained from subjects who are at rest at the scanner, reflects
dynamic changes in the brain due to neuronal activity in different regions of
the brain. rs-fMRI, therefore, can be used to estimate the functional connectiv-
ity between these regions (Aertsen et al, 1989; Biswal et al, 1995; van de Ven
et al, 2004). The rs-fMRI measured with the MRI scanners need to be prepro-
cessed to correct for confounding effects such as magnetic field distortions and
head motion, and to improve the signal-to-noise ratio (Jenkinson and Chappell,
2018). The preprocessed rs-fMRI data used in this study was obtained from the
17 international imaging sites listed in Table 1, publicly available in the ABIDE
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database, with a total of 530 control and 505 autism subjects (Craddock
et al, 2013; Di Martino et al, 2014, 2017). The preprocessing pipeline chosen
for this data was the Configurable Pipeline for the Analysis of Connectomes
(CPAC), and the filt-global preprocessing strategy, on which the head motion
correction is performed using a two-stage approach as described in https://fcp-
indi.github.io/docs/latest/user/quick.html and Cox and Jesmanowicz (1999).
The preprocessing pipeline is described in detail in the ABIDE Preprocessed
website (http://preprocessed-connectomes-project.org/abide/index.html).

2.2 Human brain functional networks

In the last two decades, the graph theoretical analysis of functional connectiv-
ity between brain regions, on which the rs-fMRI data is represented as human
brain functional networks, has been fundamental to identifying organizational
principles in the brain, as well to understanding the causes of brain disorders
(Sporns et al, 2004, 2005; Stam and Reijneveld, 2007; van den Heuvel et al,
2008; Bullmore and Bassett, 2011; Sporns, 2012; Bassett and Sporns, 2017).
In this study, the nodes of the human brain functional networks, which will
be referred to as functional networks for the rest of the paper, were defined
by using the cc200 (200 nodes) brain atlas derived from fMRI data (Craddock
et al, 2012), and the weights of edges, i.e., the elements of the static func-
tional connectivity adjacency matrix of the functional network, were obtained
by computing the linear correlation between the time series for all pairs of
nodes, using the Pearson correlation function available in the NumPy package
(https://numpy.org). Since the static functional connectivity adjacency matrix
is symmetric, the static functional connectivity values, which will be referred
to as functional connectivity values for the rest of the paper, were obtained
from the upper triangular part of this matrix.

2.3 The machine learning models: ASD-DiagNet and
ASD-SAENet

For this study we selected two state of the art machine learning models: ASD-
DiagNet and ASD-SAENet to perform the experiments of classification of
control and autistic subjects, and to compare the corresponding results. The
classification scores computed in our experiments were: Accuracy which mea-
sures the ratio of correctly classified as patient subjects (true positive) and
control subjects (true negative) over the total number of subjects; sensitivity
which measures the ratio of the correctly classified as patient subjects over
the total number of patients (true positive plus false negative); and specificity
which measures the ratio of the correctly classified as control subjects over
the total number of control subjects (true negative plus false positive), more
details about these scores are given in Zhu et al (2010).
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2.3.1 ASD-DiagNet

ASD-Diagnet was selected as one of the machine learning classifiers to compute
the experimental results included in this study. ASD-DiagNet is a GPU-based
machine learning model for classifying patients and control subjects by using
only rs-fMRI data. ASD-DiagNet was designed to implement a joint learning
procedure using an autoencoder for feature extraction, i.e., to compress the
original feature space into a lower dimensional space which contains useful
patterns of the original data. The lower dimensional data generated by the
autoencoder was used as input for the classification step performed by a single
layer perceptron (SLP) classifier. The features selected for the training samples
of ASD-DiagNet were 25 % of the maximum weights and the same percent-
age of the minimum weights of the functional connectivity values. For all our
experiments, we used the data augmentation method using linear interpola-
tion implemented for ASD-DiagNet. A detailed description of ASD-DiagNet is
given in Eslami et al (2019).

2.3.2 ASD-SAENet

ASD-SAENet was the other machine learning classifier used to perform a
selected set of experiments to compare their results with those computed with
ASD-DiagNet. ASD-SAENet is a GPU-based machine learning model for clas-
sifying patients and control subjects by using only rs-fMRI data. ASD-SAENet
was designed and implemented as a sparse autoencoder (SAE) which results
in optimized extraction of features that can be used for classification. These
features are then fed into a deep neural network (DNN) to perform the classi-
fication of control and autistic subjects. This model is trained to optimize the
classifier while improving extracted features based on both reconstructed data
error and the classifier error. The features selected for the training samples of
ASD-SAENet were 25 % of the maximum weights and the same percentage
of the minimum weights of the functional connectivity values. ASD-SAENet
did not implement data augmentation to minimize overfiting. A detailed
description of ASD-DiagNet is given in Almuqhim and Saeed (2021).

2.4 Generation of new features

We implemented a set of methods to generate new features for the machine
learning models. These new features were computed from the functional con-
nectivity values obtained from the rs-fMRI time series (see Section 2.2).
The first two methods were multiple linear regression models, and ComBat
harmonization models, which were implemented assuming that the variables
responsible for the confounding effects were known such as MRI scanner ven-
dor, as well as some phenotypic variables like age, FIQ, and gender. In the third
group of methods included in this set, the new features were obtained from
normalization methods, for which we assumed that the variables responsible
for the confounding effects were unknown. Figure 1 illustrates the workflow
implemented in this study to generate the new features.
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Fig. 1 Workflow for the machine learning analysis of rs-fMRI data using new features
derived form the functional connectivity values to control the confounding effects of multi-
site rs-fMRI data.

Fig. 2 Workflow for computation of new features for the machine learning analysis of the
ABIDE rs-fMRI data using the MLR models.

A more detailed example of the computation of new features is illustrated
by the workflow of Figure 2, where the MLR models are included as an exam-
ple. The functional connectivity values as well as the phenotypic values of the
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ABIDE subjects were the input data for the creation of a dictionary for each
feature with the values of the functional connectivity, subject ID, age, gender,
FIQ and MRI vendor of each subject. Then a list of dictionaries was obtained
that was used to compute the new features.

