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Abstract 

This study explores the link between plant fiber geometry and its transverse behavior, focusing on the 

resulting apparent transverse stiffness as determined by analytical models. Using Finite Element Analysis 

(FEA) plant fiber transverse compression is simulated with two-dimensional models. Simplified geometric 

representations of common geometric features are examined, showing how distinct attributes influence 

behavior. The fiber lumen is shown to decrease apparent stiffness, while elliptical geometry and flat 

sections increase it. An adaptation of analytical models for elliptical cross-sections yields a 93% 

improvement on identification accuracy. Furthermore, the transverse compression of realistic geometries, 

extracted from microscopy images and presenting a blend of different features, is simulated. The lumen’s 

impact on apparent stiffness is shown to outweigh the effects of other features. These findings show the 

importance of apparent stiffness over fiber cell wall stiffness and how it may evolve under repeated loading, 

which has important implications for the composites sector. 
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1. Introduction 

In the continuous effort towards sustainable materials the adoption of plant fibers as an alternative to 

their synthetic counterparts (glass, carbon, aramid, polymer) presents significant environmental benefits, 

due to their renewability, biodegrability, light weight and more [1][2]. Structural applications are of 

particular interest, a notable example being the use of plant fibers as composite reinforcements [3][4]. 

Among the various available plant fibers, bast fibers such as flax, hemp and nettle are of particular interest 

for such applications, since their structural role within the fiber leads to high mechanical properties [5]. 



2 

 

Nevertheless, accurate knowledge of plant fiber mechanical properties is necessary in order to favor their 

wider adoption in structural applications [6]. 

Direct mechanical testing at the fiber scale, while challenging due to the small size of fibers, can reliably 

characterize plant fiber mechanical properties compared to indirect testing methods [7]. Among such tests, 

tensile testing has been performed extensively, providing the longitudinal properties of various plant fibers 

[8–11]. However, to the authors knowledge the transverse properties of plant fibers have never been 

determined through direct testing. This constitutes a major bottleneck in the development and modeling of 

plant fiber reinforced composites. The established way to characterize transverse properties at the fiber 

scale is the Single Fiber Transverse Compression Test (SFTCT). This test has been performed on various 

synthetic fibers such polymer [12–18] aramid [19–24] or carbon fibers [25,26] and to the authors 

knowledge, only once on natural materials, with the compression of wood fibers [27].  

The principle of a SFTCT is simple: a single fiber is rested on a stationary platen while a mobile one 

compresses it. Despite this apparent simplicity however, the gradual increase in contact surface between 

fibers and platens leads to a non-linear material behavior of the fiber, even if it is considered purely elastic 

and isotropic, preventing a direct estimation of material parameters. For this reason, analytical models have 

been developed for SFTCTs, relating fiber morphology and material characteristics to the applied 

compressive force and fiber contraction during compression [12,15,19,21]. Such models allow for the 

identification of fiber transverse material parameters, notably the transverse elastic modulus 𝐸𝑇, through 

identification by inverse method. 

While these models present some minor differences, they all consider the fiber as a right circular 

cylinder. The considerably larger length of fibers compared to their diameters, allows for a plane strain 

hypothesis to be made, making the models 2D, with only a circular fiber section being modeled. The 

manufacturing processes used for synthetic fiber production leads to fiber geometries that are overall 

homogenous and consistent and can thus be assimilated to right circular cylinders. The geometry of plant 

fibers on the other hand is significantly more complex [6]. Plant fibers present an intrinsic central porosity, 

called the lumen [28]. Lumen size can vary significantly between plant species. The limited space inside 

the plant’s stem, where plant fibers grow, lead to further intricate geometric features. Circular cross sections 

lead to a sub-optimal use of the space inside the stem, plant fiber cross sections thus grow into intricate 

cross sections instead, making use of the available space. Furthermore, as fibers get in contact during 
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growth, their cross sections can become flatter over the areas in contact. Overall, plant fiber cross sections 

are closer to elliptical, or even polygonal as opposed to circular, as can be seen in the cross section of part 

of a hemp stem in Figure 1.a. In addition to their cross section complexity, plant fibers also exhibit 

geometric variations and twist along their length [28,29] further differentiating them from perfect cylinders. 

