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Remaining useful life (RUL) prediction is subjected to multiple uncertainty sources, such as measurement errors,
operating conditions, and model representation capability. The quantification of the prediction uncertainty is
important for assisting decision-making. In literature, stochastic processes have proven their efficiency in handling
uncertainties in prognostics by providing RUL distribution. However, they have limitations in their adaptability to
capture the dynamic behaviors of complex systems. To address this issue, it is recommended to employ deep learning
(DL) methods that usually generate point-wise RUL predictions instead of RUL distribution. Therefore, the objective
of this work is to investigate the capacity of DL methods to manipulate uncertainty in RUL predictions. Particularly,
the probabilistic deep learning (PDL) framework is used to predict the RUL distribution instead of a point-wise RUL
value. The obtained results by PDL are compared with the analytic solutions of the stochastic processes to highlight
the uncertainty management capacity of PDL.

Keywords: Stochastic processes, Prognostics and Health Management, Deep Learning, RUL prediction, Uncertainty
management.

1. Introduction

Nowadays, the rapid growth of modern tech-
nologies in Internet of Things (IoT) and sens-
ing platforms is enabling a wide range and a
high quantity of condition monitoring data. This
has opened up many development prospects for
Prognostics and Health Management (PHM) both
in the research community and within indus-
try. One of PHM’s main tasks is prognostics, i.e
Remaining Useful Life (RUL) predictions to pre-
vent unexpected system downtime. In literature,
model-based prognostic approaches use explicit
mathematical models or stochastic processes to
model degradation evolution over time and pre-
dict the RUL distribution Kahle et al. (2016);
Nguyen et al. (2018); Zhang et al. (2021). However,
with the increasing complexity of modern indus-
trial systems, it is challenging to obtain models
of their degradation. Alternatively, data-driven
methods provide an alternative to model-based
approaches by using monitoring data to learn sys-
tem behavior and degradation trends. With the
increasing availability of large amounts of data

in industry, data-driven approaches are promis-
ing for developing accurate prognostic models,
even for complex systems. The performance of
traditional methods, e.g. support vector machine,
and logistic regression, strictly depends on hand-
crafted features Nguyen et al. (2022). Alterna-
tively, deep learning (DL) methods, which al-
low automatic extracting and creating useful fea-
tures by themselves without expert knowledge,
become one of the most popular trends in recent
studies Nguyen and Medjaher (2019). However,
they generally provide a precise value without a
quanti�cation of the output uncertainty.
In practice, as prognostics deals with prediction
of future system behavior, numerous sources of
uncertainties exist in RUL predictions Liu et al.
(2019). Therefore, managing uncertainty is cru-
cial for e�ective prognostics. Recent studies have
explored probabilistic deep learning (PDL) to
quantify prognostic uncertainties Nguyen et al.
(2022); Dhada et al. (2023). However, to our
knowledge, no previous studies have compared
the capacity of PDL to handle prognostic uncer-
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tainties against stochastic processes. This study
aims to address this gap. To do that, we gen-
erate degradation data using multiple stochas-
tic processes, such as Wiener and Gamma pro-
cesses with varying levels of variation. PDLs are
trained on this data to predict RUL, and the results
are compared with analytic solutions from the
stochastic process to assess the advantages and
disadvantages of each technique.
The remainder of the paper is as follows. Section 2
presents the theoretical background of the used
techniques. In Section 3, we provide the descrip-
tion of the used methodology to investigate the
capacity of PDLs to handle uncertainty. Section 4
shows the numerical results. Finally, a conclusion
and a comparative table are presented in Sec-
tion 5.

2. Theoretical backgrounds

2.1. Uncertainty management by Gamma
processes

Gamma process is one of
the most popular stochastic process that has been
used to model stochastic deterioration (see van
Noortwijk (2009)). It is a continuous-time process
and it is well adapted for modeling accumulative
(non-decreasing) deterioration such as corrosion,
erosion, and crack growth.

De�niiton of gamma process. Let A : R+ →
R+ be a measurable, increasing and right-
continuous function with A(0) = 0 and b > 0. A
stochastic process X is said to be gamma process
Y = (Yt)t≥0 ∼ Γ(A(.), b), with A(.) as shape
function and b as scale parameter, if (1) X0 = 0

almost surely, (2) the increments are indepen-
dent and non-negative, and (3) the increments are
gamma distributed.
The probability density function of an increment
Xt −Xs (with 0 < s < t) is given by

f(x) =
bA(t)−A(s)

Γ(A(t)−A(s))
xA(t)−A(s)−1 exp(−bx),

∀x ≥ 0 and where Γ(A(t) − A(s)) =∫∞
0
yA(t)−A(s)−1 exp(−y)dy.