2.4.1 Multiple linear regression models

Multiple linear regression (MLR) models are fitted to random dependent
variables YYY = (Y1, Y2, ...., Yn), with corresponding observation values yyy =
(y1, y2, ...., yn), to remove the variance that can be explained by the indepen-
dent or predictor variables. This model is given by

YYY =XXXβββ + ϵϵϵ (1)

whereXXX is the design matrix of independent variables, βββ is a vector of unknown
parameters and ϵϵϵ = (ϵ1, ϵ2, ...., ϵn) a vector of random errors with E(ϵi) = 0.
If the inverse of the matrix X′X exists, then the ordinary least square (OLS)
estimates of the fitted value vector, ŷ̂ŷy, are given by

ŷ̂ŷy =X(X ′X)−1X ′X(X ′X)−1X ′X(X ′X)−1X ′yyy (2)

and the residual vector, ∆y∆y∆y, is obtained by removing the variance introduced
by the independent variables, represented by the fitted value vector, ŷ̂ŷy, from
the observation values, yyy, of the dependent variables (Tamhane and Dunlop,
2000)

∆y∆y∆y = yyy − ŷ̂ŷy (3)

We implemented the multiple linear regression (MLR) models given by
Equations (1) to (3) to quantify the confounding effects of each of the inde-
pendent variables: age, FIQ, gender and MRI vendor, as well as the effects of
some combinations of these variables. We obtained two sets of new features
using the MLR models. The first set was obtained using functional connectiv-
ity as dependent variable, and the second set using the Fisher z-transformation
of the functional connectivity, FCFZ (see Section 2.4.3), as dependent vari-
able. The complete set of new features computed with the MLR model and
the corresponding independent variables are given in Table 2.

2.4.2 ComBat harmonization models

In addition to the multiple linear regression models, we implemented the Com-
Bat harmonization models (Johnson et al, 2007; Fortin et al, 2017, 2018; Yu
et al, 2018), to remove confounding effects introduced by the technical differ-
ences of the scanners used by the different sites, while conserving the variability
introduced by selected phenotypic and MRI vendors variables, and to deter-
mine which of each of the independent variables: age, gender, FIQ or MRI
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vendor, or combinations of these variables, should be preserved to maximize
the classification scores. A simplified form of the ComBat model is given by

YYY = µµµY +XXXβββ + γγγ + δδδϵϵϵ (4)

where µµµY is the mean value vector of YYY , and the vectors γγγ and δδδ are parameters
representing the additive and multiplicative site effects respectively (Johnson
et al, 2007), the rest of the variables are equal to those defined for Equation
(1). The vector of site adjusted values, ŷ̂ŷy, is

ŷ̂ŷy =
yyy − µ̂̂µ̂µy −XXXβ̂̂β̂β + γ∗γ∗γ∗

δ∗δ∗δ∗
+ µ̂̂µ̂µy +XXXβ̂̂β̂β (5)

where µ̂̂µ̂µy, β̂̂β̂β, γ
∗γ∗γ∗ and δ∗δ∗δ∗ are estimated values of the corresponding parameters.

The ComBat model removes the confounding effects introduced by site effects,
and preserves the variability introduced by the independent variables included
in the the design matrix XXX (Fortin et al, 2017).

We computed two sets of new features using the ComBat harmonization
models given by Equations (4) and (5). The first set was obtained using func-
tional connectivity as dependent variable, and the second set using the Fisher
z-transformation of the functional connectivity, FCFCFCFZ (see Section 2.4.3), as
dependent variable. The complete set of new features obtained with the Com-
Bat harmonization models and the corresponding independent variables are
given in Table 2. These new features were computed with the NeuroCombat
models available in (https://github.com/Jfortin1/neuroCombat).

Table 2 New features computed with the multiple linear regression models and the
ComBat harmonization models described in Sections 2.4.1 and 2.4.2.

MLR features ComBat features Independent variables
∆mlrAmlrAmlrA, ∆mlrAmlrAmlrAFZ cbAcbAcbA, cbAcbAcbAFZ age
∆mlrFmlrFmlrF , ∆mlrFmlrFmlrFFZ cbFcbFcbF , cbFcbFcbFFZ FIQ
∆mlrGmlrGmlrG, ∆mlrGmlrGmlrGFZ ——- gender
∆mlrMmlrMmlrM , ∆mlrMmlrMmlrMFZ ——- MRI vendor

∆mlrAGMmlrAGMmlrAGM , ∆mlrAGMmlrAGMmlrAGMFZ ——- age, gender, MRI vendor
——- cbAFGcbAFGcbAFG, cbAFGcbAFGcbAFGFZ age, FIQ, gender

2.4.3 Normalization methods

Considering that the independent variables of the multiple linear regression
models and the ComBat harmonization models give only partial explanation
of the variability of the dependent variables, we also generated new features by
implementing normalization methods through the transformation of the func-
tional connectivity values in more statistically uniform new values, by reducing
biases and outliers introduced by unknown variables (Singh and Singh, 2020).

For the mathematical definition of the normalization methods implemented
in this study, we represented the functional connectivity, for the 1035 subjects
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of the 17 ABIDE sites (see Table 1), as a matrix with I = 1035 subjects as rows,
and J = 19990 features as columns. The normalization methods presented in
this Section are the Fisher z-transformation, as well as methods to compute
new features by demeaning the functional connectivity values. All these meth-
ods were implemented with the goal of maximizing the classification scores by
controlling the confounding effects of unknown variables related to all the sites.

Fisher z-transformation

The Fisher z-transformation was proposed by Fisher (Fisher, 1915) to correct
for skewness (lack of symmetry) of the Pearson correlation coefficients, result-
ing in coefficients approximately normally distributed. We implemented this
method because in this study, the functional connectivity values were com-
puted as Pearson correlation coefficients, and any skewness of these values may
be different between the data of the ABIDE sites with some potential con-
founding effects. The new features obtained with the Fisher z-transformation
of the functional connectivity, FCFCFCFZ , were computed as described in Sections
2.4.1 and 2.4.2, and summarized in Table 2.

Demeaning the functional connectivity (FC) values

We implemented normalization methods by demeaning the functional con-
nectivity values with three different average values. The following equations
(6) to (8) were used for the computation of the three new corresponding
normalization features, ∆avgavgavg,∆avgSiteavgSiteavgSite, and ∆avgSubjavgSubjavgSubj.

The new features ∆avgavgavg are given by

∆avgavgavg = FCFCFC −µµµFC (6)

where the component µFC,j =
∑I

i=1 FCij/I of the vector µµµFC , is the average
of the jth component of the functional connectivity computed over all subjects
of the 17 ABIDE sites.

