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Abstract: LATEX The intracranial pressure (ICP) signal, as monitored on patients in intensive11

care units, contains pulses of cardiac origin on which P1 and P2 sub-peaks can often be observed.12

When calculable, the ratio of their relative amplitudes is an indicator of the patient’s cerebral13

compliance. This information about the overall state of the cerebrospinal system is especially14

useful when it comes to adjusting sedation to the patient’s needs.15

We developed a recurrent neural network-based framework for P2/P1 ratio computation that only16

takes a raw PCI signal as an input. Two tasks are performed, namely pulses classification and17

subpeaks designation. Performances are evaluated on the basis of 10 labeled ICP recordings of18

one hour duration.19

Pulses classification was achieved with an area under the curve of 0.90 on a 4344-pulse testing20

dataset, whereas peaks designation identified pulses with a P2/P1 ratio > 1 with a 97.92%21

accuracy.22

ICP monitoring bedside devices can be improved with our real-time P2/P1 ratio calculation23

algorithm.24

1. Introduction25

Intracranial pressure (ICP) is classically monitored invasively in intensive care units (ICU) in the26

event of brain damage. One of the main objectives for the clinician is to limit the time spent by27

the patient above a threshold of cerebral hypertension, described by international guidelines [?].28

However, the ICP signal is a combination of different periodic components, both affected by29

cardiac and respiratory frequencies. Thus, the only mean ICP cannot capture all the information30

provided by such a complex signal [?]. Especially, this single number does not describe the31

ability of the cerebrospinal system to compensate the changes in volume caused by blood and32

cerebrospinal fluid (CSF) displacements, so that the ICP is maintained into an acceptable range.33

This pressure-volume relationship, generally called "cerebral compliance", require the clinician34

specific manipulations to be measured punctually with CSF infusion tests [?] [?] [?]. That is35

why different characterizations of cerebral compliance, based on a mathematical analysis of ICP36

waveform, have been proposed in the literature [?] [?]. Notably, cardiac pulses morphology varies37

according to the cerebral compliance [?]. When the latter is at a normal state, three subpeaks38

of decreasing amplitudes are generally visible (see figure 1). Those peaks are called P1, P239

and P3, in accordance with their apparition order. While it is broadly admitted that P1 is due40

to the systolic pressure wave, the origin of P2 and P3 remain unclear [?]. MRI measurements41

tend to associate P2 with a maximum volume in the cerebral arteries [?] [?], whereas P3 could42

be linked to veinous outflow [?]. In any case, as cerebral compliance is degraded, P2 and P343

become increasingly higher compared to P1 [?]. At the same time, their appearance times get44

closer [?], until the pulse takes a triangular shape centered on P2. Therefore, the ratio of the45

relative amplitudes of P2 and P1 (designated as the P2/P1 ratio) has been used as an indicator46



of cerebral compliance [?]. This ratio is all the more relevant given that Kazimierska et al. [?]47

demonstrated its good correlation with cerebral compliance assessed by classical infusion tests.48

However, P1 and P2 automated detection on ICP signal faces different issues due to the49

highly variable pulses morphology. Only a few automated frameworks allowing for P2 and P150

designation have been proposed in the literature [?] [?] [?]. Most of them rely on clustering51

algorithms to only analyze one characteristic pulse over a predefined period, as proposed by the52

authors of Morphological Clustering and Analysis of Continuous Intracranial Pressure (MOCAIP)53

algorithm [?]. MOCAIP-based automated frameworks are designed to compute a large amount54

of morphological features of the ICP pulses, including P2/P1 ratio. However, in addition to55

the raw ICP signal, their data processing workflows require both an eletrocardiogram (ECG)56

monitoring and an extensive reference library of non-artifact pulses, which can be difficult to57

implement into an on-board bedside device. To perform real-time P2/P1 ratio calculation, neural58

network-based algorithms seem to be the tools of choice to circumvent these prerequisites, due59

to their ability to directly integrate the information provided by previous examples into trained60

models. Especially, convolutional Neural Networks (CNN) and Long Short-Term Memory61

