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Abstract— The floating offshore wind turbine (FOWT) tech-
nology has great energy potential, however, minimizing the
movement of the structure, under the combined effect of wind
and waves, while ensuring maximum power extraction on all
operating ranges remains a challenge. This paper proposes the
design of a deep reinforcement learning (DRL) controller for
FOWTs in the operating area III. To our knowledge, this is
the first time that DRL-based control approach is used for this
application. The proposed DRL controller is based on trust
region policy optimization (TRPO) algorithm, composed of two
neural networks, the actor and the critic networks, for the
learning of the optimal control law. Simulation results and
comparison study are provided to validate the proposed DRL
controller for the 5-MW baseline ITI Barge wind turbine model
on OpenFAST.

I. INTRODUCTION
In order to reduce greenhouse gas emissions and thus

reduce the consumption of fossil fuels, the energy transition
to renewable energies is a promising alternative. Particularly,
floating offshore wind turbines (FOWTs) have been booming
in recent years. This emerging technology shows great poten-
tial, allowing the placement of wind farms farther from the
coast, making them less visible and implantable in greater
numbers. However, this industry faces multiple challenges,
with one of the main issues being the development of robust,
adaptive, and intelligent control systems that minimize struc-
tural movements while ensuring maximum power extraction
in all areas of the wind turbine’s operation. Indeed, the
operating range of the wind turbine is divided into three
operating areas depending on the incoming wind speed. In
area I, the wind speed is lower than the starting speed of the
wind turbine, no electrical power is produced. In area II, the
wind speed is between the starting speed and the rated speed,
the control objective is then to extract the maximum power
from the wind. In area III, the wind speed is higher than the
rated speed, the objective is then to regulate the generated
power by limiting it to the rated power.

Traditional control methods, such as gain-scheduled pro-
portional integral control (GSPI), from fixed wind power
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systems suffer from performance limitations when being
applied to FOWTs. They are sensitive to disturbances, and
are therefore not the most suitable for the control of FOWT
which is a strongly nonlinear system and which is subjected
to strong disturbances such as wind and waves. A GSPI
controller for FOWT in operating area III is implemented in
[1], where the movement of the platform pitch is minimized
by keeping the blade pitch actuator’s frequency lower than
the platform’s resonance frequency. Another GSPI controller
to limit the negative damping phenomenon was used in [2]
adjusting this time the rotor speed according to the blade
angle activity. This configuration is now considered as the
reference controller for FOWTs, on which newly developed
controllers are usually tested. Moreover, this reference con-
troller has been analyzed for different types of platforms [3].

Several works propose to use control design approaches
based on the multi-input multi-output (MIMO) models that
consider the couplings of the outputs to be controlled. In
general, the realization of these control methods is based
on analytical models of the system dynamics. To date, the
most successful and exploitable works for control are those
of Betti [4], and Sandner [5]. These nonlinear modeling
approaches are both based on restrictive assumptions in order
to obtain simplified nonlinear models. These models are then
linearized around an operating point for the implementation
of linear control systems. However, these controllers suffer
from a degradation of their performance when changing
the operating point. The main controllers proposed in the
recent literature are, linear quadratic regulator (LQR), H∞

controller, linear parameter-varying control (LPV) and model
predictive control (MPC). The LQR controllers can be
used to reduce the platform movement. Collective blade
pitch controllers (LQR-CBPC) and individual blade pitch
controllers (LQR-IBPC) have been designed in [6], with
LQR-IBPC providing better performance in terms of rotor
speed and power regulation but the platform pitching motion
remains significant. A possible improvement is the LQR-
IBPC controller with disturbance adaptation control, which
ensure better speed and power regulation, thanks to its
ability to estimate the wind and thus minimizes its action
on the system [7]. Similarly, an H∞-CPB controller has been
developed to manage the motion of the platform, and for
power regulation and reduction of associated loads [8]. A
controller with gain sequencing (GS) and H∞ output strategy
has led to an improvement in terms of tower load and rotor
speed regulation [9]. In [10], a state feedback LPV and
an output feedback LQR controller both based on GS are
proposed to regulate the power and minimize the structural



load. They showed better performance compared to the
reference controller. A CBP-LPV controller has also been
proposed in [11].