The new features ∆avgSiteavgSiteavgSite are given by

∆avgSiteavgSiteavgSite = (∆avgavgavgsi1 ,∆avgavgavgsi1 , .......,∆avgavgavgsi17) (7)

where ∆avgavgavgsik = FCFCFCsik − µsik is the new vector of features, FCFCFCsik is the
functional connectivity vector, and µsik , k ≤ 17, is the average of all the values
of functional connectivity, for the kth site.

The new features ∆avgSubjavgSubjavgSubj are given by

∆avgSubjavgSubjavgSubj = FCFCFC −µµµFCSub
(8)

where the component µFCSubj,i
=

∑J
j=1 FCi,j/J of the vector µµµFCSubj

, is the

average of the functional connectivity values computed for the ith subject.
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2.5 Sub-samples selection

A common practice in machine learning analysis is to compare computed clas-
sification accuracies with those obtained by chance level, i.e., by assuming the
uniform distribution that a subject may be classified as patient or control. For
this binary classification problem, the chance level is equal to 50 %, if the sam-
ple has infinite size. Reference (Combrisson and Jerbi, 2015) showed that for
small data sets (less than 200 samples), the empirical chance level computed
from random classification was greater than the theoretical chance level for an
infinite sample, for example, for a sample size of 100, the chance level accu-
racy was 58.0 % at a significance level of p < 0.05, and for a sample size of
60 was 60 % at a significance level of p < 0.05. Considering these limits, the
sizes of a high percentage of the selected sub-samples presented in this paper
were greater than 100 subjects, and when the sub-samples contained less than
100 subjects, the corresponding accuracies were much greater than 58 % (see
Table 6).

Table 3 Homogeneous sub-samples formed by grouping subjects with the same range of
ages, FIQ, or gender as described in Section 2.5.

Sub-sample Acronym C/A/T
0 < age < 10 age-10 74/69/143
10 < age ≤ 15 age-1015 209/203/412
15 < age ≤ 20 age-1520 115/110/225
10 < age ≤ 20 age-1020 324/313/637

20 < age age-20 132/123/255
0 < FIQ ≤ 89 FIQ-89 24/92/116

89 < FIQ ≤ 110 FIQ-89110 238/215/453
110 < FIQ FIQ-110 268/198/466

(10 < age ≤ 20) ∩ (0 < FIQ ≤ 89) age-1020-FIQ-89 21/67/88
(10 < age ≤ 20) ∩ (89 < FIQ ≤ 110) age-1020-FIQ-89110 153/138/291

The stratification methods used to define the baseline and the homogenous
sub-samples included in this work, were based in the stratification techniques
defined by Parsons (2014) and Neyman (1992), which basically consists of prob-
ability sampling methods on which the subjects of the target population are
divided into sub-samples or strata where within each sub-sample the subjects
have similar characteristics. The criteria used to select the sites or subjects
included in these sub-samples were suitable to accomplish the goal of maxi-
mizing the classification scores computed with the machine learning analysis of
the rs-fMRI multi-site data. These criteria were defined in a different and sim-
plified way that those established in the works of Parsons (2014) and Neyman
(1992).

In this study, we selected homogeneous sub-samples integrated with sub-
jects classified by ranges of age, and ranges of full IQ (FIQ). The first eight
homogeneous sub-samples given in Table 3 were formed by grouping subjects
with the same range of ages, or of FIQ, the last two sub-samples were formed
with the intersection of subjects with selected ranges of these phenotypic
values.
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A set of baseline sub-samples were also selected to comparing the classifi-
cation scores obtained with the new features. The baseline sub-samples, and
the classification scores computed with these sub-samples are given in Section
3.1.1.

2.6 Methods for the statistical comparison of
experimental results computed with the new features

Considering the strong dependence of the classification scores on the new fea-
tures used to compute them, we performed statistical tests and computed the
Wasserstein distance to compare the baseline classification scores, with those
scores computed with the new features obtained with the models and the nor-
malization methods described in Sections 2.4.1, 2.4.2, and 2.4.3, respectively.
All these classification scores were computed with the ASD-DiagNet machine
learning classifier (see Section 2.3.1).

To ensure the consistency of the statistical results, three statistical tests
methods were implemented to perform this statistical analysis. The chosen
methods were: The parametric t-test (tt), and two nonparametric tests: the
Kolmogorov–Smirnov test (kst), and the Mann–Whitney U test (mwt). The
t-test was used to determine if the means of two sets of data are statisti-
cally different from each other. The nonparametric tests computed several test
statistics to determine if two set of data are samples of the same distribution.
All the statistics methods were implemented in the stats sub-package of the
SciPy library in Python (https://scipy.org), more details about these meth-
ods in (Tamhane and Dunlop, 2000; Corder and Foreman, 2014; Sprent and
Smeeton, 2016).

The main limitation of the statistical tests described above were that the
comparison of the classifications scores ignored the strong dependence of these
scores on the sub-samples. Hence, to rank the new features accordingly to the
corresponding values of the classification scores for each sub-sample, we com-
puted the percentage difference, for each sub-sample, between the classification
scores (CSnf ) computed with the new features and the baseline classification
scores (CSbl), namely:

∆∆∆ = (CSnf −CSbl)/CSbl ∗ 100 (9)

The following positive and negative ranges for these differences were defined:
0 < ∆∆∆ ≤ 2.0(p1), 2.0 < ∆∆∆ ≤ 3.0(p2), 3.0 < ∆∆∆ ≤ 4.0(p3), 4.0 < ∆∆∆(p4),
0 > ∆∆∆ ≥ −2.0(n1), −2.0 > ∆∆∆ ≥ −3.0(n2), −3.0 > ∆∆∆ ≥ −4.0(n3), and
−4.0 > ∆∆∆(n4). We then binned the number of values falling in each range in
positive and negative bins. The values in these bins allowed as to rank the
classification scores obtained with the new features, with the maximum rank
assigned to those with the greatest number of values in the positive bins.
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3 Experiments and results

We performed a comprehensive set of experiments to compute the classification
scores with the new features obtained with the models and methods described
in Sections 2.4.1, 2.4.2 and 2.4.3, using ASD-DiagNet as the machine learning
classifier. For these experiments, we used a total of nineteen new features, as
well as the ABIDE rs-fMRI data of the fourteen baseline sub-samples given
in Table 5, to obtain a total of 266 independent experimental results. We
compared these results using the statistical methods described in Section 2.6.
We also selected the sub-sample with which we obtained the maximum value
of the classification scores obtained with each feature. We also included the
computation of the classification scores using the ABIDE rs-fMRI data of the
ten homogeneous sub-samples given in Table 3. To compare the experimental
results with a different machine learning model, we computed classification
scores with ASD-SAENet (see Section 2.3.2) using a selected set of the new
features. Since, as far as we know, it is the first time our proposed baseline
and homogeneous sub-samples have been implemented and used in this type
of studies, there are not similar published results to compare our experimental
results. A detailed analysis of all the computed results are given in the following
Sections.