(LSTM) recurrent networks have been successfully used for similar tasks, such as ECG beats62

detection and classification (respectively [?] [?] [?] and [?] [?]).63

Under the constraint of only using ICP signal as an input, we developped a deep learning-based64

framework to detect the subpeaks P2 and P1, and compute the ratio of their relative amplitudes65

when possible. Its conception was performed by achieving a comparative study of proposed66

deep learning network architectures, enhanced with pre- and post-treatments and applied on67

our dataset provided by the ICU of the University Hospital of Saint-Etienne. Our framework68

is designed to perform two tasks sequentially. The first one is a classification task, aiming to69

eliminate all the pulses without the P1 and P2 subpeaks. The second one, only performed on the70

remaining pulses, aims to identify the subpeaks P1 and P2 to calculate the ratio of their relative71

amplitudes. As an output, our framework provides a discontinuous signal of P2/P1 ratio values,72

post-processed to make it as readable as possible for the clinician. In this article, we provide a73

description of the neural network (NN) architectures we compared for pulse selection (3.2) and74

for subpeaks designation (3.3). The performances obtained for each of the task are respectively75

reported in sections (4.1) and (4.2). We finally tested our completed automated framework on a76

dedicated testing dataset (section 4.3).77

2. Dataset overview78

The studied ICP signals came from 10 adult patients suffering from traumatic brain injury,79

admitted to the ICU of the University Hospital of Saint-Etienne (France), between March 202280

and March 2023. For each of them, ICP was invasively monitored with an intraparenchymal81

sensor (Pressio, Sophysa, Orsay, France) for a duration of 8.3 ± 5 days (min = 3.8, max = 15) at a82

sampling frequency of 100Hz.83

The dataset used in this study was constituted by randomly sampling 5 one-hour sections for84

each record. 4 of them were affected to the training dataset, whereas the last one was affected85

to the testing dataset. After the pulses were preprocessed and individualized as described in86

section 3.1, 1 of out 15 was selected to be part of the final datasets. Those pulses were labellized87

with the positions of P1 and P2 if both of them were visible, [0, 0] otherwise. The training88

dataset was finally composed of 13,127 pulses, including 12,308 with a calculable P2/P1 ratio.89

Its testing counterpart was composed of 4,344 pulses, including with 3847 a calculable P2/P190

ratio. This proportions are in accordance with Rashidinejad et al. ( [?]) who estimated a missing91

subpeak probability at less than 10% based on their 700-hour dataset.92

To assess the performances of the final dataset, an additional 10-minute segment was randomly93

sampled from each of the 10 patients. This second testing dataset, hence divided into 1094

contiguous segments, was composed of 7,399 pulses, among which 6,815 had a calculable P2/P195



ratio.96

3. Materials and Methods97

Our data processing pipeline is divided into four parts. After preprocessing and a cardiac pulses98

detection step, a selection is performed to eliminate all the pulses without a calculable P2/P199

ratio. The subpeaks are then designated on the remaining pulses. Finally, a postprocessing step100

is performed to remove outliers and deal with missing values.101

3.1. Data preprocessing102

A fourth-order Butterworth bandpass filter between 0.3 Hz and 20 Hz is first applied to the raw103

signal. It is meant to isolate cardiac pulses from rapid oscillations of electronic origin, respiratory104

waves and baseline variations. The modified Scholkmann algorithm is then applied to the filtered105

signal in order to detect the pulses onsets [?]. The characteristic duration L is set to 500 ms,106

which offers a security margin compared to the quarter of a mean pulse duration recommanded107

as a minimum by the authors. The amplitude of each single pulse is normalized between 0108

and 1, whereas the length is set to 180 points by a third degree polynomial interpolation. This109

preprocessing step is close to the one performed by Mataczynski et al.( [?]) for pulse shape index110

calculation. As an output, a 𝑁 × 180 matrix of 𝑁 pulses is provided to the selection algorithm.111

3.2. Pulses selection112

A major difficulty in monitoring the P2/P1 ratio is that not all subpeaks aret systematically113

visible on all pulses. Therefore, a selection step is needed so that the detection algorithm is114

only provided with pulses on which P1 and P2 are visible. This selection is performed by a115

neural network. Three architectures are compared for this task, namely a 1-dimensional CNN, a116

LSTM-based recurrent network and a Long Short-Term Memory Fully Convolutional Network117