With the increase in computing and big data processing
capacities, the implementation of data-based controllers with
artificial intelligence techniques is an approach to overcome
the difficulties and limitations linked to nonlinear modeling.
Specifically, deep reinforcement learning (DRL) seems to be
a promising technique for FOWTs control as it does not
require a model of the dynamics but proceeds by repeated
interaction with the environment through trial and error. DRL
methods are thus highly suitable for complex systems with
little knowledge of the model or with a model that is difficult
to formulate. This approach has the ability to generalize to
new situations, which could allow control over all areas of
the wind turbine operation.

Reinforcement Learning (RL) methods are based on the
dynamic programming principle, introduced by Bellman with
the optimal control theory [12]. The aim of RL algorithms
[13] is to learn from interaction the optimal policy that
would maximize a numerical reward. More specifically, it
involves the utilization of an agent capable of learning a
policy that can enhance the performance of a system by
engaging in direct interactions with its environment, through
observations s, actions a, and rewards r. The observations
correspond to the system states available to the agent. The
goal is then to find a policy giving the optimal action to
maximize the expected cumulative reward. This cumulative
reward, as determined by an action value function, provides
an estimation of the desirability for the agent to be in a
given state and execute a given action for this state. In DRL,
neural networks are used to represent the policy and/or action
value function, thus enable the agent to generalize and apply
the policy to new inexperienced states from the previously
learned state values. Applied to control problems [14], the
policy corresponds to the control law and thus, learning the
optimal policy through the interaction between the agent and
the environment is equivalent to learning the optimal control
law.

DRL algorithms have been applied with success to a
variety of control problems, however few works exist for its
application on wind turbines power systems. For the fixed
wind turbine, an MPPT controller for a variable speed wind
power conversion system based on a Q-learning algorithm is
proposed in [15]. The learning of an optimal mapping from
states to actions is performed online by updating the action
values according to future rewards. This approach does not
require any knowledge of the wind turbine parameters, since
the agent is able to learn by direct interaction with the
environment. In [16] MPPT controller for wind power was
also studied this time with a DQN algorithm, in order to
learn the optimal correlation between electrical power output
and rotor speed. For the FOWT system, the optimal control
law is derived using an adaptive dynamic programming
(ADP) algorithm in [17]. The ADP controller shows great
performances especially for extreme conditions.

In this study, we apply a deep reinforcement learning-

based approach for pitch control in operating area III of
floating wind turbines. Among the operating areas, the third
one is the most delicate for control due to the phenomenon
of negative damping, which deteriorate the stability of the
system [1]. A trust region policy optimization (TRPO) algo-
rithm is employed, which considered the nonlinear dynamics
of the system in the control design process, and thus the DRL
controller can achieve rated power tracking while stabilizing
the structure.

This paper is structured as follows: Section II provides
the working environment for the development of a DRL
controller. In Section III, TRPO algorithm and the imple-
mentation of the DRL controller are introduced. Simulation
results are presented in Section IV. Finally, a conclusion and
the perspectives on future work are given in Section V.

II. DEFINITION OF THE ENVIRONMENT

In a DRL learning framework, the environment corre-
sponds to the system to be controlled as well as the distur-
bances applied to it. This part introduced the FOWT system
and the disturbances employed as the learning environment
in which the DRL controller interacts.

A. FOWT system and disturbances

The National Renewable Energy Laboratory (NREL)
model of the 5-MW baseline wind turbine mounted on ITI
Energy’s barge [18] is considered for the synthesis of the
DRL controller. The FOWT is implemented in the multi-
physics tool OpenFAST [19], an open source version of
FAST developed by NREL [20], allowing the simulation of
coupled dynamic response of wind turbines.