Given the morphological complexity of plant fibers, the validity of using existing SFTCT analytical 

models, to predict plant fiber behavior and identify their transverse properties by inverse method, remains 

an open question. In the case of tensile testing, the influence of fiber morphology on measured properties 

has been studied by comparing cross section area measurement methods [29,30]. Finite Element Analysis 

(FEA) represents an alternative to analytical models since it can account for significantly more complexity, 

being geometric or material, at the expanse of the simplicity and ease of use of analytical models. Numerous 

simulations of complex plant fiber geometries have been performed in the case of tensile testing [31–40], 

however to the authors knowledge no such study exists in the case of transverse compression. Simulating 

SFTCTs of plant fibers would provide valuable inside on the influence the various geometric parameters 

on fiber behavior. Comparing FEA results with analytical model predictions would also provide answers 

on the validity of the latter in the case of plant fiber transverse compression. 

In this paper, the SFTCT of 2D geometries representing the transverse section of plant fibers is 

simulated with FEA. In this way the 2D assumptions of the analytical models are kept and only cross section 

geometric complexity is added, allowing for a comprehensive study of its influence on fiber behavior. An 

adaptation of existing analytical models to account for elliptical cross sections is also proposed and 

validated, offering a geometrically richer analytical model. Employing the data generated by the FEA, an 

apparent transverse elastic modulus, 𝐸𝑇
𝑎𝑝𝑝

, is identified using the new analytical model. The influence of 

fiber geometry on this apparent modulus evaluated and discussed. Ideal geometric representations of the 

fiber’s most common geometric features are studied first, to independently assess their effect on fiber 

behavior and apparent modulus. Specifically, the influences of lumen size, ellipticity and flat fiber sections 

are evaluated. Furthermore, the transverse compression of complex plant fiber geometries, extracted from 

microscopy images with a custom algorithm, is simulated. The impact of the interplay between various 

geometric features on fiber behavior and apparent modulus is thus evaluated on a more experimentally 

representative case. 
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2. Materials and methods 

2.1. Common plant fiber geometric feature ideal representations  

Three main geometric characteristics of plant fibers are studied in idealized, symmetric geometric 

representations: the lumen, fiber ellipticity and fiber flat sections. Due to this symmetric assumption, one a 

quarter of the fiber is considered. The lumen is represented as concentric circle of radius 𝑅𝐿 in a circular 

fiber of radius 𝑅, as seen in Figure 2.a. Ellipticity is studied through perfect elliptical fiber geometries, with 

a minor radius 𝑅 and major radius 𝑅𝑚 as pictured in Figure 2.b. The major radius is parallel to the 

compression platens, while the minor radius is in the direction of compression. An ellipse flattening factor 

𝑓can be calculated with: 

𝑓 = 1 − 𝑅 𝑅𝑚⁄   (1) 

Flat sections are represented by combining a rectangle of width 𝑤 and an elliptical fiber with a minor radius 

𝑅 − 𝑤 and a major radius 𝑅, as seen in Figure 2.c. 

The influence of these geometric characteristics on the identification of 𝐸𝑇 is studied by varying the 

ratios 𝑅𝐿/𝑅,  and 𝑤/𝑅 or the ellipse flattening 𝑓 from 0, in the case of a perfectly circular fiber, to 0.9 with 

𝑅 remaining constant. As a result, the same fiber radius is compressed in all studies. 

2.2. Microscopy extracted fiber geometries 

In order to study realistic plant fiber cross sections, that are inherently much more complex than their 

ideal geometry counterparts, fiber geometries are extracted from a microscopy image, using a similar 

method to those presented in [36,41,42]. An observation of a hemp stem section is used for this purpose, 

shown in Figure 1.a. After binarization of the image using Otsu’s thresholding method [43] the contours of 

the image are detected using the bwboundaries function of MATLAB (MathWorks, Natick, MA) as seen 

in Figure 1.b. 

With the contours in the image being detected, the contour of a cell wall can be isolated. The largest 

contour contained within the cell wall (the lumen’s boundary) can also be isolated if visible. The contour 

detection algorithm results in fine irregularities in the extracted geometries (see Figure 1.c and d) that can 

be problematic in FEA. For this reason, after converting to polar coordinates, a smoothing spline is applied 
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to the cell wall and lumen contours, eliminating fine detail while maintaining the overall fiber 

morphological complexity1. The smoothing on polar coordinates along with the final smoothed geometry 

can be seen in Figure 1.c and Figure 1.d respectively. Overall, a morphologically diverse set of 20 fibers 

with varying sizes and shapes, with or without lumens, are chosen for FEA, shown in Figure 3. 

2.3. Analytical model adaptation and inverse identification 

For the inverse identification of 𝐸𝑇, the analytical model developed by Jawad et al. [15] is used, which 

considers the fiber as a cylinder of radius 𝑅 in plane strain conditions.  To adapt to elliptical geometries, a 

simple modification of the model is proposed, employing the major radius 𝑅𝑚 and the minor radius 𝑅. 