All the experiments presented in this work were performed on a Linux
server with Ubuntu operating system version 16.04.6, 22 Intel Xeon Gold 6152
processors, clock speed 2.1 GHz, and 125 GB of RAM. The GPU in this server
was a NVIDIA Titan Xp, with 30 SM, 128 cores/SM, maximum clock rate of
1.58 GHz, 12196 MB of global memory, and CUDA version 11.4 with CUDA
capability of 6.1.

3.1 Experimental results: Sub-samples

3.1.1 Experimental results: Baseline sub-samples

We formed a baseline set of sub-samples by progressively selecting the sites
with the greatest values of accuracy computed with ASD-DiagNet, i.e., the
sub-sample with 4 sites was integrated by the first four sites of Table 4.

The baseline classification scores computed with ASD-DiagNet, using the
functional connectivity values of the subjects grouped in these sub-samples,
are given in Table 5, on which the number of control (C), autistic (A) and
total (T) subjects are included to compare the sizes of the sub-samples. The
last row of Table 5 shows the classification scores obtained with the machine
learning models presented in (Heinsfeld et al, 2018) for 17 ABIDE sites. These
results showed the existence of confounding effects affecting the classification
scores between-sites. Furthermore, the baseline classification scores computed
with the sub-samples were always greater than the scores computed with the
whole 17 sites.

The baseline sub-samples and the corresponding baseline classification
scores provided a convenient framework by comparing the classification scores
obtained with the new features defined in Sections 2.4.1, 2.4.2 and 2.4.3.
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3.1.2 Experimental results: Homogeneous sub-samples

Table 6 shows the values and standard deviations of the classification scores,
computed with ASD-DiagNet for each of the homogeneous sub-samples of the
17 ABIDE sites given in Table 3. These values were computed using the values
of functional connectivity as features, and the cc200 as the brain atlas. Only
the sub-samples for which the accuracy was equal to or greater than 70 % are
included. In general, the accuracy and sensitivity scores obtained with these
sub-samples were greater than those baseline scores computed with the whole
17 ABIDE sites.

The first two sub-samples of Table 6, which include subjects with 0 <
FIQ ≤ 89 obtained the maximum values of accuracy (85.9 %) and sensitivity
(99.6 %), but they were unbalanced in the number of autistic and control
subjects, inducing overfitting of the machine learning model and unbalanced
sensitivity and specificity scores. We performed experiments to correct these
unbalances by increasing the number of control subjects, randomly selected
out of the FIQ-89 and age-10-20-FIQ-89 sub-samples. The classification
scores computed with 34 and 44 additional control subjects in the sub-samples
FIQ-89-bal and age-10-20-FIQ-89-bal included in Table 6, respectively,
showed how these classification scores were lower but more balanced than
those obtained with the original sub-samples. These sub-samples also obtained
the maximum values of accuracy (76.4 %, 8.8 % above the baseline accuracy)
and sensitivity (82.9 %, 20.5 % above the baseline sensitivity) among all the
classification scores presented in this paper.

Table 4 Values and standard deviations of the classification scores computed with
ASD-DiagNet (see Section 2.3) for each ABIDE site, where the functional connectivity
values were used as features, and cc200 as the brain atlas. The classification scores
computed with the whole 17 ABIDE sites are included for comparison.

Site Accuracy Sensitivity Specificity
Olin 81.2 ± 2.7 90.5 ± 2.7 70.0 ± 4.5

OHSU 76.8 ± 2.4 92.7 ± 2.0 63.0± 4.6
whole 17 sites 70.2 ± 0.1 68.8 ± 0.6 71.6 ± 0.2

KKI 70.1 ± 1.7 29.5 ± 1.5 98.7 ± 2.2
USM 70.0 ± 1.4 92.4 ± 2.2 28.8 ± 3.0
NYU 66.8 ± 1.1 51.6 ± 2.1 78.2 ± 1.7
UCLA 66.4 ± 0.9 72.9 ± 1.2 58.8 ± 1.7
Yale 64.6 ± 2.1 58.7 ± 1.6 70.2 ± 4.3

Stanford 63.9 ± 3.4 47.3 ± 3.7 81.0 ± 4.9
CMU 63.8 ± 4.7 60.7 ± 10.0 66.0 ± 5.3
UM 63.4 ± 0.6 48.9 ± 1.2 76.5 ± 0.9

Leuven 62.4 ± 2.7 55.2 ± 3.5 68.7 ± 3.4
Pitt 61.4 ± 2.4 67.0 ± 3.7 55.4 ± 2.7

SDSU 55.9 ± 1.7 15.3 ± 3.1 82.6 ± 1.2
SBL 55.0 ± 3.7 54.7 ± 4.0 55.3 ± 5.2

MaxMun 54.0 ± 1.5 24.2 ± 1.8 81.8 ± 1.7
Caltech 52.1 ± 2.1 58.7 ± 2.3 48.5 ± 3.7
Trinity 44.6 ± 1.8 21.6 ± 2.7 65.2 ± 2.6
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Table 5 Values and standard deviations of the baseline classification scores (accuracy
(Ac), sensitivity (Se) and specificity (Sp)) computed with ASD-DiagNet as described in
Section 2.5.