The mean and variance of Yt are given by:
E[Xt] = A(t)

b , V[Xt] = A(t)
b2 for all t ≥ 0.

Note that, based on the form of the shape func-
tion, the gamma process is said to be:

• Homogeneous ifA(t) is a linear function
in t: A(t) = at, a > 0.

• Non-homogeneous if A(t) is a non-
linear function: A(t) = atc, a > 0,
c > 0.

Remaining useful life prediction. Let L > 0

denote a failure threshold. Given a degradation
level Xt = x at time t, the cumulative distribu-
tion of the remaining useful life (RUL) of a gamma
process is given by Paroissin and Salami (2014):

FRUL(x,t)
(u) =

Γ(A(u+ t)−A(t), (L− xt)b)
Γ(A(u+ t)−A(t))

,

(1)
where Γ(·, ·) is the upper incomplete Gamma
function.

Parameter estimation. Based on the collected
sample data (degradation records at observation
times), the parameters of gamma process are esti-
mated using the Maximum Likelihood Estimation
(MLE). The estimates are obtained by maximizing
the following log-likelihood function:

l = ln

(
n∏
i=1

b(A(ti)−A(ti−1))

Γ(A(ti)−A(ti−1))
×

∆X
A(ti)−A(ti−1)−1
i exp(−b∆Xi),

(2)

where ∆Xi = Xti −Xti−1
for i = 1, . . . , n.

2.2. Deep learning for uncertainty
handling

In this subsection, we introduce PDL frame-
work to predict the parameters that characterize
the RUL distribution at time t of component i.
Figure 1 presents an overview of the proposed
framework. It consists of the following layers:

(1) Input layer: The prototype brings formalized
data, represented as a 3D tensor with shape
(ns, nt, m), into the network for processing.
A masking layer is used during training to
skip the right padding and avoid bias errors.
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Fig. 1.: Architecture of probabilistic deep learning framework for RUL prediction.
Recall that θti is the output vector characterizing RUL distribution of trajectory i at time t, including 2
parameter values of Lognormal (µti and σti ) or Weibull distribution (αti and βti ).

(2) Hidden layer: It is the principal part of the
network, including two DL layers and one
time-distributed layer.
For DL part, we speci�cally investigate in
this paper, the e�ectiveness of Long short-
term memory (LSTM) and Gated Recurrent
Unit (GRU) architectures for processing time-
series data. However, it is important to note
that other deep learning architectures, such
as convolutional neural networks (CNNs)
or Transformers, may also be used for this
framework depending on the characteristics
of the input data. The details of LSTM and
GRU models can be consulted in the paper
Hochreiter and Schmidhuber (1997) and Cho
et al. (2014) respectively. These two mod-
els are widely used in prognostics due to
their ability to capture long-term dependen-
cies and handle vanishing gradient problems.
They achieve this by using gates that allow
the model to selectively forget or remember
information over time.
To avoid the over�tting issue, the “Dropout”
regularization technique is added to every
LSTM (or GRU) layer Hinton et al. (2012).
It involves randomly removing some hidden
units in a neural network during training by
a de�ned probability.
Time distributed layer applies the same
fully-connected operation to every time step
of the DL layer outputs, producing an output
vector per time step with dimensions based
on the number of RUL distribution parame-
ters in the output layer. For example, if the

RUL follows a Lognormal distribution, the
time-distributed layer will have 2 units rep-
resenting µ and σ.

(3) Output layer: It is de�ned to take into account
particular characteristics of RUL distribution
parameters when training the model. It pro-
vides the proper parameters representing the
RUL distribution instead of a point-wise RUL
prediction. In this paper, the Weibull (WB)
distribution and Lognormal (LN) distribution
are chosen to manage the uncertainty in
RUL prediction because they are commonly
used to model unit lifetimes, can only take
positive values, and are based on a multi-
plicative growth model suitable for diverse
components. While we focus on these two
speci�c distributions in this study, it is im-
portant to note that other probability dis-
tributions could also be integrated into the
proposed framework by de�ning the output
layer with the appropriate activation func-
tion and the appropriate loss function. This
allows for a �exible and adaptable approach
to modeling RUL distribution based on the
speci�c needs and characteristics of di�er-
ent machinery and equipment. Particularly,
instead of predicting a target RUL value, y∗,
the proposed PDL framework will provide a
couple of parameters characterizing RUL dis-
tribution to maximize the probability when
RULti = y∗. For instance, if RUL follows the
Lognormal distribution, the PDL framework
provides two parameters (µti, σ