Considering that the ellipse is compressed along its major or minor axis, the radius that is parallel to the 

platens will greatly influence the width of the contact zone between the fiber and the platens. On the other 

hand, the fiber’s contraction will be influenced by the radius that is perpendicular to the platens, in the 

direction of compression, this radius will thus be used in the rest of the model.  

During the initial phase of compression, plant fibers often slide and rotate during a partial compression 

phase, under the influence of the upper compression platen’s movement. This partial compression phase 

usually leads to a configuration where their major radius is parallel to the platens as seen in Figure 4. In 

such a configuration, the fiber is less likely to rotate and full compression takes place. Under this 

configuration, the analytical model can be written as followed with the major radius 𝑅𝑚 being used in the 

calculation of contact half-width 𝑏 and the minor radius 𝑅 in the rest of the model. 

𝑈 =
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1 Centering the data with respect to 0° greatly helps the smoothing procedure. Once the smoothing is 

performed, coordinates can be moved back to their initial position. 
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𝑏 = √
4𝐹𝑅𝑚

 𝜋
(

1

𝐸𝑇

−
𝜈𝐿𝑇

2

𝐸𝐿

) (3) 

with: 𝑈: the displacement of the fiber, 𝐹𝐿: the force per unit length, 𝐸𝐿: the fiber’s longitudinal elastic 

modulus, 𝐸𝑇: the fiber’s transverse elastic modulus and 𝜈𝐿𝑇 , 𝜈𝑇𝑇: the Poisson ratios in the longitudinal and 

transverse plane respectively.  

For the microscopy-extracted geometries, after fitting an ellipse over the cell wall contour, the same 

configuration is desired. A rotation is applied to the ellipse and the fiber, to position the major ellipse axis 

horizontally as seen in Figure 5.a. The major radius of the fitted ellipse is used for the calculation of 𝑏 with 

the minor radius being used in the rest of the analytical model. The fiber can be rotated further by the user, 

if the resulting configuration could still lead to important fiber rotation during compression, to a 

configuration where full compression is more likely (see Figure 5.b). While minimizing fiber rotations 

during compression, this additional rotation can lead to identification errors if the major axis of the fiber 

and the fitted ellipse become very misaligned. 

The presented analytical model is used to identify an apparent transverse elastic modulus 𝐸𝑇
𝑎𝑝𝑝

from 

FEA data through a least-squares regression analysis as detailed in [44]. The relative difference between 

the apparent fiber transverse elastic modulus, 𝐸𝑇
𝑎𝑝𝑝

, identified by the analytical model, and transverse elastic 

modulus defined in the FEM, 𝐸𝑇 , is calculated: 

𝛥𝐸𝑇 =
𝐸𝑇

𝑎𝑝𝑝
− 𝐸𝑇

𝐸𝑇

 (4) 

Positive values of Δ𝐸𝑇 indicate an increased apparent fiber stiffness compared to the fiber’s actual stiffness, 

since 𝐸𝑇
𝑎𝑝𝑝

> 𝐸𝑇 . Inversely, negative values of Δ𝐸𝑇 indicate a decreased apparent stiffness. To calculate 

how closely the analytical model reproduces fiber behavior, the average value of the least-squares residual 

is calculated: 

𝜌 =
1

𝑁
√∑(𝑈𝑖

𝐹𝐸𝐴 − 𝑈𝑖
𝐴𝑁)2

𝑁

𝑖=1

 (5) 

where: 𝑁: the number of FEA data points, 𝑈𝐹𝐸𝐴: the upper platen displacement in the FEA and 𝑈𝐴𝑁: the 

fiber displacement predicted by the analytical model.  
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Finally, to evaluate the accuracy of the proposed elliptical model its values of Δ𝐸𝑇 and 𝜌 are compared 

to those obtained with the conventional model when the major or minor radius is used as an input. Results 

from the transverse compression of elliptical fibers are used, with an ellipse flattening factor 𝑓 varying from 

0 to 0.9.  

2.4. Finite element model 

In order to evaluate the influence of plant fiber geometry on the identification of 𝐸𝑇, FEMs of the 

previously described fiber geometries under transverse compression, are created in COMSOL Multiphysics 

© (COMSOL AB, Stockholm, Sweden). With the exception of geometry, the rest of the modeling choices 

made by the analytical model are respected: a 2D plane strain formulation is used, compression platens are 

rigid and parallel, while the fiber is modeled as elastic and transversely isotropic. To match the infinitesimal 

strain approach of the analytical models, a linear strain formulation is use. Therefore, any difference 

between the values of 𝐸𝑇 that are imposed in the FEM or identified by the analytical model can be attributed 

to the differences in geometry.  