(LSTM-FCN), wich is a combination of both. All the models are trained to perform the same118

binary classification task, by minimizing a Binary Cross-Entropy (BCE) loss. Before calculating119

it, a sigmoid function is applied to the neural networks outputs to obtain values between 0 and 1.120

3.2.1. 1-dimensional CNN architecture121

These architectures extract relevant features by applying convolutional filters on the input tensor.122

CNN have been successfully used for medical images segmentation, but it is also possible123

to adapt the layers dimensions to process 1-dimensional vectors the same way. Our CNN is124

constituted of 3 encoding blocks, each one composed of the sequence Convolutional Layer- Batch125

Normalization - ReLU activation, followed by a max pooling layer. The output is post-processed126

by two dense layers separated with a ReLU activation layer. To reduce overfitting, a dropout127

with a probability of 0.2 is applied at the end of the encoder and to the first dense layer. The128

dimensions of each layer appear on figure 2.129

3.2.2. LSTM-based recurrent network130

Recurrent networks are designed to capture the underlying time dependencies of sequential data.131

They are generally composed of one or more cells whose outputs are computed based on the132

current input state and on the outputs of previous states. Past predictions can be taken into account133

by different ways ; LSTM cells are specifically designed to track long-term dependencies [?]. The134

proposed recurrent network is a single bi-directional LSTM cell, followed by two dense layers135

separated by a ReLU activation. Hence, the input vector is processed in both reading directions136

by the LSTM cell, which produces two outputs that are concatenated and post-processed by the137

two dense layers. A dropout with a probablity of 0.2 was applied at the end of the LSTM cell and138

to the first dense layer. The dimensions of each layer appear on figure 2.139



Fig. 1. Two pulses of cardiac origin on an ICP signal. The left one has a P2/P1 ratio >
1, whereas the right one has a P2/P1 ratio < 1 .

Fig. 2. CNN and LSTM-based recurrent network architectures used for pulses selection.
In both cases, dropout was applied with a probability of 0.2. A sigmoid function was
used to map the NN output into the interval [0, 1].



3.2.3. LSTM-FCN network140

The two above-mentioned architectures process the input data with different objectives. Whereas141

CNN focus on the neighborhood of each point, recurrent neural networks are meant to exploit the142

causalities inherent to sequential data. LSTM-FCN networks attempt to combine both strategies,143

and were specifically designed for time series classification [?]. Moreover, Mataczynski et al.144

( [?]) obtained good results with such an architecture for pulse shape index calculation. The145

LSTM-FCN network we implemented contains a three-block encoder, put in parallel with an146

LSTM cell. Their respective dimensions are identical to those used for the CNN and for the147

LSTM-based recurrent network. Both the computations are performed in parallel. The outputs148

are then concatenated and processed by two dense layers. As above, a dropout with a probability149

of 0.2 was applied to to the first dense layer.150

3.3. Subpeaks designation151

Once the pulses with a calculable P2/P1 ratio are selected, subpeaks P1 and P2 can be designated.152

To do so, we studied different ways of combining the output of a neural network with the pulse153

curvature, as used by the MOCAIP-based automated frameworks. The latter is defined as:154

𝜅(𝑥) = 𝑥′′

(1 + 𝑥′2)3/2

On the other side, neural networks learn a classification task. For a pulse 𝑥, the objective is a155

180-point vector 𝑦𝑥 , such that156

∀𝑡 ∈ [[1, 180]], 𝑦𝑥 (𝑡) = 𝑒
1
2 (𝑒

−(𝑥 (𝑡 )−𝑝1 (𝑥) )2
2 + 𝑒

−(𝑥 (𝑡 )−𝑝2 (𝑥) )2
2 )

where 𝑝1 (𝑥) and 𝑝2 (𝑥) are the respective positions of P1 and P2. More formally, during the157

learning process, the neural networks seeks a function 𝑓 ∗ such that158

𝑓 ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓

∑︁
𝑥∈𝐷

𝑀𝑆𝐸 ( 𝑓 (𝑥), 𝑦𝑥)

Where 𝑀𝑆𝐸 denotes the Mean Square Error loss function, and 𝐷 the training set.159

The detection strategy consists in designating P1 and P2 from among a candidate subpeaks set.160