t
i), while it
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gives two parameters (αti, β
t
i ) for the Weibull

distribution. To do this, it is essential to de�ne
activation functions tailored to the character-
istics of these parameters and a loss function
designed to maximize the probability of RUL
values for a given component i from its initial
observation time up until the time at which
its observations were recorded. The method-
ology for de�ning such activation and loss
functions for Lognormal and Weibull distri-
butions is explicated in Nguyen et al. (2022)
and Dhada et al. (2023). During the training
process, the PDL model’s weights and biases
will be iteratively adjusted to minimize the
negative logarithm likelihood (NLL) function,
which is expressed by the following equation,
thereby obtaining optimal sets of RUL distri-
bution parameters (θti) for the component i:

NLL =

ns∑
i=1

nt∑
t=1

− logL(θti |RUL∗
(0:t)

i ). (3)

3. Investigation methodology

This section aims to present the methodology
to investigate the capacity of PDL for handling
uncertainties in RUL predictions. Subsection 3.1
describes the design of numerical experiments
while subsection 3.2 presents the metrics used to
evaluate the point-wise accuracy and the uncer-
tainty management capacity of the investigated
models.

3.1. Description of numerical
experiments

Without loss of generality, let’s assume that
there exist components whose degradation pro-
cess follows stochastic processes. The compo-
nent is failed when its degradation level exceeds
L = 80. The experimental setup is illustrated
in Figure 2. To simulate the run-to-failure pro-
cesses, 200 degradation trajectories are generated
using the homogeneous gamma (HGP) and non-
homogeneous gamma process (NHGP), with a
time step of 0.2-time units (t.u). The parameters
of HP and NHGP are selected in such a way
that their mean value of the degradation level at
t = 100 is 100 with the coe�cients of variation

Stochastic
process
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parameters of
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Training PDL 

HP or NHP with
the estimated
parameters

Trained PDL 

100 testing
trajectories

RUL for
testing

RUL
distribution,
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RUL
distribution,

median value

Compare

100 training
trajectories

RUL for
training

Fig. 2.: Design of numerical experiments.
HG, NHG, and PDL refer to homogeneous gamma
process, non-homogeneous gamma process, and
probabilistic deep learning.

(CV) set to 10%, 30%, and 50% respectively. The
corresponding parameters are listed in Table 1.

Table 1.: Parameters of stochastic processes.

HGP NHGP NHWP
CV = 10% a = 1,

b = 1
b = 1,
a = 0.01,
c = 2

e = 0.01,
f = 2

CV = 30% a = 0.11,
b = 0.11

b = 0.11,
a = 0.001,
c = 2

e = 0.09,
f = 0.22

CV = 50% a = 0.04,
b = 0.04

b = 0.04,
a = 0.0001,
c = 2

e = 0.25,
f = 0.08

Among 200 components’ degradation trajecto-
ries, 100 trajectories are employed to estimate the
parameters of the corresponding HGP and NHGP
process and also to train PDL models as presented
in Section 2. The con�guration parameters of the
PDL models are presented in Table 2.
Table 2.: PDL models’ con�guration parameters.

1st LSTM (or
GRU) layer

2nd LSTM (or
GRU) layer

Dropout Learning
rate

100 units 50 units 0.2 0.001

For testing, the remaining 100 trajectories are
used to evaluate the capacity of PDL in handling
prognostic uncertainties. Speci�cally, we com-
pare the RUL distribution and its median value
obtained by PDL with those of the HGP and
NHGP processes corresponding to the stochastic
data under consideration. Note that for the test-
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ing phase, the 100 run-to-failure trajectories are
randomly truncated before reaching their failure
time, as illustrated in Figures 3 and 4. In addition,
to evaluate the adaptability of PDL in predicting
RUL when degradation data is produced by non-
Gamma processes, we keep the architecture and
con�guration parameters of the PDL models and
train them with degradation data generated by
the non-homogeneous Wiener process (NHWP).
Its independent increments are given by dXt =

µ(t)dt + σ(t)dBt, where µ(t) = fet, σ(t) =√
2et, and Bt denotes a standard Brownian mo-

tion. The process parameters (shown in Table 1)
are selected such that their mean failure time is
100 t.u, with coe�cients of variation (CV) set to
10%, 30%, and 50%, respectively. Note that the
HGP and NHGP models cannot predict RUL in
this case.
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Fig. 3.: Testing data generated by HGP, CV=30%.
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Fig. 4.: Testing data generated by NHGP, CV=30%.