For the study of ideal geometric representations, fiber geometry is considered symmetric along both the 

𝑥𝑧 and 𝑦𝑧 plane, therefore only a quarter of the fiber is modeled (see Figure 6.a). A radius value of 𝑅 =

16 µ𝑚 is chosen, which representative of average plant fiber diameters [45]. In the case of microscopy-

extracted geometries, the entire cross section is modeled. By determining the pixel size, the size of the 

microscopy-extracted fibers corresponds to the one found in the microscopy image. 

For all the fibers studied, the fiber’s longitudinal modulus is set at 𝐸𝐿 = 50 𝐺𝑃𝑎, which is in the order 

of magnitude of common bast fibers such as flax, hemp and nettle [6,46]. The transverse elastic modulus is 

set at 𝐸𝑇 = 1 𝐺𝑃𝑎 according to preliminary experimental SFTCTs [47]. Poisson ratios have been shown to 

have very little influence on fiber behavior under SFTCT and subsequent 𝐸𝑇 identification [23,44]. Values 

are thus set arbitrarily at 𝜈𝐿𝑇 = 0.4 and 𝜈𝑇𝑇 = 0.07.  

To simulate the transverse compression of a fiber, a maximum displacement of 1µ𝑚 is imposed on the 

upper compression platen. A Lagrangian contact formulation between the platens and the fiber is used, with 

the platens as the masters, being the stiffer material. The force per unit of length 𝐹𝐿 resulting from the 

fiber’s compression is obtained by integrating the contact pressure’s vertical component over the contact 

zone. For microscopy-extracted geometries where no symmetry conditions apply, the movement of the 
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lowest point on the fiber is blocked to eliminate potential rigid body movements (see Figure 6.b). A lower, 

fixed compression platen is also modeled in this case. Microscopy-extracted geometries can also be subject 

to some rotation at the start of the compression. These points are eliminated and the zero-displacement 

value of the platen is considered for the first point where no rotation occurs. 

For the mesh of the fiber, triangular elements are chosen, allowing an easy adaptation of the mesh to 

any complex morphology. A quadratic shape function is used. A constant element size is used across all 

studies to avoid time consuming, given the number of different tested geometries, manual refinement steps. 

For ideal geometries, an element length of 𝑅/26 is chosen after a mesh refinement study, where Δ𝐸𝑇  

converges at a value of 2.8 ∙ 10−4% for a fiber with a circular cross section. For microscopy extracted 

geometries an element size of �̅�/26 where �̅� is the average of the fitted ellipse’s major and minor radius. 

Given, their rectangular nature compression platens are meshed using structured quadrilaterals. Since the 

platens are the masters in the contact pairs with the fiber, elements that are two times bigger than the fiber 

are used. An overview of the boundary conditions and mesh for an ideal and microscopy-extracted 

geometry is given in Figure 6. 

3. Results and discussions  

3.1. Elliptical analytical model 

Figure 7 illustrates Δ𝐸𝑇 and 𝜌 values, for fibers with an ellipse flattening factor 𝑓, varying from 0 to 

0.9. For all elliptical geometries, the identified transverse elastic modulus is overestimated regardless of the 

analytical model used in the identification, as attested by the positive values of Δ𝐸𝑇  (see Figure 7.a). The 

nature of this overestimation will be discussed in the next subsection. It can become very significant as 

fibers get more elliptical. For example, a flattening ratio of 𝑓 = 0.85 leads to Δ𝐸𝑇  that surpass 100% for 

all analytical models. Nevertheless, the elliptical model leads consistently to lower values of Δ𝐸𝑇 . The use 

of the original model leads to higher values of Δ𝐸𝑇, especially when the major radius is used as an input 

instead of the minor radius.  

Across all studied ellipse flattening factors the elliptical model leads to an average decrease in Δ𝐸𝑇 of 

93 ± 24% (mean value and standard deviation) compared to the conventional model with the minor radius 

as an input, and 185 ± 47% (mean value and standard deviation) when the major radius is used as an input. 
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The relative difference in Δ𝐸𝑇 between the original and elliptical model stays relatively stable up until 𝑓 =

0.8, where differences in Δ𝐸𝑇 become more important, which explains the rather large standard deviation 

values. Similar trends can be observed for the average least-squares identification residual 𝜌, with the use 

of the major radius leading to highest values, followed by the use of the minor radius and the lowest values 

being obtained with the elliptical model, as seen in Figure 7.b. Residual values stay under 5 nm when the 

elliptical model is used, or 0.5% of the imposed displacement. The elliptical model thus reproduces fiber 

behavior accurately. 