To do this, two methods were compared. In both cases, the candidate subpeaks are identified by a161

search for local maxima, either on 𝜅 (method 1) or on 𝑓 (method 2). Having thus obtained a list 𝑐162

of candidates, 𝑝1 and 𝑝2 are then designated as the two points of 𝑐 corresponding to the highest163

value of 𝑓 . Both strategies are summarized on figure 3. To perform the peaks designation task,164

two networks architectures were compared, namely a 1-dimensional U-Net and a LSTM-based165

recurrent network.166

3.3.1. 1-dimensional U-Net167

U-Net is a particular architecture of CNN. Its three-level bottleneck structure is composed of two168

symmetric blocks. In addition to the linear information propagations, pairwise connections are169

set between components of same shapes. As it was originally conceived for images segmention,170

layers have been here modified to perform 1-dimensional convolutions. Layers dimension appear171

on figure 4. A dropout with a probability 0.2 was applied at each convolution block.172

3.3.2. LSTM-based recurrent network173

We used a bidirectional LSTM-based recurrent similar to the one trained for peaks selection174

(see section 3.2.2). Hence, the input 180-sample pulse was processed by a single LSTM cell175

followed by two consecutive dense layers. As hidden layer size of the LSTM cell was set to176

180, the respective input and output dimensions of the latter were (360, 360) and (360, 180). A177

dropout with a probability 0.2 was applied to the first dense layer.178



Fig. 3. Comparison of two methods of peaks designation algorithm. P1 and P2 are
designated from among a set of candidates either based on the curvature analysis
(method 1) or directly on the NN output (method 2).

Fig. 4. U-Net architecture proposed for subpeaks detection. The NN learns to reconstitue
the sum of two gaussian curves respectively centered on 𝑝1 and 𝑝2.



3.4. Postprocessing179

Postprocessing the P2/P1 ratio signal has to address three main issues:180

• Spurious oscillations, mostly due to the intrinsic variability of the ICP signal. Even if they181

are not a result of the data processing pipeline itself, they tend to make the record less182

readable for the clinician.183

• Missing values, since all the pulses that do not pass the selection cut are recorded as184

missing.185

• Punctal outliers. If they are not caused by the ICP signal itself, they can be due to errors in186

the data processing pipeline. The latter can either occur at the classification step, when187

false positive pulses are provided to the detection algorithm, or at the detection step, when188

P1 and P2 are designated at wrong positions.189

These different problems are alleviated at the post-processing phase, by retrospectively smoothing190

the ratio monitoring. To do so, a 95% normal confidence interval is estimated on a 100-pulse191

sliding window. A mean ratio is then calculated over the window if at least 50 values are192

non-missing ; otherwise, the value corresponding to this window is reported as missing. Finally,193

the output P2/P1 ratio signal can be displayed with a 100-pulse delay, which corresponds to about194

one minute.195

4. Results196

Experiments were performed separately on the pulse selection and on the peaks detection tasks,197

in order to select a single neural network for each of them. The same training and testing datasets198

of labelled pre-processed pulses were used for both tasks, with 10% of the training set used199

for validation. After having our framework completed with two trained neural networks, we200

entierly processed 10-minute labelled segments randomly sampled from each of the recordings.201

To ensure the reproductibility of our experiments, each of the three steps were performed using202

a dedicated processing pipeline designed with Snakemake 7.25 [?]. All the associated scripts203

were coded in Python 3.11. Neural networks were implemented with Pytorch 2.0 [?]. All the204

experiments described below were performed on a Windows 10 machine powered by WSL2205

Ubuntu 20.04.5, equipped with a 12th Gen Intel(R) Core(TM) i7-12850HX 2.10 GHz 16 CPU,206

a Nvidia RTX A3000 12GB Laptop GPU, and 16 GB of RAM. Pipelines used for comparing207

neural networks performances are available at the following address: _208

4.1. Pulse selection209

The three models (i.e. CNN, LSTM recurrent network and LSTM-FCN) were trained on 150210

epochs with the Adam optimizer, an initial learning rate of 0.001 and a batch size of 256. For each211

of them, the area under the receiver operating characteristic curve (ROC) curve was calculated by212

plotting the True Positive Rate (TPR) against the False Positive Rate (FPR), defined as:213