3.2. Performance evaluation metrics

This section aims to present the metrics for per-
formance evaluation of the investigated models
on both aspects: point-wise prediction and uncer-
tainty management.

3.2.1. Point prediction accuracy metrics

Given M the total number of prediction points
and dk be the di�erence between the k-th actual
(RUL∗k) and estimated ( ˆRULk) RUL values, the
performance of prognostic models can be evalu-
ated by the following point prediction accuracy
metrics.

Mean squared error (MSE): MSE is a widely
used metric to evaluate the point prediction ac-
curacy Gugulothu et al. (2017) by the following
formulation:

MSE =
1

M

M∑
k=1

d2k (4)

where dk = RUL∗k − ˆRULk .

Scoring function (SF): SF, which is a popular
metric used to evaluate the performance of prog-
nostics algorithms Gugulothu et al. (2017), allows
punishing late prediction more heavily than an
early prediction, as de�ned below,

SF =
1

M

M∑
k=1

sk; sk =

{
e−

dk
13 − 1, if dk < 0

e
dk
10 − 1, if dk ≥ 0

(5)

3.2.2. Uncertain prediction evaluation metrics

PICP: Prediction interval coverage percentage
(PICP) is widely used in literature Gao et al.
(2020). It represents the probability that the true
targets (RUL∗k) fall within the lower and upper
bounds ([Lα(RULk), Uα(RULk)]) of predictions,
RULk , with a prescribed con�dence level (1−α).
It is given by: PICP = 1

M
∑M

k=1 I(RUL
∗
k)

where

I(RUL∗
k) =

{
1, if RUL∗

k ∈ [Lα( ˆRULk), Uα( ˆRULk)]

0, if RUL∗
k /∈ [Lα( ˆRULk), Uα( ˆRULk)]

Note that the performance of the prediction
model is better when the values of SF and MSE
are smaller while the accuracy PICP is greater.

4. Result analysis

The presented results in Table 3 compare the per-
formance of di�erent models in predicting RUL
of the components whose degradation evolution
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Table 3.: Testing results for data generated by
homogenous gamma process.

CV Model RMSE SF PICP

10% HGP 5.53 0.53 0.85
LSTM + WB 5.99 0.58 0.99
GRU + WB 6 0.64 0.99
LSTM + LN 6.29 0.72 0.86
GRU + LN 6.53 0.78 0.88

30% HGP 29.88 15.76 1
LSTM + WB 20.18 6.72 0.97
GRU + WB 19.87 7.14 0.98
LSTM + LN 23.99 11.69 0.95
GRU + LN 21.40 7.76 0.92

50% HGP 42.7 710 1
LSTM + WB 53.51 1636.79 0.89
GRU + WB 54.55 1159.03 0.86
LSTM + LN 54.95 931.908 0.87
GRU + LN 54.11 919.773 0.86

follows the homogeneous gamma process (HGP).
Three evaluation metrics have been used to assess
the performance of the models, including RMSE,
SF, and PICP. The lower the value of RMSE and SF,
the better the point-wise accuracy of the models.
However, for PICP, the higher its value, the better
the model’s uncertainty management ability.

The results show that HGP is the best suitable
model for predicting RUL in the dataset generated
by HGP. However, all PDL models (LSTM + WB,
GRU + WB, LSTM + LN, and GRU + LN) demon-
strate su�ciently good performance for all three
levels of the coe�cient of variation (10%, 30%, and
50%). Among the PDL models, LSTM + WB and
GRU + WB perform better than LSTM + LN and
GRU + LN for all three levels of the coe�cient of
variation. It is also noteworthy that as the coe�-
cient of variation increases, the models’ perfor-
mance decreases, which implies that predicting
RUL becomes more challenging in more variable
conditions.

The results presented in Table 4 show that the
PDL models outperform the NHGP when the co-
e�cient of variation is 30%. For the coe�cient of
variation of 50%, the NHGP model outperforms
all the PDL models for the RMSE and SF metrics,

Table 4.: Testing results for data generated by
nonhomogenous gamma process.