Overall, the use of the proposed elliptical analytical model leads to a significant improvement in both 

the identification of the fiber’s transverse elastic modulus and the fitting of the model to the FEA data. It is 

thus the model of choice for all the following studies. If the original analytical model must be used, the 

value of the radius along the axis that is perpendicular to the platens, in our case the minor radius, should 

be preferred. 

3.2. Ideal geometric representations 

The vertical stress fields 𝜎𝑦𝑦 resulting from the simulation of the ideal representations of the main plant 

fiber geometric characteristic are shown in Figure 8. A perfectly circular fiber with no lumen (see Figure 

8.a) is depicted along with fibers with a lumen, an elliptical geometry or flat section with ratios 𝑅𝐿/𝑅, 𝑓 

and 𝑤/𝑅 of 0.35 (see Figure 8.b) and 0.7 (see Figure 8.c). For a circular and full fiber, stresses are 

concentrated in the contact zone with the platens. The same is true for elliptical and flattened fibers however 

as contact zones are larger, stresses are spread over a wider zone and stress levels are generally lower. An 

exception can be seen for flat fibers, where high concentration levels occur at the interface between the flat 

and elliptical section. The presence of the lumen leads to two separate zones of stress concentrations: one 

close to the contact zone at the base of the lumen. This new stress concentration zone is explained by the 

compaction of the lumen that takes place during the fiber compression. Furthermore, an important decrease 

in maximum stress levels can be observed, that gets more important as lumen size grows. This increase in 

fiber compliance is also a result of the lumen compaction, which adds a structural displacement to the fiber 

displacement related to material deformation. 

The force-displacement results obtained from the FEA analysis are shown in Figure 9. The decrease in 

stress levels for a given displacement, resulting from the presence of the lumen, leads to an important 
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decrease in force level (see Figure 9.a). On the other hand, both elliptical and flat-section geometries lead 

to an increase in force for a given displacement level, compared to a circular fiber, due to the increased 

contact zones related to these geometries (see Figure 9.b and Figure 9.c).  

These changes in force levels, compared to the circular and full fiber case, have an influence on the 

identification of 𝐸𝑇 by the analytical model, as seen by the values of Δ𝐸𝑇 in Figure 10.a. For elliptical and 

flat fibers, the increase in force leads to an overestimation of the transverse elastic modulus of the fiber 

(Δ𝐸𝑇 > 0). For flat fibers Δ𝐸𝑇 increases almost linearly, by approximately 30% per increment of 0.1 of the 

ratio 𝑤/𝑅. For elliptical geometries Δ𝐸𝑇 increases exponentially with low values for less elliptical fibers ( 

Δ𝐸𝑇 < 10% for 𝑓 < 0.3 and Δ𝐸𝑇 < 40% for 𝑓 < 0.6). For more elliptical fibers Δ𝐸𝑇 rises rapidly, 

approaching values of 200%. However, for all tested geometries, Δ𝐸𝑇 resulting from elliptical geometries 

remain lower than flat-section geometries. For fibers with lumens, due to the decrease in force, Δ𝐸𝑇 values 

are negative, the identified apparent transverse modulus is thus lower than the modulus defined in the FEM. 

The evolution of Δ𝐸𝑇 follows a sigmoid-like trend with low values for smaller lumens, (|Δ𝐸𝑇| < 10% for 

𝑅𝐿/𝑅 < 0.2) and higher values for large lumens (|Δ𝐸𝑇| > 80% for 𝑅𝐿/𝑅 > 0.6) that stabilize towards 

values of 100%. For intermediate lumen values (0.2 < 𝑅𝐿/𝑅 < 0.6) Δ𝐸𝑇 decreases more rapidly. 

An important distinction in the interpretation of Δ𝐸𝑇 , for fibers with or without a lumen, must be noted. 

When no lumen is present, fiber displacement is a direct result of material deformation. Differences between 

the fiber’s apparent modulus and the one imposed in the simulation occur because the model is developed 

for circular cross sections. Flat sections are not considered, while ellipticity is accounted for with a simple 

approximation. Therefore, in this case Δ𝐸𝑇 can be interpreted as the identification error made by the 

analytical model. For fibers with lumens however, structural displacement related to the lumen’s 

compaction is added to material deformation. In this case, Δ𝐸𝑇  represents the difference between the 

transverse elastic modulus of the fiber’s cell wall and the apparent modulus, identified by the analytical 

model. This apparent modulus is equivalent to the modulus of a full fiber with the same compliance as the 

fiber with a lumen. Within a structural application, fiber behavior will be dictated by both the material and 

structural displacement. Therefore, when a lumen is present, the apparent modulus might be of more interest 

than the modulus of the fiber wall itself and Δ𝐸𝑇  should not be interpreted as an identification error. 