Fig. 1. Architecture OpenFAST

The architecture of the OpenFAST code is illustrated in
Fig.1. The floating wind turbine is modeled by a servo-elastic
structural model which is coupled to external aerodynamic,
hydrodynamic and mooring lines forces. In this paper, all
DOFs of the FOWT model are enabled, except the nacelle
yaw DOF.

Two disturbances signals are applied to the FOWT, a wind
signal and a wave signal. The wind field characteristics have
to respect the area III of operation of the FOWT system, and
is defined with mean wind speed of 18 m/s and a turbulence
intensity of 5%. TurbSim was used to generate the wind file.



Irregular waves are generated with the HydroDyn module
from OpenFAST and they are based on JONSWAP spectrum.

B. Area of study

In this article, we focus on FOWT control in region III,
with the collective blade pitch angle as the control variable,
and thus the input variable of OpenFAST simulation. The
generator torque is maintained constant at its rated value
43093.55 N.m and the nacelle yaw angle is fixed against the
wind. Output variables of OpenFAST simulation are:

• blade pitch angle β ,
• blade pitch angular velocity β̇ ,
• generator rotational speed ωg,
• platform pitch angle θy,
• platform pitch velocity θ̇y,
These output variables are normalized within the interval

[−1;1] to feed the neural networks within the DRL Con-
troller.

III. DRL CONTROLLER

The DRL controller is a reinforcement learning agent
who is trained from the interaction with the environment in
order to reduce the platform movement while ensuring the
tracking of the rated electrical power of the 5-MW turbine.
Therefore, the reinforcement learning algorithm named trust
region policy optimization (TRPO) with neural networks
representation [21] for the value function and for the policy
is employed. A brief description of TRPO algorithm, its
implementation for FOWTs and its specific training details
are presented in the following section.

A. TRPO Algorithm

The goal of TRPO algorithm is to learn the value of each
state s from the state space S, and to learn the optimal policy,
which allow the best action a from the action space A to be
taken by the agent given the state.

The state value is defined as the predicted cumulative
discounted long-term reward received by the agent for being
in that state. The function V (st) that return the state value
for the state s from the state space S at time step t is given
as:

V (st) = Eπ

[
∞

∑
k=0

γ
krt+k+1|st = s

]
(1)

Where, r : S → R is the reward function, γ ∈ [0,1] is
the discount factor that determines the present value of the
rewards received by the agent in the future. The closer the
factor is to 0, the more immediate rewards prevail over future
rewards. On the contrary, the closer the factor is to 1 the
more future rewards are considered. In this paper, a discount
factor of 0.99 is selected, so the agent is more far-sighted.
The stochastic policy π(a|s) corresponds to the probability
of taking each action a from the space action A when in state
s. Here the policy return the mean and standard deviation of
the Gaussian probability distribution for each action.

In deep reinforcement learning, neural networks are used
to represent the state value function and the policy. The

critic network is noted V (s,φ) and the actor network is
noted π(a|s,θ), with neural networks parameters φ and θ

respectively. During the training of the agent (Fig.2), their
parameters are updated in the direction that maximizes the
reward signal r. At each time step t, an observation of
the environment is given to the agent. The actor network,
based on this observation, estimates the probabilities of
taking each action possible for that observation and then
based on the probability distribution selects an action at
to perform. The critic network estimates the state value
V (st ,φ).The application of the action at modified the state of
the environment. The subsequent observation st+1 is given
to the agent along with an immediate reward rt+1. The critic
parameters φ are then updated in the next step to minimize
a critic loss function Lcritic. The actor network parameters
are also updated in the next step to minimize an actor loss
function Lactor subject to constraint.

Fig. 2. Interaction Agent-Environment

Algorithm Trust Region Policy Optimization:
1: Initialize the critic V (s,φ) and the actor π(a|s,θ) with
random parameters values φ and θ , respectively.
2: Generate N a sequence of experiences by following the
current policy :

s1,a1,r2,s2, ...,sN−1,aN−1,rN ,sN

3: For each episode step t = 1,2, ...,N, compute the
advantage function Dt given in equation (2), which is the
discounted sum of temporal difference errors. Then
compute the return Gt given in equation (3), which is the
sum of the reward for that step and the discounted future
reward:

Dt =
N

∑
k=t

(γλ )k−t(rt + γV (st ,φ)) (2)

where λ is a smoothing factor equal to 0.95 in this study.