CV Model RMSE SF PICP

10% NHGP 4.26 0.37 0.93
LSTM + WB 5.54 0.63 1
GRU + WB 5.49 0.63 0.98
LSTM + LN 4.75 0.50 0.91
GRU + LN 5.37 0.60 0.81

30% NHGP 13.66 1.99 0.93
LSTM + WB 12.32 2.30 0.94
GRU + WB 11.35 1.94 0.93
LSTM + LN 11.78 1.92 0.93
GRU + LN 11.79 1.91 0.93

50% NHGP 23.03 7.79 0.91
LSTM + WB 25.71 14.01 0.91
GRU + WB 25.26 20.78 0.92
LSTM + LN 28.25 28.52 0.89
GRU + LN 29.01 27.59 0.97

indicating its better ability to provide accurate
point predictions. However, all PDL models pro-
vide comparable results, especially for PICP met-
rics, indicating their ability to manage uncertain-
ties. It is interesting to note that the PDL mod-
els based on LSTM and GRU perform similarly
and that the choice of probability distribution
(Weibull or Lognormal) does not signi�cantly af-
fect the performance of the models.

The results presented in Table 5 demonstrate the
adaptability of PDL for predicting RUL in degra-
dation data generated by the nonhomogenous
Wiener process. It is important to note that the
HGP and NHGP models are not suitable for pre-
dicting RUL in this case due to the possibility of
negative increments in the degradation process.
For the dataset with a coe�cient of variation of
10%, all PDL models achieved good results. As the
coe�cient of variation increases to 30% and 50%,
the performance of the PDL models decreases,
with higher RMSE and SF values and lower PICP
values. Among them, LSTM + WB shows the best
performance for this dataset according to PICP
metrics. However, none of the PDL models dis-
play superior point-wise accuracy compared to
the others, in all scenarios.
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Table 5.: Testing results for data generated by
nonhomogenous Wiener process.

CV Model RMSE SF PICP

10% LSTM + WB 4.57 0.4 0.98
GRU + WB 4.41 0.43 0.96
LSTM + LN 4.61 0.43 0.93
GRU + LN 4.41 0.44 0.96

30% LSTM + WB 14.56 3.29 0.95
GRU + WB 13.34 2.43 0.92
LSTM + LN 13.98 2.72 0.84
GRU + LN 13.33 2.37 0.91

50% LSTM + WB 20.14 9.94 0.93
GRU + WB 21.55 14.16 0.88
LSTM + LN 22.62 14.3 0.84
GRU + LN 21.31 17.54 0.85

In summary, the �ndings in this section show
that the selection of DL architecture (LSTM or
GRU) and the choice of probability distribution
(Weibull or Lognormal) do not signi�cantly in-
�uence the performance of PDL models. This
emphasizes the potential of PDL models in ef-
fectively managing uncertainties associated with
RUL predictions. In fact, in cases where the degra-
dation process is not well understood, a PDL
model can be applied without a strict requirement
to select a speci�c DL architecture or probability
distribution, while still achieving su�ciently ac-
curate results.

5. Discussion and conclusion

This study has investigated the capacity of PDL
models to manage uncertainty in predicting RUL
relative to several stochastic processes. The per-
formance of each model was assessed using
speci�c criteria. The results indicate that PDL
models are capable of handling temporal uncer-
tainty when data are generated from Gamma and
Wiener processes. Furthermore, the selection of
DL architecture (LSTM or GRU) and probability
distribution (Weibull or Lognormal) did not sig-
ni�cantly a�ect the performance of PDL mod-
els. This highlights the potential of PDL mod-
els to e�ectively manage uncertainties associated
with RUL predictions, especially in cases where

the degradation process is not well understood.
The ability to apply a PDL model without the
need for a speci�c DL architecture or probabil-
ity distribution can reduce the risk of making
incorrect decisions, such as safety problems or
high maintenance costs Al Masry et al. (2017b).
The advantages and disadvantages of PDL models
and stochastic processes for handling RUL un-
certainty are summarized in Table 6. Addition-
ally, some stochastic processes, such as extended
gamma processes Al Masry et al. (2017a) and
transformed gamma process Giorgio et al. (2018),
may be challenging to implement in practice. Fu-
ture research may focus on applying PDL models
to extended and transformed gamma processes
and extending the methodology to account for
statistical dependencies between components.
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