Fiber geometry also influences fiber behavior non-linearity, as seen in Figure 9. The non-linearity 

remains unchanged for elliptical geometries in general but also for smaller lumen sizes and flat sections. In 



11 

 

these cases, the analytical model reproduces this fiber behavior well. For larger lumen sizes and flat 

sections, the fiber response becomes more linear, which the analytical model does not reproduce as well. 

The analytical model’s ability to fit the FEA data is given by the least-squares identification average 

residual, 𝜌,  in Figure 10.b. For elliptical and flat-section fibers, residual values remain under 10𝑛𝑚, which 

corresponds to 1% of the upper platen’s maximum displacement, attesting to a good quality fit. For fibers 

with a lumen, residual values rise with an accelerated rate, as a function of lumen size. For 𝑅𝐿/𝑅 = 0.9, 

residual values reach 54𝑛𝑚, or 5.4% of the maximum displacement. Therefore, the analytical model’s 

ability to reproduce fiber behavior when a lumen is present, is worse than for elliptical or flat-section 

geometries. The added structural displacement related to lumen compaction is the reason, since it is not 

accounted for at all in the model’s formulation. 

Based on these identification results, an antagonist behavior becomes apparent between plant fiber 

geometric characteristics. Lumens lead to a decrease in apparent stiffness compared to the fiber cell wall 

stiffness. On the other hand, elliptical and flat geometries lead to an increase in apparent stiffness. Plant 

fibers are characterized by complex geometries that often present all of these characteristics. The value of 

𝐸𝑇 that is identified by the analytical model will depend on the overall interaction between these parameters.  

3.3. Microscopy-extracted geometries  

The force-displacement results of the FEA on microscopy-extracted fiber geometries is given in Figure 

11. Depending on the fiber geometry, force levels can be quite diverse. Nevertheless, a clear trend can be 

observed, depending on the presence of a lumen in the fiber. Fibers with lumens consistently lead to lower 

force levels compared to those with no lumen. These differences in force level lead to a clear trend in the 

identified transverse elastic modulus as attested by the values of Δ𝐸𝑇  shown in Figure 12.a. A clear 

distinction can be made on the values of Δ𝐸𝑇  based on the presence of the lumen. All fibers with a lumen 

lead to decreased apparent stiffness (Δ𝐸𝑇 < 0) while fibers with no lumen lead to an increased one (Δ𝐸𝑇 >

0) with the exception of fiber 10. Given that studied fibers often have both elliptical and flat features but 

also a lumen (see Figure 3), it can be assumed that the lumen’s decreasing effect on apparent fiber stiffness 

outweighs the increasing effect of elliptical and flat geometries.  

Average and standard deviation values of Δ𝐸𝑇  are of 19.4 ± 19.9% for fiber with no lumen and 

−28.9 ± 24.6% for fibers with a lumen. When all fibers are considered, the average value of Δ𝐸𝑇  is of 
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−7 ± 33%. Therefore, if a morphologically diverse set of fibers in tested with SFTCTs within a small 

deformation and elastic regime, the proposed elliptical analytical model can lead to small differences 

between apparent stiffness and fiber cell wall stiffness. The value of the standard deviation, while high 

compared to the average value, remains of the same order of magnitude as those found experimentally on 

identified plant fiber properties such as the tensile modulus and strength [8,46,48,49]. This points to plant 

fiber morphological diversity being one of the most predominant factors in the variability of their measured 

properties. 

Regarding the ability of the analytical model to reproduce the behavior of complex fiber geometries, it 

can be seen in Figure 11 that the model fits well to the FEA data, for all tested fibers. This attested by the 

values of the least-squares identification residual, 𝜌, shown in Figure 12.b. All values remain under 6𝑛𝑚, 

while the average value is of 2.5𝑛𝑚, or 0.25% of the maximum imposed displacement. The standard 

deviation value is also low at 1.3𝑛𝑚. Therefore, for plant fiber transverse compression performed within a 

small strain and elastic regime, existing analytical SFTCT with the added elliptical approximation are be 

able to reproduce fiber behavior even for complex geometries.  