Sub-sample C/A/T Ac Se Sp
10-sites 361/353/714 73.5 ± 0.6 71.6 ± 0.5 75.5 ± 0.8
8-sites 274/273/547 73.2 ± 0.7 73.3 ± 1.1 73.2 ± 0.5
9-sites 287/287/574 72.8 ± 0.4 72.2 ± 0.9 73.5 ± 0.2
4-sites 82/97/179 72.8 ± 0.3 76.5 ± 0.7 68.5 ± 0.3
7-sites 254/254/508 72.6 ± 0.4 73.2 ± 0.8 71.9 ± 0.3
13-sites 444/425/869 72.4 ± 0.3 69.7 ± 0.5 74.9 ± 0.3
6-sites 226/226/452 72.1 ± 0.7 71.5 ± 0.5 72.6 ± 1.0
11-sites 395/382/777 71.7 ± 0.1 68.9 ± 0.3 74.5 ± 0.3
14-sites 459/440/899 71.5 ± 0.2 70.1 ± 0.5 72.8 ± 0.7
15-sites 487/464/951 71.4 ± 0.1 69.2 ± 0.2 73.5 ± 0.3
5-sites 182/172/354 71.2 ± 0.9 70.1 ± 0.5 72.1 ± 1.3
12-sites 422/411/833 71.4 ± 0.2 68.7 ± 0.3 74.1 ± 0.4
16-sites 505/483/988 70.8 ± 0.3 69.1 ± 0.7 72.4 ± 0.2

whole 17 sites 530/505/1035 70.2 ± 0.1 68.8 ± 0.6 71.6 ± 0.6
Heinsfeld et.al. 530/505/1035 70 74 63

3.2 Statistical comparison of experimental results
computed with the new features

Table 7 shows the p values obtained from statistical tests and the Wasser-
stein distance (wa-d) to compare the baseline classification scores, with those
scores computed with the new features as defined in Section 2.6. Only the new
features for which at least two p-values are less than 0.05 are included.

Table 6 Values and standard deviations of the classification scores, computed with
ASD-DiagNet for each of the homogeneous sub-samples of the 17 ABIDE sites given in
Table 3 and described in Section 3.1.2. The baseline classification scores computed the
whole 17 ABIDE sites are included for comparison. The number of control (C), autistic
(A) and total (T) subjects are included to compare the sizes of the sub-samples.

Sub-sample C/A/T Accuracy Sensitivity Specificity
FIQ-89 24/92/106 85.9 ± 0.2 98.9 ± 0.1 34.2± 1.6

age-1020-FIQ-89 21/67/88 84.6 ± 0.3 99.6 ± 0.4 36.8 ± 2.7
age-1020-FIQ-89-bal 65/67/132 76.4 ± 0.7 82.3 ± 0.7 68.5 ± 0.8

FIQ-89-bal 58/92/150 76.0 ± 0.4 82.9 ± 0.3 65.1 ± 0.7
age-1520 115/110/225 72.0 ± 0.2 70.9 ± 0.5 73.1 ± 0.8
age-1020 324/313/637 71.9 ± 0.1 71.4 ± 0.4 72.4 ± 0.2

FIQ-89-110 238/215/453 70.3 ± 0.5 64.7 ± 0.8 75.4 ± 0.4
whole 17 sites 530/505/1035 70.2 ± 0.1 68.8 ± 0.6 71.6 ± 0.6

To rank the new features accordingly to the corresponding values of the
classification scores for each sub-sample (see Section 2.6), the total values
in the positive and negative bins obtained for the accuracy, sensitivity and
specificity scores, computed for each new feature, are summarized in Figure 3,
which provides an efficient visualization of the rank of the classification scores
obtained with the new features relative to the baseline classification scores.

3.3 Experimental results: New features

We implemented a total of nineteen new features, ten of them using the
multiple linear regression models defined in Section 2.4.1 and six using the
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Table 7 p values obtained from statistical tests and the Wasserstein distance (wa-d)
defined in Section 2.6. All the classification scores were computed with ASD-DiagNet for
the sub-samples of Table 5. Only the features for which at least two p-values are less than
0.05 are included.

Feature Score kst tt mwt Wa-d
∆mlrAmlrAmlrA Accuracy 0.92 0.78 0.73 0.002

Sensitivity 0.15 0.14 0.18 0.014
Specificity 0.15 0.04 0.04 0.018

∆mlrAmlrAmlrAFZ Accuracy 0.34 0.07 0.12 0.003
Sensitivity 0.15 0.06 0.05 0.017
Specificity 0.15 0.03 0.03 0.019

∆mlrFmlrFmlrF Accuracy 10−7 10−10 10−5 0.041
Sensitivity 0.06 0.02 0.01 0.02

Specificity 10−6 10−8 10−5 0.061

∆mlrFmlrFmlrFFZ Accuracy 10−7 10−10 10−5 0.045
Sensitivity 0.02 0.01 0.01 0.024

Specificity 10−6 10−9 10−5 0.066
∆mlrGmlrGmlrG Accuracy 0.15 0.05 0.1 0.011

Sensitivity 0.06 0.91 0.54 0.014
Specificity 0.001 0.001 0.001 0.024

∆mlrGmlrGmlrGFZ Accuracy 0.34 0.14 0.21 0.007
Sensitivity 0.92 0.53 0.45 0.006
Specificity 0.06 0.01 0.01 0.02

∆mlrMmlrMmlrM Accuracy 0.34 0.04 0.06 0.009
Sensitivity 0.64 0.28 0.26 0.012
Specificity 0.001 0.002 0.0004 0.029

∆mlrMmlrMmlrMFZ Accuracy 0.34 0.04 0.06 0.009
Sensitivity 0.34 0.37 0.37 0.009
Specificity 0.001 0.003 0.001 0.027

∆mlrAGMmlrAGMmlrAGM Accuracy 0.15 0.24 0.16 0.006
Sensitivity 0.64 0.33 0.26 0.011
Specificity 0.005 0.005 0.002 0.019

∆mlrAGMmlrAGMmlrAGMFZ Accuracy 0.15 0.24 0.18 0.007
Sensitivity 0.64 0.3 0.28 0.01
Specificity 0.02 0.01 0.002 0.021

cbAcbAcbA Accuracy 0.15 0.01 0.02 0.013
Sensitivity 0.34 0.07 0.09 0.016
Specificity 0.34 0.18 0.19 0.01

cbAcbAcbAFZ Accuracy 0.06 0.02 0.02 0.011
Sensitivity 0.34 0.05 0.14 0.015
Specificity 0.64 0.45 0.40 0.007

∆avgavgavg Accuracy 0.34 0.11 0.14 0.008
Sensitivity 0.34 0.43 0.30 0.01
Specificity 0.005 0.003 0.001 0.023

ComBat harmonization models described in Section 2.4.2 (See Table 2). We
also implemented three new features with the normalization methods described
in Section 2.4.3. These new features were used to perform experiments to
compute the classification scores with ASD-DiagNet for each of the baseline
sub-samples described in Section 3.1.1, for which the baseline classification
scores, obtained from the functional connectivity values, are given in Table 5.
Table 8 summarizes the maximum values of these classification scores obtained
with each new feature and with the corresponding baseline sub-sample.
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Fig. 3 Summary of total counts of the number of values in the positive and negative bins
in the ranges defined in Section 2.6, corresponding to the classification scores computed with
ASD-DiagNet with the new features.

