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1 Introduction
Growing urbanization of the population brings its share of challenges, in particular, regarding
global climate change. Contemporary cities are plagued by pollution, traffic congestion, lack
of parking space and rising travel costs. In this context, ride-sharing emerges as a promising,
environmentally friendly, solution. However, its widespread adoption is hampered by often
limiting service quality parameters, namely long travel times and waiting times. Thus, the need
arises to implement optimization methods for ride-sharing that would minimize these metrics.
Several studies have proposed solutions that benefit from the potential of metaheuristics and
machine learning, to address different purposes. Some have studied the impact of ride-sharing
on cities [3], while others have developed heuristics for optimizing dynamic ride-sharing, using
shareability function and clustering algorithms [1], multi-agent simulation-based model [2], etc.

In this study, we devise a solution of the ride-sharing problem based on the division of the
area of interest (Lomé, Togo) and then the use of a genetic algorithm to optimize vehicle
ride-sharing.

2 Modelling the problem

2.1 Meshing the area of study
The area is divided into 300 m x 300 m square meshes; each mesh is assigned an index. A
mesh is used to refer to an origin or a destination of a passenger trip request. So a mesh is
represented as: mi(i, x, y), where i is the index identifying the mesh, and x, y the geographic
projected coordinates of the mesh center.

2.2 Problem objectives and constraints
The path L(v) (see Equation 1) of a vehicle v is represented as a suite of k meshes, each mesh
being an origin or a destination of a passenger trip. k is not known in advance and a mesh can
be present several times in the path L(v).

L(v) = (m1,m2, ...,mk), k ∈ N (1)
Three types of objectives are considered for the vehicle v: 1) minimize overall wait and

travel time of passengers PT (v) [1]; 2) minimize total travelled distance D(v) [1]; 3) maximize
occupation rate OR(v).



Four constraints are also considered to limit the negative impacts of ride-sharing: 1) The
waiting time WTi(v) of each passenger request i served by the vehicle v must not exceed a
threshold WTmax(i), which can be defined globally, or per request; 2) The travel time Ti(v) of
each passenger request i served by the vehicle v must not exceed a threshold Tmax(i), which
can also be defined globally, or per request; 3) The number of onboard passengers Pi,i+1(v) on
each section [mi,mi+1] of vehicle v path must not exceed the vehicle capacity C(v); 4) The
number of detours for each passenger request DC(v, p) served by the vehicle v must not exceed
a threshold DCmax(p), which can also be defined globally, or per request.

These result to the multi-objective optimization problem with constraints of Equation 2. In
this equation, d(mi,mi+1) is the real distance between consecutive meshes mi and mi+1. These
values and real travel times between meshes are obtained from openstreemap.org.

min D(v) =
∑k−1

i=1 d(mi,mi+1) v ∈ V
min PT (v) =

∑
i∈Pv

(WTi + Ti) v ∈ V
max OR(v) =

∑k−1
i=1

Pi,i+1
C(v) v ∈ V

s.t. WTi(v) ≤ WTmax(i) ∀i ∈ Pv

Ti(v) ≤ Tmax(i) ∀i ∈ Pv

Pi,i+1(v) ≤ C(v) v ∈ V, ∀i ∈ [1, k[
DC(v, p) ≤ DCmax(p) ∀p ∈ P

(2)

A passenger request can be in 5 states: 1) Pending - request sent by the passenger but not
yet processed; 2) Assigned - request processed and assigned to a vehicle’s path; 3) Onboard -
passenger onboard the vehicle; 4) Served - passenger dropped off at destination; 5) Rejected -
request processed but no vehicle can fulfill it.

2.3 Space cutting
For each mesh, we added the number of passenger requests originating from it, to obtain a
weighted mesh µi(xi, yi, θi). We then cluster all weighted mesh with the unsupervised algorithm
k-means. The optimal number of clusters is determined by the elbow method.

2.4 Solving approach and experiments
We used the NSGA2 algorithm to solve the problem, with the following setting: 1) an individual
is a vehicle path, from 2 to 10 meshes; 2) a population of 100 individuals; 3) stop criteria: 3
generations without optimization, 100 maximum generations; 4) a vehicle mainly stays and
serves passenger requests originating from its cluster.

We built a dataset by generating plausible mobility data based on data from a urban bus
company in the city of Lomé. We conducted experiments with 3253 passenger requests, corre-
sponding to 10 min requests in the dataset, a vehicle capacity of 4 passengers in each cluster,
and three thresholds: WTmax = 20min, Tmax = 1h,DCmax = 3.
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