Considering, the effect the fiber’s lumen, ellipticity and flat sections have on its apparent stiffness, a 

discussion can be made on the consequences of different loading modes on the fiber. If the fiber is loaded 

up to complete lumen compaction, a gradual increase in the identified apparent transverse elastic modulus 

could be observed as the lumen shrinks and structural displacement related compliance decreases. Once the 

lumen is completely compacted and the fiber’s cell wall are in contact, an important increase should be 

observed. This compression would also increase the elliptical nature of the fiber, but also create an 

increasingly large flat zone, where contact with the platens occurs, contributing further to an increase in 

apparent stiffness. If a repeated loading is applied that results in irreversible deformations a change in 

apparent stiffness could also be expected. If the lumen compacts irreversibly during one cycle, less 

structural displacement will take place on the next, making the fiber appear stiffer. Irreversible deformations 

would also mean that the fiber would get more elliptical and flatter with each loading cycle. The 

combination of these mechanisms should result in an increase of the identified apparent transverse elastic 

modulus as a function of loading cycle, as long as damage mechanisms are not activated.  

The discussed mechanisms could lead to important differences between the apparent transverse 

properties of single fibers, tested before any treatment; and fibers that have been subject to important or 
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repeated transverse loads during transformation and manufacturing processes. Plant fiber extraction such 

as scutching [6] or composite compression molding [50] are examples of such processes. If the lumen 

collapses irreversibly fiber with an increased apparent stiffness will be obtained. However, if the lumen 

does not collapse and is preserved in the final applications, structural displacements linked to its compaction 

will affect the fiber behavior and lead to lower apparent stiffness. In that case, the apparent transverse elastic 

modulus, which is identified by a model considering the fiber as full and thus encompasses both material 

and structural compliance, might be of more interest compared to the properties of the fiber cell wall itself.  

 

4. Conclusions 

In this paper, the influence of plant fiber geometry on its transverse behavior under SFTCT is 

investigated using FEA. The results of the FEA are used to identify by inverse method an apparent fiber 

transverse elastic modulus, using analytical models making simple geometric approximations. This 

apparent modulus is compared to the one imposed in the FEM through the relative difference Δ𝐸𝑇. The 

ability of the analytical model to reproduce fiber behavior is also evaluated through the average least-

squares regression residual.  

An adaptation of existing analytical models was proposed to account for elliptical fiber cross sections. 

Based on simulation results from elliptical fibers under transverse compression, the newly proposed 

analytical model showed an average improvement of 93% on the accuracy of the identified transverse 

elastic modulus 𝐸𝑇, compared to the conventional analytical model that considers a circular fiber cross 

section. 

Ideal representations of fibers with three common geometric characteristics were studied, to 

independently asses their impact on fiber behavior and apparent properties. Elliptical geometries and flat 

sections, lead to an increase in contact zone width which results in an increase in force for a given 

displacement. An increase in apparent stiffness occurs (Δ𝐸𝑇 > 0), that can reach up to 268% and 185% for 

ratios of 0.9 for 𝑤/𝑅 and 𝑓 respectively. For fibers with a lumen the compaction of the lumen leads to a 

structural displacement in addition to the fiber’s cell wall deformation. The fiber is thus more compliant 

and force levels decrease for a given displacement. Consequently, a decrease in apparent stiffness occurs 

(Δ𝐸𝑇 < 0), that can reach up to -100% for 𝑅𝐿/𝑅 =0.9.  
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Complex fiber geometries, extracted from microscopy images with a custom algorithm, were also 

studied enabling the study of the interaction between geometric parameters in a realistic manner. The 

decrease in force related to lumen compaction is shown to surpass the increase in force related to elliptical 

and flat features. The transverse elastic modulus identified by the analytical model is thus higher by 19.4% 

on average than the fiber’s cell wall when no lumen exists and lower by 28.9% when a lumen is present. In 

general, the analytical model was shown to identify 𝐸𝑇 values that are close to those of the fiber cell walls 

with an average Δ𝐸𝑇 value of -7%. Furthermore, its ability to reproduce the behavior of geometrically 

complex fiber was demonstrated by its close fit to the FEA data. 

These results also suggest that existing analytical models with the proposed elliptical cross section 

approximation, can be used with satisfactory accuracy for the identification of plant fiber transverse 

properties through SFTCTs, when performed in an elastic and small strain regime. Nevertheless, analytical 

developments to improve their accuracy and considering more geometric features could be considered. 

Studying the influence of geometric variations along the fiber’s length, with three-dimensional FEM, or 

inelastic fiber behavior would further verify their validity and provide additional insides on plant fiber 

transverse behavior. The proposed finite element models, could also represent an alternative to analytical 

models for the identification of fiber material properties. With the use of the microscopy-extracted 

geometries, complex and rich finite element models could be developed that would offer unprecedented 

accuracy in terms of behavior prediction and fiber cell wall property identification. 