Table 8 The maximum values of the classification scores (accuracy (Ac), sensitivity(Se)
and specificity(Sp)) computed with ASD-DiagNet using the new features obtained with the
MLR models, ComBat models, and normalization methods described in Sections 2.4.1,
2.4.2 and 2.4.3 respectively, and the corresponding sub-samples (SS) (see Table 5). The
percentage difference between the results obtained with the new features and the baseline
classification scores obtained for the whole 17 sites are included. The five greatest values
for each classification score are highlighted in bold.

Feature Ac(SS) % Se(SS) % Sp(SS) %
∆mlrAGMmlrAGMmlrAGM 74.3± 0.2(7) 5.8 75.2 ± 0.3(7) 9.3 73.5 ± 0.3(7) 2.7

∆mlrAGMmlrAGMmlrAGMFZ 74.2 ± 0.7(8) 5.7 76.4 ± 0.5(4) 11.1 72.7 ± 0.7(8) 1.5
∆mlrAmlrAmlrAFZ 74.1 ± 0.3(10) 5.6 78.1 ± 0.5(4) 13.5 73.8 ± 0.2(10) 3.1
cbAFGcbAFGcbAFGFZ 74.1 ± 0.1(10) 5.6 74.4± 0.5(4) 8.1 76.7 ± 0.4(12) 7.1
∆avgSiteavgSiteavgSite 73.8 ± 0.2(10) 5.1 77.1 ± 0.6(4) 12.1 77.0 ± 0.2(10) 7.5
∆mlrAmlrAmlrA 73.6 ± 0.2(8) 4.8 77.1 ± 1.0(4) 12.1 73.4 ± 0.2(10) 2.5
∆avgavgavg 73.5 ± 0.3(9) 4.8 77.4 ± 0.2(4) 12.5 73.4 ± 0.4(9) 2.5

∆mlrGmlrGmlrGFZ 73.1 ± 0.2(10) 4.1 78.1 ± 0.5(4) 13.5 73.4 ± 0.6(12) 2.5
cbFcbFcbF 73.0 ± 0.2(10) 4.0 75.3 ± 0.6(4) 9.4 76.0 ± 0.8(13) 6.1

∆avgSubjavgSubjavgSubj 72.8 ± 0.1(9) 3.7 74.2 ± 0.4(4) 7.8 74.4 ± 1.2(14) 3.9
∆mlrGmlrGmlrG 72.7 ± 0.2(9) 3.6 78.6 ± 1.2(4) 14.2 72.8 ± 0.3(13) 1.7
∆mlrMmlrMmlrM 72.7 ± 0.1(8) 3.6 78.0 ± 0.4(4) 13.4 72.7± 0.4(11) 1.6

∆mlrMmlrMmlrMFZ 72.7 ± 0.1(9) 3.6 76.5 ± 0.7(4) 11.2 72.9 ± 0.4(13) 1.8
cbAFGcbAFGcbAFG 72.7 ± 0.1(10) 3.6 75.6 ± 0.5(4) 9.9 75.0 ± 0.1(15) 4.8
cbAcbAcbAFZ 72.7 ± 0.1(10) 3.6 71.9 ± 0.6(4) 4.5 74.2± 0.2(10) 3.6
cbFcbFcbFFZ 72.6 ± 0.1(10) 3.4 76.7 ± 0.6(4) 11.5 75.6 ± 0.5(14) 5.6
cbAcbAcbA 72.5 ± 0.5(10) 3.3 74.1 ± 1.1(4) 7.7 74.8 ± 0.5(13) 4.5

∆mlrFmlrFmlrF 70.0 ± 0.4(10) -0.3 73.8 ± 1.3(4) 7.3 69.9± 0.6(13) -2.4
∆mlrFmlrFmlrFFZ 69.6 ± 0.3(10) -0.9 73.5 ± 1.4(4) 6.8 69.5 ± 0.2(13) -2.9
FC(whole)FC(whole)FC(whole) 70.2 68.8 71.6

3.3.1 Experimental results: Multiple linear regression models

The classification scores computed with the new features obtained with the
multiple linear regression models (Section 2.4.1) on which each one of the indi-
vidual independent variables age, FIQ, gender or MRI vendor were regressed
out to obtain the new MLR features of Table 2, are given in Figures 4 and 5, on
which they are compared to the baseline classification scores given in Table 5.

Three of the maximum accuracy scores and four of the maximum sensitivity
scores (see Table 8) were obtained with the new features computed with the
multiple linear regression models. Seven of these features were among the first
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eight features with the maximum counts in the positive bins for sensitivity (see
Figure 3). Our experiments also showed that the specificity scores computed
with the new features obtained with the multiple linear regression models, were
below the baseline specificity scores for almost all the sub-samples, except sub-
sample 7, as shown in Figures 4 and 5. More details about the results obtained
with these features follows.

Fig. 4 Classification scores computed with ASD-DiagNet, using selected new features
obtained from the multiple linear regression models with individual independent variables
described in Section 2.4.1, compared with the baseline classification scores (FC) given in
Table 5. The baseline values for the whole 17 sites are indicated by the dashed line, while
the maximum values are indicated by the continuous line.

The first main result obtained with the multiple linear regression models
was that all the classification scores computed with the new features ∆mlrFmlrFmlrF
and ∆mlrFmlrFmlrFFZ obtained when the FIQ variables were regressed out (see Table
2), were smaller than the baseline classification scores shown in Figure 4. This
result was also confirmed by the p-values given in Table 7, and the counts in
the negative bins summarized in Figure 3, obtained by the classification scores
computed with these features.

The second main result was the quantification of the confounding effects
of the variables age, gender or MRI vendor. The results of the experiments
showed that the new features on which age was regressed out, ∆mlrAmlrAmlrA and
∆mlrAmlrAmlrAFZ , were among the first six features with the maximum accuracy
values given in Table 8. These features were also among the first six features
and the first two features with the maximum counts in the positive bins for
accuracy and sensitivity given in Figure 3, respectively. Figure 4 shows that
the accuracy scores computed with the feature ∆mlrAmlrAmlrAFZ were greater than
six of the baseline accuracy scores, and that the sensitivity scores computed
with this feature were greater than all the baseline sensitivity scores, with a
maximum value of sensitivity, computed for the sub-sample 10, of 78.1 %, 13.5
% above the baseline value for the whole 17 sites (see Table 8).