𝑇𝑃𝑅 =
True Positive

True Positive + False Negative
, 𝐹𝑃𝑅 =

False Positive
False Positive + True Negative

The three ROC curves are displayed on figure 5. For the final framework, the optimal decision214

threshold was chosen to maximize the difference 𝑇𝑃𝑅 − 𝐹𝑃𝑅.215

Our LSTM-based recurrent network architecture overperformed the convolution-based ones,216

with an area under the curve of 0.903. The confusion matrices corresponding to the respective217

optimal decision thresholds of each NN architecture are presented in table 1.218

The amounts of false-positive pulses and false-negative pulses correspond to respectively 1.8%219

and 9.7% of the total testing data set when using the LSTM-based architecture for classification.220



Fig. 5. Areas under the ROC curve (AUC) of the three neural network architectures
used for pulses selection. Positive class corresponds to pulses with a calculable P2/P1
ratio.

Table 1. Confusion matrices of the 3 NN architectures compared for pulses selection.
Positive class corresponds to pulses with a calculable P2/P1 ratio.

NN architecture CNN LSTM LSTM-FCN

Prediction - + - + - +

True - 399 98 421 76 397 100

True + 1865 1982 847 3000 1005 2842

True Positive Rate (%) 51.5 78.0 11.2

False Positive Rate (%) 19.7 8.52 26.1



In contrast, this percentages amount to respectively 2.3% and 42.9% when using the convolutive221

network.222

4.2. Peaks designation223

The experimental pipeline was designed to compare the four possible combinations between peak224

designation method (i.e., by using or not the curvature function) and neural network architecture225

(i.e., 1-d convolutional U-Net or LSTM-based recurrent network). In addition, a designation only226

using the first two local maxima of curvature was performed as a baseline. Both models were227

trained on 150 epochs with the Adam optimizer, an initial learning rate of 0.001 and a batch size228

of 256. Mean average time appearance error, exprimed in percentage of the whole pulse duration,229

and mean average ratio error were calculated. The results are reported in table 2. In addition, as230

it is the most interpretable information for the clinician, we assessed the ability of our models to231

detect pulses where P2 is higher than P1. To do so, we calculated a confusion matrix for classes232

“+”: “ P2/P1 ratio > 1” and “-”: “P2/P1 ratio < 1” and the associated accuracy, defined as the233

proportion of correct predictions over the whole testing dataset.234

As for the pulse selection task, the recurrent architecture overformed the convolutional one.235

Without the curvature-based candidate peaks selection step, the LSTM-RE architecture performed236

the classification task with an accuracy 3% higher than our 1d-Unet. Moreover, it achieved the237

most accurate estimation of the P2/P1 ratio, with a mean average error of 0.03. Achieving the238

candidate peaks selection step with the means of the curvature function tends to improve the239

algorithm’s ability to discriminate pulses with a P2/P1 ratio > 1, at the cost of a slightly less240

accurate ratio estimation.241

4.3. Final automated framework242

On the basis of previous experiments, we finally chose a LSTM-based recurrent both for pulses243

selection and for subpeaks designation. For the latter step, candidate subpeaks selection was244

performed using the pulse curvature. For each of the ten patients, the complete workflow was245

used to process a randomly chosen labelled 10-minute section. An example of such an output is246

presented figure 6.247

The performances were assessed for each individual 10-minute segment. We used the same248

respective metrics as above for pulses selection and subpeaks designation. In addition, we249

calculated the percentage of pulses that have been assigned a ratio value, and the percentage of250

non-missing values in the final post-processed ratio signal. Table 3 contains value calculated over251

the total 110-min dataset, but 10-min segment individualized metrics are available table A??.252

False positive rate and true positive rate are both about 7 points higher than their respective253

equivalents calculated when selecting the NN architecture. However, subpeaks designation254

performances are consistent with previous experiments.Table 4 corresponds to the overall255

confusion matrix calculated for pulses selection. As above, individualized confusion matrices256

are available table ??.257

It is noticeable that the only 2nd segment sample contains 91% of the negatively labeled pulses.258

In this segment, pulse selection algorithm performed with a 13.5% false positive rate (table ??).259