Gt = Dt +V (st ,φ) (3)

4: Randomly select a mini-batch of data of size M from the
current set of experiences.
5: Update the critic parameters by minimizing Lcritic across
all sampled mini-batch data.

Lcritic(φ) =
1
M

M

∑
i=1

(Gt −V (si,φ))
2 (4)



6: Update the actor parameters by solving the constrained
optimization problem. The actor loss function to minimize
is defined as:

Lactor(θ) =− 1
M

M

∑
i=1

(
π(ai|si,θ)

π(ai|si,θold)
Di +wLi(θ ,si)

)
(5)

Where, wL (θ ,s) is the entropy loss term, with w the
entropy loss weight and L (θ ,s) the entropy. θold
corresponds to the parameters of the old policy π(a|s,θold).
The constraint on the minimization is:

1
M

M

∑
i=1

DKL(θold ,θ ,si)≤ δ (6)

Here, DKL is the Kullback-Leibler divergence between the
old policy π(a|s,θold) and the current policy π(a|s,θ). The
limitation by δ of DKL controls how much the new policy
can deviate from the old one. To resolve the minimization
problem with the constraint (6), a linear approximation of
Lactor and a quadratic approximation of DKL are realized
thanks to the Taylor series expansion around θ . The
problem is then written as:

min
θ

Lactor(θ)≈ g(θ −θold)

with g(θ −θold) = ∇θ Lactor(θ)|θ=θold · (θ −θold) (7)

sub ject to
1
2
(θold −θ)T H(θold −θ)≤ δ (8)

and H = ∇
2
θ

M

∑
i=1

DKL(θold ,θ ,si)|θ=θold (9)

The update of the actor’s parameters θ with this
approximate optimization problem is:

θ = θold +a

√
2σ

(H−1g)T H−1(H−1g)
H−1g (10)

with the coefficient a ensuring that the policy
simultaneously improves its performance and satisfies the
constraint given in equation (8).
By employing conjugate gradient descent as the
optimization method with a KL constraint, the updated
policy is constrained within a trust region relative to the
current policy. This ensures that the performance does not
deteriorate significantly during the optimization process.

B. Implementation

The DRL controller for FOWTs, using the TRPO algo-
rithm with the two neural networks presented in the previous
part, is implemented on Matlab/Simulink R2022a (Fig.3).

The implementation of DRL algorithms, as success or
failure hinges on properly selecting observations, actions, and
rewards. Here, the observation and action spaces are defined
as follow. The action space is a scalar corresponding to the
collective blade pitch angle β within the interval [0;30]deg.
The observation space is defined as a 5-dimensional vector
characterized by:

• the generator rotational speed ωg,

Fig. 3. Implementation of the DRL controller on Matlab/Simulink. The
controller interacts with OpenFAST by receiving an observation of the
system’s state from OpenFAST simulation and then choose a control action
from the action space. The chosen action is given as input to OpenFAST, that
compute the simulation and give a new observation to the DRL controller,
as well as a reward to update the actor and critic networks.

• the error between the generator rotational speed
ωg and the rated rotational speed ωg,rated equal to
122.9096rad/s,

• the platform pitch angle θy,
• the platform pitch angular velocity θ̇y,
• the blade pitch angle β ,

st = [ωg,(ωg −ωg,rated),θy, θ̇y,β ] (11)

Once an action is taken, the agent receives a reward to
evaluate the action. In this study, the blade pitch control aims
at reducing the movement of the turbine’s platform while
ensuring the tracking of the rated power and thus with a
minimum of actuation effort. The reward function is thus
defined as:

rt =−[Q1|ωg −ωg,rated |+Q2|θ̇y|+Q3|u−1|]+G+P (12)

Where u−1 is the command variable (i.e. β ) at the previous
time step. The Qi factors correspond to the positive weights
assigned to each of the reward terms. G and P, are both
scalar, a positive gain if the error (ωg −ωg,rated) is below
a defined threshold, and a penalization if ωg is outside its
feasible working area, respectively.