The results of the experiments also showed that the new feature on which
the gender variable was regressed out, ∆mlrGmlrGmlrGFZ , was among the first eight
features with the maximum accuracy values given in Table 8. This feature
was also among the first seven features with the maximum counts in the pos-
itive bins for the sensitivity score given in Figure 3. Figure 4 shows that the
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sensitivity scores computed with this feature were greater than ten of the base-
line sensitivity scores. Another important result was that the sensitivity score
computed with the feature ∆mlrGmlrGmlrG obtained a maximum value among all the
sensitivity scores obtained with the new features, computed for the sub-sample
4, of 78.6 %, 14.2 % above the baseline value for the whole 17 sites (see Table
8).

Table 8 shows that the sensitivity score computed with the new feature on
which the MRI vendor variable was regressed out, ∆mlrMmlrMmlrM , was among the
first three maximum sensitivity values given in Table 8. This feature was also
among the first seven features with the maximum counts in the positive bins
for sensitivity given in Figure 3. Figure 4 shows that the sensitivity scores
computed with this feature were greater than eleven of the baseline sensitivity
scores, with a maximum sensitivity score for the sub-sample 4, of 78.0 %, 13.4
% above the baseline value for the whole 17 sites (see Table 8).

Additional and important results were computed with the new features
∆mlrAGMmlrAGMmlrAGM and ∆mlrAGMmlrAGMmlrAGMFZ which were obtained with the multiple linear
regression models with age, gender and MRI vendor as independent variables.
The accuracy scores computed with these features were the maximum values
of accuracy among all the features (see Table 8), with a maximum value of
74.3 % (5.8 % above the baseline value) for the sub-sample with 7 sites. Figure
5 shows that the sensitivity scores computed with these features were greater
than eleven of the baseline sensitivity scores, with a maximum value of 76.4 %
(11.1 % above the baseline value) shown in Table 8.

In general, all the results obtained with the new features computed with
the multiple linear regression models were confirmed by the p-values given in
Table 7.

Fig. 5 Classification scores computed with ASD-DiagNet using selected new features
obtained from the multiple linear regression models described in Section 2.4.1, compared
with the baseline classification scores given in Table 5. The baseline values for the whole 17
sites are indicated by the dashed line, while the maximum values are indicated by the con-
tinuous line.

Figure 6 gives an example of the classification scores computed with
ASD-SAENet. The comparison of these results with those obtained with ASD-
DiagNet using the same features (see Figure 5), showed that the classification
scores obtained in these experiments were strongly dependent on the machine
learning model used for these computations.
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Fig. 6 Classification scores computed with ASD-SAENet (see Section 2.3.2) using selected
new features obtained from the multiple linear regression models described in Section 2.4.1,
compared with the baseline classification scores given in Table 5. The baseline values for the
whole 17 sites are indicated by the dashed line, while the maximum values are indicated by
the continuous line.

3.3.2 Experimental results: ComBat harmonization models

The classification scores computed with the new features obtained with the
ComBat harmonization models (Section 2.4.2) given in Table 2, are shown in
Figure 7 on which they are compared to the baselines classification scores given
in Table 5. One of the maximum accuracy scores and three of the maximum
specificity scores (see Table 8) were obtained with the new features computed
with the ComBat models. Two of these features were also among the first
three features and four of them were among the first five features with the
maximum counts in the positive bins for accuracy and specificity (see Figure
3), respectively. More details about the results obtained with these features
follows.

Fig. 7 Classification scores computed with ASD-DiagNet using selected new features
obtained from the ComBat harmonization models described in Section 2.4.2, compared with
the baseline classification scores (FC) given in Table 5. The baseline values for the whole
17 sites are indicated by the dashed line, while the maximum values are indicated by the
continuous line.

The new feature cbAFGcbAFGcbAFGFZ obtained with the ComBat models (see Table
2) on which the variability introduced by the phenotypic variables age, FIQ,
and gender was conserved, was among the first four features with maximum
accuracy and maximum specificity values given in Table 8. Figure 7 shows that
the accuracy scores computed with this feature were greater than the baseline
accuracy scores computed with sub-samples 10 to 16, as well as with the whole
17 sites. The specificity scores computed with this feature were greater than
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ten of the baseline specificity scores, obtaining the second maximum value of
76.7 % (7.5 % above the baseline value) shown in Table 8. This feature also
obtained the maximum value of the counts in the positive bins for accuracy
and the second maximum value for specificity given in Figure 3. The fifth
maximum value of the specificity score, 75.0 % (4.8 % above the baseline value)
given in Table 8 was computed with the new feature cbAFGcbAFGcbAFG. This feature was
also among the first four features with the maximum values of the counts in
the positive bins for specificity given in Figure 3.

The new feature cbFcbFcbF obtained with the ComBat models (see Table 2) on
which the variability introduced by the FIQ variable was conserved, was among
the first four features with maximum specificity values given in Table 8. Figure
7 shows that the specificity scores computed with this feature were greater than
seven of the baseline specificity scores, obtaining the third maximum value of
76.0 % (6.1 % above the baseline value) shown in Table 8. The new feature
cbFcbFcbFFZ obtained the third maximum value of the counts in the positive bins
for accuracy and specificity given in Figure 3, obtaining the fourth maximum
value of specificity, 75.6 % (5.1 % above the baseline value), given in Table 8.

An important result was that the classification scores computed using the
new features cbAcbAcbA and cbAcbAcbAFZ obtained with the ComBat harmonization models,
on which the variability introduced by the age variable was conserved, obtained
the maximum values of the counts in the negative bins given in Figure 3 among
all the new features obtained with the ComBat models. This result was also
confirmed by the p-values given in Table 7 for this feature.

3.3.3 Experimental results: Normalization methods

Figure 8 shows the classification scores computed with ASD-DiagNet, using
the new features obtained from the normalization methods described in Section
2.4.3, on which they are compared to the baseline classification scores given in
Table 5.

The maximum value of specificity among all the features (see Table 8), of
77.0 % (7.5 % above the baseline value), was obtained with the new feature,
∆avgSiteavgSiteavgSite, for the sub-sample with 10 sites, which also obtained the maximum
counts in the positive bins for specificity (see Figure 3). The specificity scores
computed with this feature were also greater than ten of the baseline specificity
scores given in Figure 8. This feature also obtained an accuracy score of 73.8
% (5.1 % above the baseline value), which was among the first five maximum
accuracy values given in Table 8, and obtained the second maximum counts
in the positive bins for accuracy given in Figure 3.