False-positive pulses and false-negative pulses amount to respectively 1.14% and 7.49% of260

the total testing dataset. This proportions are consistent with those previously calculated on the261

4344-pulse testing dataset.262

5. Discussion263

Our deep-learning based framework is designed to perform P1 and P2 detection and P2/P1 ratio264

computation directly on a bedside device. For convenience concerns, we designed it under265

the constraint of only using the ICP signal, which was made possible by a well-established266

efficient preprocessing step. Hence, we were able to focus our deep-learning based analysis267



Table 2. Performances of five methods for P1 and P2 detection. P1 and P2 are designated
as the two candidate subpeaks corresponding to the two highest NN output value. Local
maxima of either curvature or NN output are selected as candidate subpeaks. As a
baseline, the algorithm “Curvature” corresponds to the designation of the two first
local maxima of pulse curvature as P1 and P2. Mean absolute errors (MAE) on the
apperance time of P1 and P2 are expressed in percentage of the total pulse duration..

-0cm CCCCCC Algorithm Candidate peaks selection P1 MAE (%) P2 MAE (%) Ratio
MAE Accuracy(%)
[m]2*1d-Unet NN output 1.2±0.1 2.1±0.2 0.08±0.03 93.2
Curvature 0.6±0.05 2.2±0.2 0.05 ±0.02 96.6
[m]2*LSTM NN output 0.70 ±0.05 1.3±0.07 0.03±0.003 96.9
Curvature 0.70±0.06 1.3±0.2 0.05±0.02 97.9

[m]1*Curvature - 2.4±0.2 4.0±0.2 0.1±0.01 89.3

Fig. 6. Example output for a 10-minute ICP signal segment processed with the final
automated framework.

Table 3. Performances of the final automated P2/P1 ratio computation framework.
Metrics associated with P2/P1 ratio values (i.e., P2/P1 ratio MAE and Accuracy on
ratio > 1 detection) are calculated pulses with a labellized P2/P1 ratio value that passed
the selection step.

-0cm CCCCCC True positive rate (%) False positive rate (%) P2/P1 Ratio MAE Accuracy
on ratio > 1 detection(%) Ratio-associated pulses (%) Displayed-ratio time(%)
87.3* 14.6* 0.044 ± 0.002 99.7* 85.8 88.3
* Significatively higher than the same metric calculated on the testing set during NN selection (p-value < 0.05)



on short time series corresponding to single pulses of cardiac origin, which beneficiated to268

not excessively deep networks architectures. Moreover, working at the cardiac cycle scale269

allowed us to alleviate another real-life difficulty: At bedside monitoring, ICP signals are very270

often contaminated with artifacts either due to patient movements (coughing, reactions to drug271

administration, nursing manipulations...), or to electronic perturbations. Therefore, it can be272

complicated, at a macroscopic scale, to determine whether an accute rise in ICP corresponds273

to a real physiological measurement or to an artifactured zone. By only focusing on modified274

Scholkmann algorithm-extracted candidates pulses, we were able to perform this artifact removal275

step on the only basis of the local waveform, at the pulse selection step. In addition, as changes276

in cerebral compliance generally occur in a progressive way, a continuous pulse-wise compliance277

score is a tool of choice to describe as faithfully as possible the current patient state.278

When labeling the pulses, only using the ICP signal could sometimes cause difficulties for279

interpreting isolated single pulse waveform: Without other elements of context, pulses with only280

two visible subpeaks systematically fell into the “non-calculable P2/P1 ratio“ category, since it281

was not possible to know which of P1, P2 or P3 was missing. In some of these cases, ABP or282