The first term penalizes the deviation from the rated
generator speed in order to stabilize the FOWT at its rated
electrical power value. The second and third terms ensure
that the system stays stable. The command variable is
penalized in the fourth term to limit the actuator effort and
energy cost.

The weights involved are independent of the system states
and inputs thus designing a reward signal for achieving the
control requirements is a delicate step and required empirical
tuning of each of these weights.

Moreover, constraints assure the feasible operation range
for the FOWT:

βmin ≤ β ≤ βmax (13)



−β̇max ≤ β̇ ≤ β̇max (14)

ωg,min ≤ ωg ≤ ωg,max (15)

Where the first line limits the blade pitch angle to its feasible
working area, the second line restricts the blade pitch rate,
and the third one limits the range in which the generator
rotational speed is feasible in area III.

The action network and the critic network are simple
neural networks with fully connected hidden layers. The
proposed structures are illustrated in Fig.4.

Fig. 4. Architecture neural networks

C. Training process

The training of the agent is done by episode. Each training
episode starts with the system in initial conditions such as:

• blade pitch angle β equal to 15deg with random noise,
• random platform pitch angle θy within the interval
[−5;5]deg,

A training episode lasts at most 100s with a time step of
0.0125s for the agent in the DRL controller. If the generator
rotational speed is outside the range [80;180]rad/s when
learning, then the episode is terminated before reaching the
maximum number of steps.

During the training process, the agent updates the param-
eters of the critic and actor neural networks. After training
parameters remain at their learned value and the trained actor
networks is then stored in π(a|s) and can be used in the
simulation.

IV. TRAINING AND TEST RESULTS

This section presents the first results obtained with the
actor network approximating the optimal control law. The
DRL controller is also compared to the baseline controller,
a PI collective blade pith controller, who is implemented on
OpenFAST as an external dynamic link library (DLL) [18].

A. Training results

The training results of the DRL controller can be seen
in Fig.5. The agent was trained on 580 episodes, i.e 6.96
million steps for a duration of approximately 25 hours with
a CPU.

Fig. 5. Training result for the control law, the generator speed and the
platform pitch

B. Test results

The test results for a 600s OpenFAST simulation with the
trained actor network representing the control law are given
in Fig.6, Fig.7 and Fig.8.

Fig. 6. Test results for the blade pitch angle with comparison to the baseline
controller

C. Discussion

For this training duration, the DRL Controller is able
to learn a control law for FOWTs systems only from the
interaction data.

When comparing the test results, the DRL Controller
doesn’t perform as well as the baseline controller but it is still
able to show signs of learning the desired behavior to reach
the control objective. The training should be resumed in order
to improve the performances of the agent, and the control
law obtained needs to be test for more extreme external
conditions. Moreover, the validity of this method should be
further analyzed in the future.

The significant computational resources, due to the large
numbers of episodes needed to properly account for the
interaction of the agent and the environment, is the main



Fig. 7. Test results for the generator speed with comparison to the baseline
controller

Fig. 8. Test results for the platform pitch with comparison to the baseline
controller

limitation encountered. However, the implementation could
be more time efficient and powerful with the use of GPU
with parallel computing environments.

V. CONCLUSIONS

This paper has proposed a deep reinforcement learning
controller for FOWTs. The controller is based on TRPO
algorithm with neural networks representation to learn the
optimal control law for the control of the FOWT system
in operating area III. The effectiveness of the proposed DRL
controller has been demonstrated by simulation results for the
5-MW baseline wind turbine with OpenFAST. In future work
we consider resuming the the training of the agent, especially
with more extreme external conditions to improve its ability
to deal with strong perturbations. Moreover, we plan to apply
other variations of DRL methods to this framework, and
extend the methods to the operating area II.
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