Finally, these results emphasize the importance of morphological and structural effects in plant fiber 

transverse behavior and apparent stiffness. Under repeated loading, if irreversible deformations take place, 

an increase in fiber apparent stiffness can occur as they get more elliptical and flatter or due to the lumen’s 

collapse. Furthermore, if plant fibers are integrated into other materials, their apparent stiffness is of 

particular importance, encompassing both lumen compaction and fiber cell wall deformation. Lumen 

collapse within the material could significantly alter its behavior, by increasing the apparent stiffness of the 

embedded fibers. Inducing lumen collapse in fibers before their integration, could be explored to achieve 

stiffer or more stable materials. By considering these findings, researchers and engineers can make 

informed decisions when incorporating plant fibers into various materials, enhancing our ability to design 

materials with tailored properties to meet diverse needs. 
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Figure 1: Extraction of plant fiber cross section geometries from microscopy image. a) original 

microscopy observation of hemp stem section. b) binarization and contour detection (contours are 

represented in color). c) polar coordinates of cell wall and lumen of the fiber represented in red in b), 

with applied smoothing spline. d) final smoothed fiber geometry in cartesian coordinates, superimposed 

over raw data.   

 

 

Figure 2: Ideal representations of main plant fiber geometric features: a) circular cross section with 

circular lumen, b) elliptical cross section, c) flat fiber section. Fibers are considered symmetric along the 

𝑥 and 𝑦 axis.  
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Figure 3: Extracted and smoothed hemp fiber geometries for finite element analysis. Diverse cell wall, 

lumen shapes and sizes are chosen. 

 

 

Figure 4: Elliptical cross section fiber under transverse compression, with the fiber’s major axis parallel 

to the compression platens: a) undeformed state, b) deformed state. 
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Figure 5: Ellipse fitting and rotation on microscopy-extracted geometries: a) fiber cross section with 

fitted ellipse after rotation to position the major ellipse axis horizontally, b) user rotation to position fiber 

in a configuration where partial compression is minimized. 

 

Figure 6: Finite element models of plant fiber SFTCT with mesh and boundary conditions. a) ideal 

circular geometry, b) microscopy-extracted geometry. 
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Figure 7:Identification results using elliptical and conventional analytical models as function of ellipse 

flattening factor 𝑓: a) relative difference between identified and imposed transverse elastic modulus 𝛥𝐸𝑇, 

b) average least-squares residual 𝜌. In the case of the standard model the major or minor radius is given 

as an input. 

 

Figure 8: Vertical component of stress field for different ideal fiber geometries: a) circular fiber, b) 

lumen, elliptical and flat fiber for 𝑅𝐿 𝑅⁄ , 𝑓, and 𝑤/𝑅 equal 0.35 c) lumen, elliptical and flat fiber for 

𝑅𝐿 𝑅⁄ , 𝑓, and 𝑤/𝑅 equal 0.7 . 

  

a) b)

c)

Lumen FlatnessEllipticity



25 

 

 

 

Figure 9: Force per unit length (𝐹𝐿) and displacement (𝑈) FEA results for ideal plant fiber geometric 

characteristics: a) lumen, b) ellipticity, c) flat section. FEA analysis is represented with markers while the 

dotted lines represent the fitted analytical model. 
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Figure 10: Identification results for plant fiber geometries with ideal geometric characteristics as a 

function of lumen size (𝑅𝐿/𝑅), ellipse flattening factor (𝑓) and flat section width (𝑤/𝑅): a) relative 

difference between identified and imposed transverse elastic modulus 𝛥𝐸𝑇, b) average least-squares 

residual 𝜌.  

 

Figure 11: Force per unit length (𝐹𝐿) and displacement (𝑈) FEA results for microscopy-extracted fibers. 

FEA analysis data is represented with markers while the dotted lines represent the fitted analytical 

model. Color filled markers are used for fibers with no lumen and markers with no filling for fibers with a 

lumen. Occasional removal of initial rotational movement leads to different maximum displacement 

values between fibers. 
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Figure 12:. Identification results for microscopy extracted plant fiber geometries: a) relative difference 

between identified and imposed transverse elastic modulus 𝛥𝐸𝑇, b) average least-squares residual 𝜌. 

Color filled bars are used for fibers with no lumen and bars with no filling for fibers with a lumen. Mean 

(𝜇) and standard deviation (𝜎) values are represented with whole and dotted lines respectively. 

 