ECG signals may have helped to distinguish subpeaks, and thus to compute a P2/P1 ratio. In that283

sense, the training dataset was labelled in a quite restrictive way, to limit as much as possible the284

amount of pulses without a calculable P2/P1 ratio provided to the peak designation step. However,285

this decision has necessairly consequences on the amount of time during which a P2/P1 ratio can286

be displayed. In any case, recurrent architectures clearly overperformed the convolutional-based287

ones for pulse selection, even it is probably possible to reduce the observed gap by fine-tuning288

the proposed convolutional architecture. As the full succession of subpeaks is necessary to289

understand the pulse waveform, recurrent networks seem to be more appropriate than CNNs to290

perform such a classification task. In that sense, these results may contrast with similar studies291

performed on ECG signal, on which events such as QRS complexes have more recognizable292

shapes and thus make CNN more relevant for classication or detection tasks. Concerning the293

consequences of missclassified pulses, it is noticeable that false-negative pulses only cause294

spurious missing values at the end of the data processing workflow. In contrast, false-positive295

pulses are provided to a peak designation algorithm that systematically outputs the two positions296

of estimated P1 and P2. Therefore, the latter can do much more damage to the output P2/P1 ratio297

signal. While we simply chose an optimal threshold that minimizes the difference 𝑇𝑃𝑅 − 𝐹𝑃𝑅,298

it could be relevant to optimize the decision threshold to make to algorithm more restrictive.299

Peak detection was performed by computing a density fonction by the means of neural networks,300

as it is often the case for image segmentation tasks. We chose to stick to the underlying philosphy301

of MOCAIP-based automated framework, which include a candidates selection step before302

subpeaks designation. It would have been possible to turn our algorithm into a regression task303

to directly output the estimated positons, as it is sometimes done for ECG peaks detection [?].304

This simpler strategy lead to lighter computations. However, our method offers two advantages.305

Firstly, it is more robust and explainable in itself, as a score is affected to each point of the306

input tensor. Secondly, it is easier to combine the output tensor with another function such as307

the pulse curvature. Designating two peaks from among a set of candidates selected with this308

simple and explainable criterion offers guarantees for the generalization abilities of the algorithm.309

This is all the more relevant given that we could only train our deep learning-based models on a310

relatively small set of patients, whereas there is a large inter-patient morphological variability311

in ICP waveform. In the case of our testing dataset, a preselection of candidate peaks with a312

search for local maxima of the curvature function improved the algorithm’s ability to discriminate313

pulses with a P2/P1 ratio superior to 1. The observed improvements in accuracy amounted to314

respectively 1% for the recurrent network and to 3% for our U-Net.315

The biggest limitation of our study is that only 10 patients recordings contributed to the pulses316

database. Because of this small number, we chose to include samples from each of the ten317



patients both in the training and in a testing datasets, in order to train our neural networks with as318

much diversity as possible. By doing this, we made the asumption that a single patient CP signal319

variability over 8 days (that is to say, the average monitoring duration) was enough to neglect the320

effects of a commune underlying distribution. However, generalization abilities of our automated321

framework still have to be improved by expanding our datasets with further inclusions. This is all322

the more important that we obtained quite different false positive rates during the model selection323

(8.52%) and during the final automated framework evaluation (14.6%).324

While designing the data processing pipeline, we considered better taking into account the325

neighborhood of each single pulse. For instance, the pulse selection process could have integrated326

all the pulses occured over the last minute before the one to be classified, thus helping the327

interpretation of pulse waveform. However, it would have require a much more computation-328

intensive training step, since the recurrent networks would have had to capture more long-term329

depencies. In addition, the database would have had to be composed of contiguous labelled330

samples, which would have had drawbacks on the diversity covered this way. We faced the exact331

same issue when sampling the final testing dataset, which was particularly disbalanced with 90%332

of its false-negative pulses occuring in the same segment.333

The latter observation leads us to discuss the main drawbacks of monitoring the P2/P1 ratio. As334

mentioned earlier, this information is not always available, and depends on biological mechanisms335

still not fully understood [?]. A more complete picture of cerebral compliance could be obtained336

by combining P2/P1 ratio with other indicators such as mean ICP, pulse amplitude [?] or pulse337

shape index [?]. More generally, cerebral compliance has to be considered as part of a bundle of338

information available on patients. Characterizing it is especially helpful when ICP is close to the339

hypertension threshold, as a simple mean calculation is not informative enough on the current340

state of the cerebrospinal system. Cerebral compliance may also inform specific decicisons, for341

instance when it comes to adjusting or putting sedation to an end.342
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Table 4. Confusion matrix obtained for the final pulses selection step. Positive class
corresponds to pulses with a calculable P2/P1 ratio.

CCC Predicted - Predicted +
True - 499 85
True + 554 6261