The experimental results also showed that the feature ∆avgavgavg was among the
first five features with the maximum counts in the positive bins for sensitivity
given in Figure 3, with sensitivity scores greater than eleven of the baseline
sensitivity scores, obtaining the fifth maximum value of 77.4 % (12.5 % above
the baseline value) among the sensitivity values shown in Table 8. This feature
also obtained the maximum counts in the negative bins for the specificity scores
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Fig. 8 Classification scores computed with ASD-DiagNet, using the new features obtained
from the normalization methods described in Section 2.4.3, compared with the baseline
classification scores (FC) given in Table 5. The baseline values for the whole 17 sites are
indicated by the dashed line, while the maximum values are indicated by the continuous line.

given in Figure 3, this result was confirmed by the p-values given in Table 7
for this feature.

The results for specificity scores also showed that the feature ∆avgSubjavgSubjavgSubj,
was among the first six features with the maximum counts in the positive bins
for the specificity scores, and among the first five features with the maximum
counts in the positive bins for accuracy given in Figure 3, respectively.

4 Discussion and conclusions

In this paper, we proposed a comprehensive approach for controlling the con-
founding effects on the machine learning analysis of rs-fMRI multi-site data.
Our approach consisted of a novel combination of stratification techniques to
produce a suitable set of homogeneous sub-samples, as well as the generation of
new features for the machine learning analysis through multiple linear regres-
sion models, ComBat harmonization models and normalization methods. The
new features obtained with the multiple linear regression models were designed
to quantify the effects of phenotypic and imaging variables on the confounding
effects. Furthermore, new features obtained with the ComBat models and the
normalization methods were implemented to maximize the classification scores
computed with the machine learning analysis performed with our existing state
of the art machine-learning models ASD-DiagNet and ASD-SAENet.

We implemented a baseline set of sub-samples from which we obtained
baseline classification scores from the machine learning analysis of the func-
tional connectivity values computed with the ABIDE rs-fMRI multi-site data,
to compare with the classification scores computed with the new features.
The comparison between the baseline classification scores and the classifica-
tion scores obtained from the whole 17 ABIDE sites showed that adequately
selected sub-samples outperform the classification scores of larger sets of data,
demonstrating that the quality of the data is more important than its quantity.

Our empirical experiments performed with the new features computed with
the multiple linear regression models and the full IQ (FIQ) as independent
variable, resulted in a considerable reduction of the classification scores, that
we assumed was due to a reduction of the statistical discrimination power of
the machine learning models when this variable is regressed out. Furthermore
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our results showed that using the new features obtained by regressing out the
phenotypic variables of age, gender, or MRI vendors, or a combination of them,
we obtained values of sensitivity scores that were greater than the baseline
sensitivity scores for the majority of the sub-samples. The maximum values of
accuracy and sensitivity among all the new features were computed with these
new features. However, our results indicated that by using these new features, a
decrease of the specificity scores for all the baseline sub-samples was obtained.

The ComBat harmonization models were implemented to remove the con-
founding effects introduced by the site effects, and to determine which of each
of the independent variables: age, gender, FIQ or MRI vendor, or combinations
of these variables, should be preserved to maximize the classification scores.
The experimental results obtained with the new features computed with the
ComBat models, showed that the accuracy and sensitivity scores increased for
sub-samples with 10 or more sites. We also obtained an increase of the speci-
ficity scores for almost all the sub-samples. Four of the maximum values of
specificity scores among all the features were obtained with these new features.

The experimental results obtained with the new features computed with
the normalization methods showed an increase in all the classification scores
for almost all the sub-samples. The maximum value of the specificity score
among all the features was obtained with these new features. Similar results
were obtained for the classification scores computed with the homogeneous
sub-samples implemented with the goal of maximizing the classification scores.
The maximum values of accuracy and sensitivity scores among all the results
presented in this paper were computed with the homogeneous sub-samples
with subjects with FIQ less than 89.

All the experimental results demonstrated the effectiveness of our proposed
approach to quantify the confounding effects of the phenotypic and imaging
variables, as well to maximize the classification scores which were obtained
with the proposed statistical models and methods.

The main conclusion obtained from the comprehensive approach and
results presented in this paper, is that the control of the confounding effects,
intrinsic to rs-fMRI multisite data, over the machine learning analysis of this
type of data, is an essential step towards discovering the functions and struc-
ture of the human brain, detecting brain disorders, and defining biomarkers
useful for the diagnosis of these disorders. We hope that our approach will be
used and improved by the neuroscience research community to maximize the
classification scores of the machine learning analysis of rs-fMRI multi-site data.

One main limitation of the work presented in this paper is that the
relations between the pehnotypic and imaging variables and the functional
and structural properties of the human brain of patients and control sub-
jects determining the results obtained with our experiments and methods are
unknown. Hence, a very important and challenging area of research in net-
work neuroscience is a detailed and complete definition of these underlying
relationships.
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Some additional limitations were the use of only the ABIDE rs-fMRI multi-
site data with one preprocessing pipeline, as well as the limitations inherent to
the construction of the functional networks, where only one preexisting brain
atlas was used to defining the nodes, and only the Pearson correlation function
was used for computing the static functional connectivity, i.e., the weights of
the edges of the networks. The use of different sets of rs-fMRI multi-site data,
different preprocessing pipelines, as well as, the implementation of data-driven
brain parcellations derived from the fMRI data (Arslan et al, 2018; Messé,
2020) and additional methods for the definition of the nodes and the edges
of the functional networks (Faskowitz et al, 2020, 2022), including the use of
time-varying functional connectivity (Lurie et al, 2020), and new methods for
the determination of optimal sub-samples to reduce the confounding effects by
using, for example, between-group effect size methods, may asses the repro-
ducibility and consistency of the results and improve the methods presented
in this paper.

Data collection, feature selection and parameter estimation for an accurate
machine learning algorithm is a tough task. This may depend on the charac-
teristics of the cohort, the representativity of the features and the algorithm
complexity. Data quality requirements is emerging lately to avoid wrong deci-
sions (Omri et al, 2021). It refers to the ability of the available data to maximize
the classification scores. Further investigations are needed to develop a data
quality model to control the confounding effects to maximize the classification
scores. In addition, one could think about finding the adapted threshold to
select the quantity of data needed to train the machine learning models for
fMRI classification.
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